def test_add_path_dtype(self): env = DummyDiscreteEnv() obs = env.reset() replay_buffer = PathBuffer(capacity_in_transitions=3) replay_buffer.add_path({ 'observations': np.array([obs]), 'actions': np.array([[env.action_space.sample()]]) }) sample = replay_buffer.sample_transitions(1) sample_obs = sample['observations'] sample_action = sample['actions'] assert sample_obs.dtype == env.observation_space.dtype assert sample_action.dtype == env.action_space.dtype
def test_ddpg_double_pendulum(self): """Test DDPG with Pendulum environment.""" with LocalTFRunner(snapshot_config, sess=self.sess) as runner: env = MetaRLEnv(gym.make('InvertedDoublePendulum-v2')) policy = ContinuousMLPPolicy(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec, policy, sigma=0.2) qf = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e5)) algo = DDPG( env_spec=env.spec, policy=policy, policy_lr=1e-4, qf_lr=1e-3, qf=qf, replay_buffer=replay_buffer, steps_per_epoch=20, target_update_tau=1e-2, n_train_steps=50, discount=0.9, min_buffer_size=int(5e3), exploration_policy=exploration_policy, ) runner.setup(algo, env) last_avg_ret = runner.train(n_epochs=10, batch_size=100) assert last_avg_ret > 60 env.close()
def test_to(): """Test the torch function that moves modules to GPU. Test that the policy and qfunctions are moved to gpu if gpu is available. """ env_names = ['CartPole-v0', 'CartPole-v1'] task_envs = [MetaRLEnv(env_name=name) for name in env_names] env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) deterministic.set_seed(0) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) num_tasks = 2 buffer_batch_size = 2 mtsac = MTSAC(policy=policy, qf1=qf1, qf2=qf2, gradient_steps_per_itr=150, max_path_length=150, eval_env=env, env_spec=env.spec, num_tasks=num_tasks, steps_per_epoch=5, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=buffer_batch_size) set_gpu_mode(torch.cuda.is_available()) mtsac.to() device = global_device() for param in mtsac._qf1.parameters(): assert param.device == device for param in mtsac._qf2.parameters(): assert param.device == device for param in mtsac._qf2.parameters(): assert param.device == device for param in mtsac._policy.parameters(): assert param.device == device assert mtsac._log_alpha.device == device
def td3_pendulum(ctxt=None, seed=1): """Wrap TD3 training task in the run_task function. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. """ set_seed(seed) with LocalTFRunner(ctxt) as runner: env = MetaRLEnv(gym.make('InvertedDoublePendulum-v2')) policy = ContinuousMLPPolicy(env_spec=env.spec, hidden_sizes=[400, 300], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddGaussianNoise(env.spec, policy, max_sigma=0.1, min_sigma=0.1) qf = ContinuousMLPQFunction(name='ContinuousMLPQFunction', env_spec=env.spec, hidden_sizes=[400, 300], action_merge_layer=0, hidden_nonlinearity=tf.nn.relu) qf2 = ContinuousMLPQFunction(name='ContinuousMLPQFunction2', env_spec=env.spec, hidden_sizes=[400, 300], action_merge_layer=0, hidden_nonlinearity=tf.nn.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6)) td3 = TD3(env_spec=env.spec, policy=policy, policy_lr=1e-4, qf_lr=1e-3, qf=qf, qf2=qf2, replay_buffer=replay_buffer, target_update_tau=1e-2, steps_per_epoch=20, n_train_steps=1, smooth_return=False, discount=0.99, buffer_batch_size=100, min_buffer_size=1e4, exploration_policy=exploration_policy, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer) runner.setup(td3, env) runner.train(n_epochs=500, batch_size=250)
def __setstate__(self, state): """Object.__setstate__. Args: state (dict): unpickled state. """ self.__dict__.update(state) self._replay_buffers = { i: PathBuffer(self._replay_buffer_size) for i in range(self._num_train_tasks) } self._context_replay_buffers = { i: PathBuffer(self._replay_buffer_size) for i in range(self._num_train_tasks) } self._is_resuming = True
def test_fixed_alpha(): """Test if using fixed_alpha ensures that alpha is non differentiable.""" env_names = ['InvertedDoublePendulum-v2', 'InvertedDoublePendulum-v2'] task_envs = [MetaRLEnv(env_name=name) for name in env_names] env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) test_envs = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) deterministic.set_seed(0) runner = LocalRunner(snapshot_config=snapshot_config) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) num_tasks = 2 buffer_batch_size = 128 mtsac = MTSAC(policy=policy, qf1=qf1, qf2=qf2, gradient_steps_per_itr=100, max_path_length=100, eval_env=test_envs, env_spec=env.spec, num_tasks=num_tasks, steps_per_epoch=1, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=buffer_batch_size, fixed_alpha=np.exp(0.5)) if torch.cuda.is_available(): set_gpu_mode(True) else: set_gpu_mode(False) mtsac.to() assert torch.allclose(torch.Tensor([0.5] * num_tasks), mtsac._log_alpha.to('cpu')) runner.setup(mtsac, env, sampler_cls=LocalSampler) runner.train(n_epochs=1, batch_size=128, plot=False) assert torch.allclose(torch.Tensor([0.5] * num_tasks), mtsac._log_alpha.to('cpu')) assert not mtsac._use_automatic_entropy_tuning
def sac_half_cheetah_batch(ctxt=None, seed=1): """Set up environment and algorithm and run the task. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. """ deterministic.set_seed(seed) runner = LocalRunner(snapshot_config=ctxt) env = MetaRLEnv(normalize(gym.make('HalfCheetah-v2'))) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[256, 256], hidden_nonlinearity=nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[256, 256], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[256, 256], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6)) sac = SAC(env_spec=env.spec, policy=policy, qf1=qf1, qf2=qf2, gradient_steps_per_itr=1000, max_path_length=500, replay_buffer=replay_buffer, min_buffer_size=1e4, target_update_tau=5e-3, discount=0.99, buffer_batch_size=256, reward_scale=1., steps_per_epoch=1) if torch.cuda.is_available(): set_gpu_mode(True) else: set_gpu_mode(False) sac.to() runner.setup(algo=sac, env=env, sampler_cls=LocalSampler) runner.train(n_epochs=1000, batch_size=1000)
def continuous_mlp_q_function(ctxt, env_id, seed): """Create Continuous MLP QFunction on TF-DDPG. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with LocalTFRunner(ctxt, max_cpus=12) as runner: env = MetaRLEnv(normalize(gym.make(env_id))) policy = ContinuousMLPPolicy( env_spec=env.spec, name='ContinuousMLPPolicy', hidden_sizes=hyper_params['policy_hidden_sizes'], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise( env.spec, policy, sigma=hyper_params['sigma']) qf = ContinuousMLPQFunction( env_spec=env.spec, hidden_sizes=hyper_params['qf_hidden_sizes'], hidden_nonlinearity=tf.nn.relu, name='ContinuousMLPQFunction') replay_buffer = PathBuffer( capacity_in_transitions=hyper_params['replay_buffer_size']) ddpg = DDPG(env_spec=env.spec, policy=policy, qf=qf, replay_buffer=replay_buffer, steps_per_epoch=hyper_params['steps_per_epoch'], policy_lr=hyper_params['policy_lr'], qf_lr=hyper_params['qf_lr'], target_update_tau=hyper_params['tau'], n_train_steps=hyper_params['n_train_steps'], discount=hyper_params['discount'], min_buffer_size=int(1e4), exploration_policy=exploration_policy, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer) runner.setup(ddpg, env, sampler_args=dict(n_envs=12)) runner.train(n_epochs=hyper_params['n_epochs'], batch_size=hyper_params['n_rollout_steps'])
def test_td3_pendulum(self): """Test TD3 with Pendulum environment.""" with LocalTFRunner(snapshot_config) as runner: env = MetaRLEnv(gym.make('InvertedDoublePendulum-v2')) policy = ContinuousMLPPolicy(env_spec=env.spec, hidden_sizes=[400, 300], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddGaussianNoise(env.spec, policy, max_sigma=0.1, min_sigma=0.1) qf = ContinuousMLPQFunction(name='ContinuousMLPQFunction', env_spec=env.spec, hidden_sizes=[400, 300], action_merge_layer=0, hidden_nonlinearity=tf.nn.relu) qf2 = ContinuousMLPQFunction(name='ContinuousMLPQFunction2', env_spec=env.spec, hidden_sizes=[400, 300], action_merge_layer=0, hidden_nonlinearity=tf.nn.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6)) algo = TD3(env_spec=env.spec, policy=policy, policy_lr=1e-3, qf_lr=1e-3, qf=qf, qf2=qf2, replay_buffer=replay_buffer, steps_per_epoch=20, target_update_tau=0.005, n_train_steps=50, discount=0.99, smooth_return=False, min_buffer_size=int(1e4), buffer_batch_size=100, policy_weight_decay=0.001, qf_weight_decay=0.001, exploration_policy=exploration_policy, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer) runner.setup(algo, env) last_avg_ret = runner.train(n_epochs=10, batch_size=250) assert last_avg_ret > 400
def test_sac_inverted_double_pendulum(): """Test Sac performance on inverted pendulum.""" # pylint: disable=unexpected-keyword-arg env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2'))) deterministic.set_seed(0) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) runner = LocalRunner(snapshot_config=snapshot_config) sac = SAC(env_spec=env.spec, policy=policy, qf1=qf1, qf2=qf2, gradient_steps_per_itr=100, max_path_length=100, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=64, reward_scale=1., steps_per_epoch=2) runner.setup(sac, env, sampler_cls=LocalSampler) if torch.cuda.is_available(): set_gpu_mode(True) else: set_gpu_mode(False) sac.to() ret = runner.train(n_epochs=12, batch_size=200, plot=False) # check that automatic entropy tuning is used assert sac._use_automatic_entropy_tuning # assert that there was a gradient properly connected to alpha # this doesn't verify that the path from the temperature objective is # correct. assert not torch.allclose(torch.Tensor([1.]), sac._log_alpha.to('cpu')) # check that policy is learning beyond predecided threshold assert ret > 85
def test_dqn_cartpole_pickle(self): """Test DQN with CartPole environment.""" with LocalTFRunner(snapshot_config, sess=self.sess) as runner: n_epochs = 10 steps_per_epoch = 10 sampler_batch_size = 500 num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size env = MetaRLEnv(gym.make('CartPole-v0')) replay_buffer = PathBuffer(capacity_in_transitions=int(1e4)) qf = DiscreteMLPQFunction(env_spec=env.spec, hidden_sizes=(64, 64)) policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf) epilson_greedy_policy = EpsilonGreedyPolicy( env_spec=env.spec, policy=policy, total_timesteps=num_timesteps, max_epsilon=1.0, min_epsilon=0.02, decay_ratio=0.1) algo = DQN(env_spec=env.spec, policy=policy, qf=qf, exploration_policy=epilson_greedy_policy, replay_buffer=replay_buffer, qf_lr=1e-4, discount=1.0, min_buffer_size=int(1e3), double_q=False, n_train_steps=500, grad_norm_clipping=5.0, steps_per_epoch=steps_per_epoch, target_network_update_freq=1, buffer_batch_size=32) runner.setup(algo, env) with tf.compat.v1.variable_scope( 'DiscreteMLPQFunction/MLPModel/mlp/hidden_0', reuse=True): bias = tf.compat.v1.get_variable('bias') # assign it to all one old_bias = tf.ones_like(bias).eval() bias.load(old_bias) h = pickle.dumps(algo) with tf.compat.v1.Session(graph=tf.Graph()): pickle.loads(h) with tf.compat.v1.variable_scope( 'DiscreteMLPQFunction/MLPModel/mlp/hidden_0', reuse=True): new_bias = tf.compat.v1.get_variable('bias') new_bias = new_bias.eval() assert np.array_equal(old_bias, new_bias) env.close()
def test_mtsac_get_log_alpha(monkeypatch): """Check that the private function _get_log_alpha functions correctly. MTSAC uses disentangled alphas, meaning that """ env_names = ['CartPole-v0', 'CartPole-v1'] task_envs = [MetaRLEnv(env_name=name) for name in env_names] env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) deterministic.set_seed(0) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) num_tasks = 2 buffer_batch_size = 2 mtsac = MTSAC(policy=policy, qf1=qf1, qf2=qf2, gradient_steps_per_itr=150, max_path_length=150, eval_env=env, env_spec=env.spec, num_tasks=num_tasks, steps_per_epoch=5, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=buffer_batch_size) monkeypatch.setattr(mtsac, '_log_alpha', torch.Tensor([1., 2.])) for i, _ in enumerate(env_names): obs = torch.Tensor([env.reset()] * buffer_batch_size) log_alpha = mtsac._get_log_alpha(dict(observation=obs)) assert (log_alpha == torch.Tensor([i + 1, i + 1])).all().item() assert log_alpha.size() == torch.Size([mtsac.buffer_batch_size])
def ddpg_pendulum(ctxt=None, seed=1): """Train DDPG with InvertedDoublePendulum-v2 environment. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. """ set_seed(seed) with LocalTFRunner(snapshot_config=ctxt) as runner: env = MetaRLEnv(gym.make('InvertedDoublePendulum-v2')) policy = ContinuousMLPPolicy(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec, policy, sigma=0.2) qf = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6)) ddpg = DDPG(env_spec=env.spec, policy=policy, policy_lr=1e-4, qf_lr=1e-3, qf=qf, replay_buffer=replay_buffer, steps_per_epoch=20, target_update_tau=1e-2, n_train_steps=50, discount=0.9, min_buffer_size=int(1e4), exploration_policy=exploration_policy, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer) runner.setup(algo=ddpg, env=env) runner.train(n_epochs=500, batch_size=100)
def ddpg_pendulum(ctxt=None, seed=1, lr=1e-4): """Train DDPG with InvertedDoublePendulum-v2 environment. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. lr (float): Learning rate for policy optimization. """ set_seed(seed) runner = LocalRunner(ctxt) env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2'))) policy = DeterministicMLPPolicy(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=F.relu, output_nonlinearity=torch.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec, policy, sigma=0.2) qf = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6)) policy_optimizer = (torch.optim.Adagrad, {'lr': lr, 'lr_decay': 0.99}) ddpg = DDPG(env_spec=env.spec, policy=policy, qf=qf, replay_buffer=replay_buffer, steps_per_epoch=20, n_train_steps=50, min_buffer_size=int(1e4), exploration_policy=exploration_policy, target_update_tau=1e-2, discount=0.9, policy_optimizer=policy_optimizer, qf_optimizer=torch.optim.Adam) runner.setup(algo=ddpg, env=env) runner.train(n_epochs=500, batch_size=100)
def test_mtsac_inverted_double_pendulum(): """Performance regression test of MTSAC on 2 InvDoublePendulum envs.""" env_names = ['InvertedDoublePendulum-v2', 'InvertedDoublePendulum-v2'] task_envs = [MetaRLEnv(env_name=name) for name in env_names] env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) test_envs = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) deterministic.set_seed(0) runner = LocalRunner(snapshot_config=snapshot_config) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) num_tasks = 2 buffer_batch_size = 128 mtsac = MTSAC(policy=policy, qf1=qf1, qf2=qf2, gradient_steps_per_itr=100, max_path_length=100, eval_env=test_envs, env_spec=env.spec, num_tasks=num_tasks, steps_per_epoch=5, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=buffer_batch_size) runner.setup(mtsac, env, sampler_cls=LocalSampler) ret = runner.train(n_epochs=8, batch_size=128, plot=False) assert ret > 130
def test_fixed_alpha(): """Test if using fixed_alpha ensures that alpha is non differentiable.""" # pylint: disable=unexpected-keyword-arg env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2'))) deterministic.set_seed(0) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) runner = LocalRunner(snapshot_config=snapshot_config) sac = SAC(env_spec=env.spec, policy=policy, qf1=qf1, qf2=qf2, gradient_steps_per_itr=100, max_path_length=100, replay_buffer=replay_buffer, min_buffer_size=100, target_update_tau=5e-3, discount=0.99, buffer_batch_size=64, reward_scale=1., steps_per_epoch=1, fixed_alpha=np.exp(0.5)) runner.setup(sac, env, sampler_cls=LocalSampler) sac.to() runner.train(n_epochs=1, batch_size=100, plot=False) assert torch.allclose(torch.Tensor([0.5]), sac._log_alpha) assert not sac._use_automatic_entropy_tuning
def dqn_cartpole(ctxt=None, seed=1): """Train TRPO with CubeCrash-v0 environment. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. """ set_seed(seed) with LocalTFRunner(ctxt) as runner: n_epochs = 10 steps_per_epoch = 10 sampler_batch_size = 500 num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size env = MetaRLEnv(gym.make('CartPole-v0')) replay_buffer = PathBuffer(capacity_in_transitions=int(1e4)) qf = DiscreteMLPQFunction(env_spec=env.spec, hidden_sizes=(64, 64)) policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf) exploration_policy = EpsilonGreedyPolicy(env_spec=env.spec, policy=policy, total_timesteps=num_timesteps, max_epsilon=1.0, min_epsilon=0.02, decay_ratio=0.1) algo = DQN(env_spec=env.spec, policy=policy, qf=qf, exploration_policy=exploration_policy, replay_buffer=replay_buffer, steps_per_epoch=steps_per_epoch, qf_lr=1e-4, discount=1.0, min_buffer_size=int(1e3), double_q=True, n_train_steps=500, target_network_update_freq=1, buffer_batch_size=32) runner.setup(algo, env) runner.train(n_epochs=n_epochs, batch_size=sampler_batch_size)
def test_ddpg_pendulum(self): """Test DDPG with Pendulum environment. This environment has a [-3, 3] action_space bound. """ deterministic.set_seed(0) runner = LocalRunner(snapshot_config) env = MetaRLEnv(normalize(gym.make('InvertedPendulum-v2'))) policy = DeterministicMLPPolicy(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=F.relu, output_nonlinearity=torch.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec, policy, sigma=0.2) qf = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6)) algo = DDPG(env_spec=env.spec, policy=policy, qf=qf, replay_buffer=replay_buffer, steps_per_epoch=20, n_train_steps=50, min_buffer_size=int(1e4), exploration_policy=exploration_policy, target_update_tau=1e-2, discount=0.9) runner.setup(algo, env) last_avg_ret = runner.train(n_epochs=10, batch_size=100) assert last_avg_ret > 10 env.close()
def test_dqn_cartpole_grad_clip(self): """Test DQN with CartPole environment.""" with LocalTFRunner(snapshot_config, sess=self.sess) as runner: n_epochs = 10 steps_per_epoch = 10 sampler_batch_size = 500 num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size env = MetaRLEnv(gym.make('CartPole-v0')) replay_buffer = PathBuffer(capacity_in_transitions=int(1e4)) qf = DiscreteMLPQFunction(env_spec=env.spec, hidden_sizes=(64, 64)) policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf) epilson_greedy_policy = EpsilonGreedyPolicy( env_spec=env.spec, policy=policy, total_timesteps=num_timesteps, max_epsilon=1.0, min_epsilon=0.02, decay_ratio=0.1) algo = DQN(env_spec=env.spec, policy=policy, qf=qf, exploration_policy=epilson_greedy_policy, replay_buffer=replay_buffer, qf_lr=1e-4, discount=1.0, min_buffer_size=int(1e3), double_q=False, n_train_steps=500, grad_norm_clipping=5.0, steps_per_epoch=steps_per_epoch, target_network_update_freq=1, buffer_batch_size=32) runner.setup(algo, env) last_avg_ret = runner.train(n_epochs=n_epochs, batch_size=sampler_batch_size) assert last_avg_ret > 15 env.close()
def mtsac_metaworld_mt50(ctxt=None, seed=1, use_gpu=False, _gpu=0): """Train MTSAC with MT50 environment. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. use_gpu (bool): Used to enable ussage of GPU in training. _gpu (int): The ID of the gpu (used on multi-gpu machines). """ deterministic.set_seed(seed) runner = LocalRunner(ctxt) task_names = mwb.MT50.get_train_tasks().all_task_names train_envs = [] test_envs = [] for task_name in task_names: train_env = normalize(MetaRLEnv(mwb.MT50.from_task(task_name)), normalize_reward=True) test_env = normalize(MetaRLEnv(mwb.MT50.from_task(task_name))) train_envs.append(train_env) test_envs.append(test_env) mt50_train_envs = MultiEnvWrapper(train_envs, sample_strategy=round_robin_strategy, mode='vanilla') mt50_test_envs = MultiEnvWrapper(test_envs, sample_strategy=round_robin_strategy, mode='vanilla') policy = TanhGaussianMLPPolicy( env_spec=mt50_train_envs.spec, hidden_sizes=[400, 400, 400], hidden_nonlinearity=nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=mt50_train_envs.spec, hidden_sizes=[400, 400, 400], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=mt50_train_envs.spec, hidden_sizes=[400, 400, 400], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) timesteps = 100000000 batch_size = int(150 * mt50_train_envs.num_tasks) num_evaluation_points = 500 epochs = timesteps // batch_size epoch_cycles = epochs // num_evaluation_points epochs = epochs // epoch_cycles mtsac = MTSAC(policy=policy, qf1=qf1, qf2=qf2, gradient_steps_per_itr=150, max_path_length=250, eval_env=mt50_test_envs, env_spec=mt50_train_envs.spec, num_tasks=10, steps_per_epoch=epoch_cycles, replay_buffer=replay_buffer, min_buffer_size=7500, target_update_tau=5e-3, discount=0.99, buffer_batch_size=6400) set_gpu_mode(use_gpu, _gpu) mtsac.to() runner.setup(algo=mtsac, env=mt50_train_envs, sampler_cls=LocalSampler) runner.train(n_epochs=epochs, batch_size=batch_size)
def dqn_pong(ctxt=None, seed=1, buffer_size=int(5e4), max_path_length=None): """Train DQN on PongNoFrameskip-v4 environment. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. buffer_size (int): Number of timesteps to store in replay buffer. max_path_length (int): Maximum length of a path after which a path is considered complete. This is used during testing to minimize the memory required to store a single path. """ set_seed(seed) with LocalTFRunner(ctxt) as runner: n_epochs = 100 steps_per_epoch = 20 sampler_batch_size = 500 num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size env = gym.make('PongNoFrameskip-v4') env = Noop(env, noop_max=30) env = MaxAndSkip(env, skip=4) env = EpisodicLife(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireReset(env) env = Grayscale(env) env = Resize(env, 84, 84) env = ClipReward(env) env = StackFrames(env, 4) env = MetaRLEnv(env, is_image=True) replay_buffer = PathBuffer(capacity_in_transitions=buffer_size) qf = DiscreteCNNQFunction(env_spec=env.spec, filters=( (32, (8, 8)), (64, (4, 4)), (64, (3, 3)), ), strides=(4, 2, 1), dueling=False) # yapf: disable policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf) exploration_policy = EpsilonGreedyPolicy(env_spec=env.spec, policy=policy, total_timesteps=num_timesteps, max_epsilon=1.0, min_epsilon=0.02, decay_ratio=0.1) algo = DQN(env_spec=env.spec, policy=policy, qf=qf, exploration_policy=exploration_policy, replay_buffer=replay_buffer, qf_lr=1e-4, discount=0.99, min_buffer_size=int(1e4), max_path_length=max_path_length, double_q=False, n_train_steps=500, steps_per_epoch=steps_per_epoch, target_network_update_freq=2, buffer_batch_size=32) runner.setup(algo, env) runner.train(n_epochs=n_epochs, batch_size=sampler_batch_size)
def test_no_reset(self): with LocalTFRunner(snapshot_config, sess=self.sess) as runner: # This tests if off-policy sampler respect batch_size # when no_reset is set to True env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2'))) policy = ContinuousMLPPolicy(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec, policy, sigma=0.2) qf = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6)) algo = DDPG( env_spec=env.spec, policy=policy, policy_lr=1e-4, qf_lr=1e-3, qf=qf, replay_buffer=replay_buffer, target_update_tau=1e-2, n_train_steps=50, discount=0.9, min_buffer_size=int(1e4), exploration_policy=exploration_policy, ) sampler = OffPolicyVectorizedSampler(algo, env, 1, no_reset=True) sampler.start_worker() runner.initialize_tf_vars() paths1 = sampler.obtain_samples(0, 5) paths2 = sampler.obtain_samples(0, 5) len1 = sum([len(path['rewards']) for path in paths1]) len2 = sum([len(path['rewards']) for path in paths2]) assert len1 == 5 and len2 == 5, 'Sampler should respect batch_size' # yapf: disable # When done is False in 1st sampling, the next sampling should be # stacked with the last batch in 1st sampling case1 = (len(paths1[-1]['rewards']) + len(paths2[0]['rewards']) == paths2[0]['running_length']) # When done is True in 1st sampling, the next sampling should be # separated case2 = len(paths2[0]['rewards']) == paths2[0]['running_length'] done = paths1[-1]['dones'][-1] assert ( (not done and case1) or (done and case2) ), 'Running length should be the length of full path' # yapf: enable case1 = np.isclose( paths1[-1]['rewards'].sum() + paths2[0]['rewards'].sum(), paths2[0]['undiscounted_return']) case2 = np.isclose(paths2[0]['rewards'].sum(), paths2[0]['undiscounted_return']) assert ( (not done and case1) or (done and case2) ), 'Undiscounted_return should be the sum of rewards of full path'
def test_eviction_policy(self): obs = np.array([[1], [1]]) replay_buffer = PathBuffer(capacity_in_transitions=3) replay_buffer.add_path(dict(obs=obs)) sampled_obs = replay_buffer.sample_transitions(3)['obs'] assert (sampled_obs == np.array([[1], [1], [1]])).all() sampled_path_obs = replay_buffer.sample_path()['obs'] assert (sampled_path_obs == np.array([[1], [1]])).all() obs2 = np.array([[2], [3]]) replay_buffer.add_path(dict(obs=obs2)) with pytest.raises(Exception): assert replay_buffer.add_path(dict(test_obs=obs2)) obs3 = np.array([1]) with pytest.raises(Exception): assert replay_buffer.add_path(dict(obs=obs3)) obs4 = np.array([[4], [5], [6], [7]]) with pytest.raises(Exception): assert replay_buffer.add_path(dict(obs=obs4)) # Can still sample from old path new_sampled_obs = replay_buffer.sample_transitions(1000)['obs'] assert set(new_sampled_obs.flatten()) == {1, 2, 3} # Can't sample complete old path for _ in range(100): new_sampled_path_obs = replay_buffer.sample_path()['obs'] assert (new_sampled_path_obs == np.array([[2], [3]])).all() replay_buffer.clear() assert replay_buffer.n_transitions_stored == 0 assert not replay_buffer._buffer
def mtsac_metaworld_ml1_pick_place(ctxt=None, seed=1, _gpu=None): """Train MTSAC with the ML1 pick-place-v1 environment. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. _gpu (int): The ID of the gpu to be used (used on multi-gpu machines). """ deterministic.set_seed(seed) runner = LocalRunner(ctxt) train_envs = [] test_envs = [] env_names = [] for i in range(50): train_env = MetaRLEnv( normalize(mwb.ML1.get_train_tasks('pick-place-v1'), normalize_reward=True)) test_env = pickle.loads(pickle.dumps(train_env)) env_names.append('pick_place_{}'.format(i)) train_envs.append(train_env) test_envs.append(test_env) ml1_train_envs = MultiEnvWrapper(train_envs, sample_strategy=round_robin_strategy, env_names=env_names) ml1_test_envs = MultiEnvWrapper(test_envs, sample_strategy=round_robin_strategy, env_names=env_names) policy = TanhGaussianMLPPolicy( env_spec=ml1_train_envs.spec, hidden_sizes=[400, 400, 400], hidden_nonlinearity=nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=ml1_train_envs.spec, hidden_sizes=[400, 400, 400], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=ml1_train_envs.spec, hidden_sizes=[400, 400, 400], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) timesteps = 10000000 batch_size = int(150 * ml1_train_envs.num_tasks) num_evaluation_points = 500 epochs = timesteps // batch_size epoch_cycles = epochs // num_evaluation_points epochs = epochs // epoch_cycles mtsac = MTSAC(policy=policy, qf1=qf1, qf2=qf2, gradient_steps_per_itr=150, max_path_length=150, eval_env=ml1_test_envs, env_spec=ml1_train_envs.spec, num_tasks=50, steps_per_epoch=epoch_cycles, replay_buffer=replay_buffer, min_buffer_size=1500, target_update_tau=5e-3, discount=0.99, buffer_batch_size=1280) if _gpu is not None: set_gpu_mode(True, _gpu) mtsac.to() runner.setup(algo=mtsac, env=ml1_train_envs, sampler_cls=LocalSampler) runner.train(n_epochs=epochs, batch_size=batch_size)
def __init__(self, env, inner_policy, qf, vf, num_train_tasks, num_test_tasks, latent_dim, encoder_hidden_sizes, test_env_sampler, policy_class=ContextConditionedPolicy, encoder_class=MLPEncoder, policy_lr=3E-4, qf_lr=3E-4, vf_lr=3E-4, context_lr=3E-4, policy_mean_reg_coeff=1E-3, policy_std_reg_coeff=1E-3, policy_pre_activation_coeff=0., soft_target_tau=0.005, kl_lambda=.1, optimizer_class=torch.optim.Adam, use_information_bottleneck=True, use_next_obs_in_context=False, meta_batch_size=64, num_steps_per_epoch=1000, num_initial_steps=100, num_tasks_sample=100, num_steps_prior=100, num_steps_posterior=0, num_extra_rl_steps_posterior=100, batch_size=1024, embedding_batch_size=1024, embedding_mini_batch_size=1024, max_path_length=1000, discount=0.99, replay_buffer_size=1000000, reward_scale=1, update_post_train=1): self._env = env self._qf1 = qf self._qf2 = copy.deepcopy(qf) self._vf = vf self._num_train_tasks = num_train_tasks self._num_test_tasks = num_test_tasks self._latent_dim = latent_dim self._policy_mean_reg_coeff = policy_mean_reg_coeff self._policy_std_reg_coeff = policy_std_reg_coeff self._policy_pre_activation_coeff = policy_pre_activation_coeff self._soft_target_tau = soft_target_tau self._kl_lambda = kl_lambda self._use_information_bottleneck = use_information_bottleneck self._use_next_obs_in_context = use_next_obs_in_context self._meta_batch_size = meta_batch_size self._num_steps_per_epoch = num_steps_per_epoch self._num_initial_steps = num_initial_steps self._num_tasks_sample = num_tasks_sample self._num_steps_prior = num_steps_prior self._num_steps_posterior = num_steps_posterior self._num_extra_rl_steps_posterior = num_extra_rl_steps_posterior self._batch_size = batch_size self._embedding_batch_size = embedding_batch_size self._embedding_mini_batch_size = embedding_mini_batch_size self.max_path_length = max_path_length self._discount = discount self._replay_buffer_size = replay_buffer_size self._reward_scale = reward_scale self._update_post_train = update_post_train self._task_idx = None self._is_resuming = False worker_args = dict(deterministic=True, accum_context=True) self._evaluator = MetaEvaluator(test_task_sampler=test_env_sampler, max_path_length=max_path_length, worker_class=PEARLWorker, worker_args=worker_args, n_test_tasks=num_test_tasks) encoder_spec = self.get_env_spec(env[0](), latent_dim, 'encoder') encoder_in_dim = int(np.prod(encoder_spec.input_space.shape)) encoder_out_dim = int(np.prod(encoder_spec.output_space.shape)) context_encoder = encoder_class(input_dim=encoder_in_dim, output_dim=encoder_out_dim, hidden_sizes=encoder_hidden_sizes) self._policy = policy_class( latent_dim=latent_dim, context_encoder=context_encoder, policy=inner_policy, use_information_bottleneck=use_information_bottleneck, use_next_obs=use_next_obs_in_context) # buffer for training RL update self._replay_buffers = { i: PathBuffer(replay_buffer_size) for i in range(num_train_tasks) } self._context_replay_buffers = { i: PathBuffer(replay_buffer_size) for i in range(num_train_tasks) } self.target_vf = copy.deepcopy(self._vf) self.vf_criterion = torch.nn.MSELoss() self._policy_optimizer = optimizer_class( self._policy.networks[1].parameters(), lr=policy_lr, ) self.qf1_optimizer = optimizer_class( self._qf1.parameters(), lr=qf_lr, ) self.qf2_optimizer = optimizer_class( self._qf2.parameters(), lr=qf_lr, ) self.vf_optimizer = optimizer_class( self._vf.parameters(), lr=vf_lr, ) self.context_optimizer = optimizer_class( self._policy.networks[0].parameters(), lr=context_lr, )
def td3_metarl_tf(ctxt, env_id, seed): """Create metarl TensorFlow TD3 model and training. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. env_id (str): Environment id of the task. seed (int): Random positive integer for the trial. """ deterministic.set_seed(seed) with LocalTFRunner(ctxt) as runner: env = MetaRLEnv(normalize(gym.make(env_id))) policy = ContinuousMLPPolicy( env_spec=env.spec, hidden_sizes=hyper_parameters['policy_hidden_sizes'], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddGaussianNoise( env.spec, policy, max_sigma=hyper_parameters['sigma'], min_sigma=hyper_parameters['sigma']) qf = ContinuousMLPQFunction( name='ContinuousMLPQFunction', env_spec=env.spec, hidden_sizes=hyper_parameters['qf_hidden_sizes'], action_merge_layer=0, hidden_nonlinearity=tf.nn.relu) qf2 = ContinuousMLPQFunction( name='ContinuousMLPQFunction2', env_spec=env.spec, hidden_sizes=hyper_parameters['qf_hidden_sizes'], action_merge_layer=0, hidden_nonlinearity=tf.nn.relu) replay_buffer = PathBuffer( capacity_in_transitions=hyper_parameters['replay_buffer_size']) td3 = TD3(env.spec, policy=policy, qf=qf, qf2=qf2, replay_buffer=replay_buffer, steps_per_epoch=hyper_parameters['steps_per_epoch'], policy_lr=hyper_parameters['policy_lr'], qf_lr=hyper_parameters['qf_lr'], target_update_tau=hyper_parameters['tau'], n_train_steps=hyper_parameters['n_train_steps'], discount=hyper_parameters['discount'], smooth_return=hyper_parameters['smooth_return'], min_buffer_size=hyper_parameters['min_buffer_size'], buffer_batch_size=hyper_parameters['buffer_batch_size'], exploration_policy=exploration_policy, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer) runner.setup(td3, env) runner.train(n_epochs=hyper_parameters['n_epochs'], batch_size=hyper_parameters['n_rollout_steps'])