def test_add_path_dtype(self):
        env = DummyDiscreteEnv()
        obs = env.reset()
        replay_buffer = PathBuffer(capacity_in_transitions=3)
        replay_buffer.add_path({
            'observations':
            np.array([obs]),
            'actions':
            np.array([[env.action_space.sample()]])
        })
        sample = replay_buffer.sample_transitions(1)
        sample_obs = sample['observations']
        sample_action = sample['actions']

        assert sample_obs.dtype == env.observation_space.dtype
        assert sample_action.dtype == env.action_space.dtype
示例#2
0
    def test_ddpg_double_pendulum(self):
        """Test DDPG with Pendulum environment."""
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            env = MetaRLEnv(gym.make('InvertedDoublePendulum-v2'))
            policy = ContinuousMLPPolicy(env_spec=env.spec,
                                         hidden_sizes=[64, 64],
                                         hidden_nonlinearity=tf.nn.relu,
                                         output_nonlinearity=tf.nn.tanh)
            exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec,
                                                           policy,
                                                           sigma=0.2)
            qf = ContinuousMLPQFunction(env_spec=env.spec,
                                        hidden_sizes=[64, 64],
                                        hidden_nonlinearity=tf.nn.relu)
            replay_buffer = PathBuffer(capacity_in_transitions=int(1e5))
            algo = DDPG(
                env_spec=env.spec,
                policy=policy,
                policy_lr=1e-4,
                qf_lr=1e-3,
                qf=qf,
                replay_buffer=replay_buffer,
                steps_per_epoch=20,
                target_update_tau=1e-2,
                n_train_steps=50,
                discount=0.9,
                min_buffer_size=int(5e3),
                exploration_policy=exploration_policy,
            )
            runner.setup(algo, env)
            last_avg_ret = runner.train(n_epochs=10, batch_size=100)
            assert last_avg_ret > 60

            env.close()
示例#3
0
def test_to():
    """Test the torch function that moves modules to GPU.

        Test that the policy and qfunctions are moved to gpu if gpu is
        available.

    """
    env_names = ['CartPole-v0', 'CartPole-v1']
    task_envs = [MetaRLEnv(env_name=name) for name in env_names]
    env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy)
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[1, 1],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )

    num_tasks = 2
    buffer_batch_size = 2
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=150,
                  max_path_length=150,
                  eval_env=env,
                  env_spec=env.spec,
                  num_tasks=num_tasks,
                  steps_per_epoch=5,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1e3,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=buffer_batch_size)

    set_gpu_mode(torch.cuda.is_available())
    mtsac.to()
    device = global_device()
    for param in mtsac._qf1.parameters():
        assert param.device == device
    for param in mtsac._qf2.parameters():
        assert param.device == device
    for param in mtsac._qf2.parameters():
        assert param.device == device
    for param in mtsac._policy.parameters():
        assert param.device == device
    assert mtsac._log_alpha.device == device
def td3_pendulum(ctxt=None, seed=1):
    """Wrap TD3 training task in the run_task function.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(gym.make('InvertedDoublePendulum-v2'))

        policy = ContinuousMLPPolicy(env_spec=env.spec,
                                     hidden_sizes=[400, 300],
                                     hidden_nonlinearity=tf.nn.relu,
                                     output_nonlinearity=tf.nn.tanh)

        exploration_policy = AddGaussianNoise(env.spec,
                                              policy,
                                              max_sigma=0.1,
                                              min_sigma=0.1)

        qf = ContinuousMLPQFunction(name='ContinuousMLPQFunction',
                                    env_spec=env.spec,
                                    hidden_sizes=[400, 300],
                                    action_merge_layer=0,
                                    hidden_nonlinearity=tf.nn.relu)

        qf2 = ContinuousMLPQFunction(name='ContinuousMLPQFunction2',
                                     env_spec=env.spec,
                                     hidden_sizes=[400, 300],
                                     action_merge_layer=0,
                                     hidden_nonlinearity=tf.nn.relu)

        replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))

        td3 = TD3(env_spec=env.spec,
                  policy=policy,
                  policy_lr=1e-4,
                  qf_lr=1e-3,
                  qf=qf,
                  qf2=qf2,
                  replay_buffer=replay_buffer,
                  target_update_tau=1e-2,
                  steps_per_epoch=20,
                  n_train_steps=1,
                  smooth_return=False,
                  discount=0.99,
                  buffer_batch_size=100,
                  min_buffer_size=1e4,
                  exploration_policy=exploration_policy,
                  policy_optimizer=tf.compat.v1.train.AdamOptimizer,
                  qf_optimizer=tf.compat.v1.train.AdamOptimizer)

        runner.setup(td3, env)
        runner.train(n_epochs=500, batch_size=250)
示例#5
0
    def __setstate__(self, state):
        """Object.__setstate__.

        Args:
            state (dict): unpickled state.

        """
        self.__dict__.update(state)
        self._replay_buffers = {
            i: PathBuffer(self._replay_buffer_size)
            for i in range(self._num_train_tasks)
        }

        self._context_replay_buffers = {
            i: PathBuffer(self._replay_buffer_size)
            for i in range(self._num_train_tasks)
        }
        self._is_resuming = True
示例#6
0
def test_fixed_alpha():
    """Test if using fixed_alpha ensures that alpha is non differentiable."""
    env_names = ['InvertedDoublePendulum-v2', 'InvertedDoublePendulum-v2']
    task_envs = [MetaRLEnv(env_name=name) for name in env_names]
    env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy)
    test_envs = MultiEnvWrapper(task_envs,
                                sample_strategy=round_robin_strategy)
    deterministic.set_seed(0)
    runner = LocalRunner(snapshot_config=snapshot_config)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    num_tasks = 2
    buffer_batch_size = 128
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=100,
                  max_path_length=100,
                  eval_env=test_envs,
                  env_spec=env.spec,
                  num_tasks=num_tasks,
                  steps_per_epoch=1,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1e3,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=buffer_batch_size,
                  fixed_alpha=np.exp(0.5))
    if torch.cuda.is_available():
        set_gpu_mode(True)
    else:
        set_gpu_mode(False)
    mtsac.to()
    assert torch.allclose(torch.Tensor([0.5] * num_tasks),
                          mtsac._log_alpha.to('cpu'))
    runner.setup(mtsac, env, sampler_cls=LocalSampler)
    runner.train(n_epochs=1, batch_size=128, plot=False)
    assert torch.allclose(torch.Tensor([0.5] * num_tasks),
                          mtsac._log_alpha.to('cpu'))
    assert not mtsac._use_automatic_entropy_tuning
示例#7
0
def sac_half_cheetah_batch(ctxt=None, seed=1):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    deterministic.set_seed(seed)
    runner = LocalRunner(snapshot_config=ctxt)
    env = MetaRLEnv(normalize(gym.make('HalfCheetah-v2')))

    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[256, 256],
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[256, 256],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[256, 256],
                                 hidden_nonlinearity=F.relu)

    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))

    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              gradient_steps_per_itr=1000,
              max_path_length=500,
              replay_buffer=replay_buffer,
              min_buffer_size=1e4,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=256,
              reward_scale=1.,
              steps_per_epoch=1)

    if torch.cuda.is_available():
        set_gpu_mode(True)
    else:
        set_gpu_mode(False)
    sac.to()
    runner.setup(algo=sac, env=env, sampler_cls=LocalSampler)
    runner.train(n_epochs=1000, batch_size=1000)
def continuous_mlp_q_function(ctxt, env_id, seed):
    """Create Continuous MLP QFunction on TF-DDPG.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt, max_cpus=12) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = ContinuousMLPPolicy(
            env_spec=env.spec,
            name='ContinuousMLPPolicy',
            hidden_sizes=hyper_params['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh)

        exploration_policy = AddOrnsteinUhlenbeckNoise(
            env.spec, policy, sigma=hyper_params['sigma'])

        qf = ContinuousMLPQFunction(
            env_spec=env.spec,
            hidden_sizes=hyper_params['qf_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            name='ContinuousMLPQFunction')

        replay_buffer = PathBuffer(
            capacity_in_transitions=hyper_params['replay_buffer_size'])

        ddpg = DDPG(env_spec=env.spec,
                    policy=policy,
                    qf=qf,
                    replay_buffer=replay_buffer,
                    steps_per_epoch=hyper_params['steps_per_epoch'],
                    policy_lr=hyper_params['policy_lr'],
                    qf_lr=hyper_params['qf_lr'],
                    target_update_tau=hyper_params['tau'],
                    n_train_steps=hyper_params['n_train_steps'],
                    discount=hyper_params['discount'],
                    min_buffer_size=int(1e4),
                    exploration_policy=exploration_policy,
                    policy_optimizer=tf.compat.v1.train.AdamOptimizer,
                    qf_optimizer=tf.compat.v1.train.AdamOptimizer)

        runner.setup(ddpg, env, sampler_args=dict(n_envs=12))
        runner.train(n_epochs=hyper_params['n_epochs'],
                     batch_size=hyper_params['n_rollout_steps'])
    def test_td3_pendulum(self):
        """Test TD3 with Pendulum environment."""
        with LocalTFRunner(snapshot_config) as runner:
            env = MetaRLEnv(gym.make('InvertedDoublePendulum-v2'))

            policy = ContinuousMLPPolicy(env_spec=env.spec,
                                         hidden_sizes=[400, 300],
                                         hidden_nonlinearity=tf.nn.relu,
                                         output_nonlinearity=tf.nn.tanh)

            exploration_policy = AddGaussianNoise(env.spec,
                                                  policy,
                                                  max_sigma=0.1,
                                                  min_sigma=0.1)

            qf = ContinuousMLPQFunction(name='ContinuousMLPQFunction',
                                        env_spec=env.spec,
                                        hidden_sizes=[400, 300],
                                        action_merge_layer=0,
                                        hidden_nonlinearity=tf.nn.relu)

            qf2 = ContinuousMLPQFunction(name='ContinuousMLPQFunction2',
                                         env_spec=env.spec,
                                         hidden_sizes=[400, 300],
                                         action_merge_layer=0,
                                         hidden_nonlinearity=tf.nn.relu)

            replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))

            algo = TD3(env_spec=env.spec,
                       policy=policy,
                       policy_lr=1e-3,
                       qf_lr=1e-3,
                       qf=qf,
                       qf2=qf2,
                       replay_buffer=replay_buffer,
                       steps_per_epoch=20,
                       target_update_tau=0.005,
                       n_train_steps=50,
                       discount=0.99,
                       smooth_return=False,
                       min_buffer_size=int(1e4),
                       buffer_batch_size=100,
                       policy_weight_decay=0.001,
                       qf_weight_decay=0.001,
                       exploration_policy=exploration_policy,
                       policy_optimizer=tf.compat.v1.train.AdamOptimizer,
                       qf_optimizer=tf.compat.v1.train.AdamOptimizer)

            runner.setup(algo, env)
            last_avg_ret = runner.train(n_epochs=10, batch_size=250)
            assert last_avg_ret > 400
示例#10
0
def test_sac_inverted_double_pendulum():
    """Test Sac performance on inverted pendulum."""
    # pylint: disable=unexpected-keyword-arg
    env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    runner = LocalRunner(snapshot_config=snapshot_config)
    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              gradient_steps_per_itr=100,
              max_path_length=100,
              replay_buffer=replay_buffer,
              min_buffer_size=1e3,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=64,
              reward_scale=1.,
              steps_per_epoch=2)
    runner.setup(sac, env, sampler_cls=LocalSampler)
    if torch.cuda.is_available():
        set_gpu_mode(True)
    else:
        set_gpu_mode(False)
    sac.to()
    ret = runner.train(n_epochs=12, batch_size=200, plot=False)
    # check that automatic entropy tuning is used
    assert sac._use_automatic_entropy_tuning
    # assert that there was a gradient properly connected to alpha
    # this doesn't verify that the path from the temperature objective is
    # correct.
    assert not torch.allclose(torch.Tensor([1.]), sac._log_alpha.to('cpu'))
    # check that policy is learning beyond predecided threshold
    assert ret > 85
    def test_dqn_cartpole_pickle(self):
        """Test DQN with CartPole environment."""
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            n_epochs = 10
            steps_per_epoch = 10
            sampler_batch_size = 500
            num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size
            env = MetaRLEnv(gym.make('CartPole-v0'))
            replay_buffer = PathBuffer(capacity_in_transitions=int(1e4))
            qf = DiscreteMLPQFunction(env_spec=env.spec, hidden_sizes=(64, 64))
            policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf)
            epilson_greedy_policy = EpsilonGreedyPolicy(
                env_spec=env.spec,
                policy=policy,
                total_timesteps=num_timesteps,
                max_epsilon=1.0,
                min_epsilon=0.02,
                decay_ratio=0.1)
            algo = DQN(env_spec=env.spec,
                       policy=policy,
                       qf=qf,
                       exploration_policy=epilson_greedy_policy,
                       replay_buffer=replay_buffer,
                       qf_lr=1e-4,
                       discount=1.0,
                       min_buffer_size=int(1e3),
                       double_q=False,
                       n_train_steps=500,
                       grad_norm_clipping=5.0,
                       steps_per_epoch=steps_per_epoch,
                       target_network_update_freq=1,
                       buffer_batch_size=32)
            runner.setup(algo, env)
            with tf.compat.v1.variable_scope(
                    'DiscreteMLPQFunction/MLPModel/mlp/hidden_0', reuse=True):
                bias = tf.compat.v1.get_variable('bias')
                # assign it to all one
                old_bias = tf.ones_like(bias).eval()
                bias.load(old_bias)
                h = pickle.dumps(algo)

            with tf.compat.v1.Session(graph=tf.Graph()):
                pickle.loads(h)
                with tf.compat.v1.variable_scope(
                        'DiscreteMLPQFunction/MLPModel/mlp/hidden_0',
                        reuse=True):
                    new_bias = tf.compat.v1.get_variable('bias')
                    new_bias = new_bias.eval()
                    assert np.array_equal(old_bias, new_bias)

            env.close()
示例#12
0
def test_mtsac_get_log_alpha(monkeypatch):
    """Check that the private function _get_log_alpha functions correctly.

    MTSAC uses disentangled alphas, meaning that

    """
    env_names = ['CartPole-v0', 'CartPole-v1']
    task_envs = [MetaRLEnv(env_name=name) for name in env_names]
    env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy)
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[1, 1],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )

    num_tasks = 2
    buffer_batch_size = 2
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=150,
                  max_path_length=150,
                  eval_env=env,
                  env_spec=env.spec,
                  num_tasks=num_tasks,
                  steps_per_epoch=5,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1e3,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=buffer_batch_size)
    monkeypatch.setattr(mtsac, '_log_alpha', torch.Tensor([1., 2.]))
    for i, _ in enumerate(env_names):
        obs = torch.Tensor([env.reset()] * buffer_batch_size)
        log_alpha = mtsac._get_log_alpha(dict(observation=obs))
        assert (log_alpha == torch.Tensor([i + 1, i + 1])).all().item()
        assert log_alpha.size() == torch.Size([mtsac.buffer_batch_size])
示例#13
0
def ddpg_pendulum(ctxt=None, seed=1):
    """Train DDPG with InvertedDoublePendulum-v2 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        env = MetaRLEnv(gym.make('InvertedDoublePendulum-v2'))

        policy = ContinuousMLPPolicy(env_spec=env.spec,
                                     hidden_sizes=[64, 64],
                                     hidden_nonlinearity=tf.nn.relu,
                                     output_nonlinearity=tf.nn.tanh)

        exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec,
                                                       policy,
                                                       sigma=0.2)

        qf = ContinuousMLPQFunction(env_spec=env.spec,
                                    hidden_sizes=[64, 64],
                                    hidden_nonlinearity=tf.nn.relu)

        replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))

        ddpg = DDPG(env_spec=env.spec,
                    policy=policy,
                    policy_lr=1e-4,
                    qf_lr=1e-3,
                    qf=qf,
                    replay_buffer=replay_buffer,
                    steps_per_epoch=20,
                    target_update_tau=1e-2,
                    n_train_steps=50,
                    discount=0.9,
                    min_buffer_size=int(1e4),
                    exploration_policy=exploration_policy,
                    policy_optimizer=tf.compat.v1.train.AdamOptimizer,
                    qf_optimizer=tf.compat.v1.train.AdamOptimizer)

        runner.setup(algo=ddpg, env=env)

        runner.train(n_epochs=500, batch_size=100)
def ddpg_pendulum(ctxt=None, seed=1, lr=1e-4):
    """Train DDPG with InvertedDoublePendulum-v2 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        lr (float): Learning rate for policy optimization.

    """
    set_seed(seed)
    runner = LocalRunner(ctxt)
    env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2')))

    policy = DeterministicMLPPolicy(env_spec=env.spec,
                                    hidden_sizes=[64, 64],
                                    hidden_nonlinearity=F.relu,
                                    output_nonlinearity=torch.tanh)

    exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec, policy, sigma=0.2)

    qf = ContinuousMLPQFunction(env_spec=env.spec,
                                hidden_sizes=[64, 64],
                                hidden_nonlinearity=F.relu)

    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))

    policy_optimizer = (torch.optim.Adagrad, {'lr': lr, 'lr_decay': 0.99})

    ddpg = DDPG(env_spec=env.spec,
                policy=policy,
                qf=qf,
                replay_buffer=replay_buffer,
                steps_per_epoch=20,
                n_train_steps=50,
                min_buffer_size=int(1e4),
                exploration_policy=exploration_policy,
                target_update_tau=1e-2,
                discount=0.9,
                policy_optimizer=policy_optimizer,
                qf_optimizer=torch.optim.Adam)

    runner.setup(algo=ddpg, env=env)

    runner.train(n_epochs=500, batch_size=100)
示例#15
0
def test_mtsac_inverted_double_pendulum():
    """Performance regression test of MTSAC on 2 InvDoublePendulum envs."""
    env_names = ['InvertedDoublePendulum-v2', 'InvertedDoublePendulum-v2']
    task_envs = [MetaRLEnv(env_name=name) for name in env_names]
    env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy)
    test_envs = MultiEnvWrapper(task_envs,
                                sample_strategy=round_robin_strategy)
    deterministic.set_seed(0)
    runner = LocalRunner(snapshot_config=snapshot_config)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    num_tasks = 2
    buffer_batch_size = 128
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=100,
                  max_path_length=100,
                  eval_env=test_envs,
                  env_spec=env.spec,
                  num_tasks=num_tasks,
                  steps_per_epoch=5,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1e3,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=buffer_batch_size)
    runner.setup(mtsac, env, sampler_cls=LocalSampler)
    ret = runner.train(n_epochs=8, batch_size=128, plot=False)
    assert ret > 130
示例#16
0
def test_fixed_alpha():
    """Test if using fixed_alpha ensures that alpha is non differentiable."""
    # pylint: disable=unexpected-keyword-arg
    env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    runner = LocalRunner(snapshot_config=snapshot_config)
    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              gradient_steps_per_itr=100,
              max_path_length=100,
              replay_buffer=replay_buffer,
              min_buffer_size=100,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=64,
              reward_scale=1.,
              steps_per_epoch=1,
              fixed_alpha=np.exp(0.5))
    runner.setup(sac, env, sampler_cls=LocalSampler)
    sac.to()
    runner.train(n_epochs=1, batch_size=100, plot=False)
    assert torch.allclose(torch.Tensor([0.5]), sac._log_alpha)
    assert not sac._use_automatic_entropy_tuning
示例#17
0
def dqn_cartpole(ctxt=None, seed=1):
    """Train TRPO with CubeCrash-v0 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        n_epochs = 10
        steps_per_epoch = 10
        sampler_batch_size = 500
        num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size
        env = MetaRLEnv(gym.make('CartPole-v0'))
        replay_buffer = PathBuffer(capacity_in_transitions=int(1e4))
        qf = DiscreteMLPQFunction(env_spec=env.spec, hidden_sizes=(64, 64))
        policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf)
        exploration_policy = EpsilonGreedyPolicy(env_spec=env.spec,
                                                 policy=policy,
                                                 total_timesteps=num_timesteps,
                                                 max_epsilon=1.0,
                                                 min_epsilon=0.02,
                                                 decay_ratio=0.1)
        algo = DQN(env_spec=env.spec,
                   policy=policy,
                   qf=qf,
                   exploration_policy=exploration_policy,
                   replay_buffer=replay_buffer,
                   steps_per_epoch=steps_per_epoch,
                   qf_lr=1e-4,
                   discount=1.0,
                   min_buffer_size=int(1e3),
                   double_q=True,
                   n_train_steps=500,
                   target_network_update_freq=1,
                   buffer_batch_size=32)

        runner.setup(algo, env)
        runner.train(n_epochs=n_epochs, batch_size=sampler_batch_size)
    def test_ddpg_pendulum(self):
        """Test DDPG with Pendulum environment.

        This environment has a [-3, 3] action_space bound.
        """
        deterministic.set_seed(0)
        runner = LocalRunner(snapshot_config)
        env = MetaRLEnv(normalize(gym.make('InvertedPendulum-v2')))

        policy = DeterministicMLPPolicy(env_spec=env.spec,
                                        hidden_sizes=[64, 64],
                                        hidden_nonlinearity=F.relu,
                                        output_nonlinearity=torch.tanh)

        exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec,
                                                       policy,
                                                       sigma=0.2)

        qf = ContinuousMLPQFunction(env_spec=env.spec,
                                    hidden_sizes=[64, 64],
                                    hidden_nonlinearity=F.relu)

        replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))

        algo = DDPG(env_spec=env.spec,
                    policy=policy,
                    qf=qf,
                    replay_buffer=replay_buffer,
                    steps_per_epoch=20,
                    n_train_steps=50,
                    min_buffer_size=int(1e4),
                    exploration_policy=exploration_policy,
                    target_update_tau=1e-2,
                    discount=0.9)

        runner.setup(algo, env)
        last_avg_ret = runner.train(n_epochs=10, batch_size=100)
        assert last_avg_ret > 10

        env.close()
    def test_dqn_cartpole_grad_clip(self):
        """Test DQN with CartPole environment."""
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            n_epochs = 10
            steps_per_epoch = 10
            sampler_batch_size = 500
            num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size
            env = MetaRLEnv(gym.make('CartPole-v0'))
            replay_buffer = PathBuffer(capacity_in_transitions=int(1e4))
            qf = DiscreteMLPQFunction(env_spec=env.spec, hidden_sizes=(64, 64))
            policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf)
            epilson_greedy_policy = EpsilonGreedyPolicy(
                env_spec=env.spec,
                policy=policy,
                total_timesteps=num_timesteps,
                max_epsilon=1.0,
                min_epsilon=0.02,
                decay_ratio=0.1)
            algo = DQN(env_spec=env.spec,
                       policy=policy,
                       qf=qf,
                       exploration_policy=epilson_greedy_policy,
                       replay_buffer=replay_buffer,
                       qf_lr=1e-4,
                       discount=1.0,
                       min_buffer_size=int(1e3),
                       double_q=False,
                       n_train_steps=500,
                       grad_norm_clipping=5.0,
                       steps_per_epoch=steps_per_epoch,
                       target_network_update_freq=1,
                       buffer_batch_size=32)

            runner.setup(algo, env)
            last_avg_ret = runner.train(n_epochs=n_epochs,
                                        batch_size=sampler_batch_size)
            assert last_avg_ret > 15

            env.close()
def mtsac_metaworld_mt50(ctxt=None, seed=1, use_gpu=False, _gpu=0):
    """Train MTSAC with MT50 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        use_gpu (bool): Used to enable ussage of GPU in training.
        _gpu (int): The ID of the gpu (used on multi-gpu machines).

    """
    deterministic.set_seed(seed)
    runner = LocalRunner(ctxt)
    task_names = mwb.MT50.get_train_tasks().all_task_names
    train_envs = []
    test_envs = []
    for task_name in task_names:
        train_env = normalize(MetaRLEnv(mwb.MT50.from_task(task_name)),
                              normalize_reward=True)
        test_env = normalize(MetaRLEnv(mwb.MT50.from_task(task_name)))
        train_envs.append(train_env)
        test_envs.append(test_env)
    mt50_train_envs = MultiEnvWrapper(train_envs,
                                      sample_strategy=round_robin_strategy,
                                      mode='vanilla')
    mt50_test_envs = MultiEnvWrapper(test_envs,
                                     sample_strategy=round_robin_strategy,
                                     mode='vanilla')
    policy = TanhGaussianMLPPolicy(
        env_spec=mt50_train_envs.spec,
        hidden_sizes=[400, 400, 400],
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=mt50_train_envs.spec,
                                 hidden_sizes=[400, 400, 400],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=mt50_train_envs.spec,
                                 hidden_sizes=[400, 400, 400],
                                 hidden_nonlinearity=F.relu)

    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )

    timesteps = 100000000
    batch_size = int(150 * mt50_train_envs.num_tasks)
    num_evaluation_points = 500
    epochs = timesteps // batch_size
    epoch_cycles = epochs // num_evaluation_points
    epochs = epochs // epoch_cycles
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=150,
                  max_path_length=250,
                  eval_env=mt50_test_envs,
                  env_spec=mt50_train_envs.spec,
                  num_tasks=10,
                  steps_per_epoch=epoch_cycles,
                  replay_buffer=replay_buffer,
                  min_buffer_size=7500,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=6400)
    set_gpu_mode(use_gpu, _gpu)
    mtsac.to()
    runner.setup(algo=mtsac, env=mt50_train_envs, sampler_cls=LocalSampler)
    runner.train(n_epochs=epochs, batch_size=batch_size)
示例#21
0
def dqn_pong(ctxt=None, seed=1, buffer_size=int(5e4), max_path_length=None):
    """Train DQN on PongNoFrameskip-v4 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        buffer_size (int): Number of timesteps to store in replay buffer.
        max_path_length (int): Maximum length of a path after which a path is
            considered complete. This is used during testing to minimize the
            memory required to store a single path.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        n_epochs = 100
        steps_per_epoch = 20
        sampler_batch_size = 500
        num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size

        env = gym.make('PongNoFrameskip-v4')
        env = Noop(env, noop_max=30)
        env = MaxAndSkip(env, skip=4)
        env = EpisodicLife(env)
        if 'FIRE' in env.unwrapped.get_action_meanings():
            env = FireReset(env)
        env = Grayscale(env)
        env = Resize(env, 84, 84)
        env = ClipReward(env)
        env = StackFrames(env, 4)

        env = MetaRLEnv(env, is_image=True)

        replay_buffer = PathBuffer(capacity_in_transitions=buffer_size)

        qf = DiscreteCNNQFunction(env_spec=env.spec,
                                  filters=(
                                              (32, (8, 8)),
                                              (64, (4, 4)),
                                              (64, (3, 3)),
                                          ),
                                  strides=(4, 2, 1),
                                  dueling=False)  # yapf: disable

        policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf)
        exploration_policy = EpsilonGreedyPolicy(env_spec=env.spec,
                                                 policy=policy,
                                                 total_timesteps=num_timesteps,
                                                 max_epsilon=1.0,
                                                 min_epsilon=0.02,
                                                 decay_ratio=0.1)

        algo = DQN(env_spec=env.spec,
                   policy=policy,
                   qf=qf,
                   exploration_policy=exploration_policy,
                   replay_buffer=replay_buffer,
                   qf_lr=1e-4,
                   discount=0.99,
                   min_buffer_size=int(1e4),
                   max_path_length=max_path_length,
                   double_q=False,
                   n_train_steps=500,
                   steps_per_epoch=steps_per_epoch,
                   target_network_update_freq=2,
                   buffer_batch_size=32)

        runner.setup(algo, env)
        runner.train(n_epochs=n_epochs, batch_size=sampler_batch_size)
示例#22
0
    def test_no_reset(self):
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            # This tests if off-policy sampler respect batch_size
            # when no_reset is set to True
            env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
            policy = ContinuousMLPPolicy(env_spec=env.spec,
                                         hidden_sizes=[64, 64],
                                         hidden_nonlinearity=tf.nn.relu,
                                         output_nonlinearity=tf.nn.tanh)
            exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec,
                                                           policy,
                                                           sigma=0.2)
            qf = ContinuousMLPQFunction(env_spec=env.spec,
                                        hidden_sizes=[64, 64],
                                        hidden_nonlinearity=tf.nn.relu)
            replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))
            algo = DDPG(
                env_spec=env.spec,
                policy=policy,
                policy_lr=1e-4,
                qf_lr=1e-3,
                qf=qf,
                replay_buffer=replay_buffer,
                target_update_tau=1e-2,
                n_train_steps=50,
                discount=0.9,
                min_buffer_size=int(1e4),
                exploration_policy=exploration_policy,
            )

            sampler = OffPolicyVectorizedSampler(algo, env, 1, no_reset=True)
            sampler.start_worker()

            runner.initialize_tf_vars()

            paths1 = sampler.obtain_samples(0, 5)
            paths2 = sampler.obtain_samples(0, 5)

            len1 = sum([len(path['rewards']) for path in paths1])
            len2 = sum([len(path['rewards']) for path in paths2])

            assert len1 == 5 and len2 == 5, 'Sampler should respect batch_size'
            # yapf: disable
            # When done is False in 1st sampling, the next sampling should be
            # stacked with the last batch in 1st sampling
            case1 = (len(paths1[-1]['rewards']) + len(paths2[0]['rewards'])
                     == paths2[0]['running_length'])
            # When done is True in 1st sampling, the next sampling should be
            # separated
            case2 = len(paths2[0]['rewards']) == paths2[0]['running_length']
            done = paths1[-1]['dones'][-1]
            assert (
                (not done and case1) or (done and case2)
            ), 'Running length should be the length of full path'

            # yapf: enable
            case1 = np.isclose(
                paths1[-1]['rewards'].sum() + paths2[0]['rewards'].sum(),
                paths2[0]['undiscounted_return'])
            case2 = np.isclose(paths2[0]['rewards'].sum(),
                               paths2[0]['undiscounted_return'])
            assert (
                (not done and case1) or (done and case2)
            ), 'Undiscounted_return should be the sum of rewards of full path'
    def test_eviction_policy(self):
        obs = np.array([[1], [1]])
        replay_buffer = PathBuffer(capacity_in_transitions=3)
        replay_buffer.add_path(dict(obs=obs))

        sampled_obs = replay_buffer.sample_transitions(3)['obs']
        assert (sampled_obs == np.array([[1], [1], [1]])).all()

        sampled_path_obs = replay_buffer.sample_path()['obs']
        assert (sampled_path_obs == np.array([[1], [1]])).all()

        obs2 = np.array([[2], [3]])
        replay_buffer.add_path(dict(obs=obs2))

        with pytest.raises(Exception):
            assert replay_buffer.add_path(dict(test_obs=obs2))

        obs3 = np.array([1])
        with pytest.raises(Exception):
            assert replay_buffer.add_path(dict(obs=obs3))

        obs4 = np.array([[4], [5], [6], [7]])
        with pytest.raises(Exception):
            assert replay_buffer.add_path(dict(obs=obs4))

        # Can still sample from old path
        new_sampled_obs = replay_buffer.sample_transitions(1000)['obs']
        assert set(new_sampled_obs.flatten()) == {1, 2, 3}

        # Can't sample complete old path
        for _ in range(100):
            new_sampled_path_obs = replay_buffer.sample_path()['obs']
            assert (new_sampled_path_obs == np.array([[2], [3]])).all()

        replay_buffer.clear()
        assert replay_buffer.n_transitions_stored == 0
        assert not replay_buffer._buffer
def mtsac_metaworld_ml1_pick_place(ctxt=None, seed=1, _gpu=None):
    """Train MTSAC with the ML1 pick-place-v1 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        _gpu (int): The ID of the gpu to be used (used on multi-gpu machines).

    """
    deterministic.set_seed(seed)
    runner = LocalRunner(ctxt)
    train_envs = []
    test_envs = []
    env_names = []
    for i in range(50):
        train_env = MetaRLEnv(
            normalize(mwb.ML1.get_train_tasks('pick-place-v1'),
                      normalize_reward=True))
        test_env = pickle.loads(pickle.dumps(train_env))
        env_names.append('pick_place_{}'.format(i))
        train_envs.append(train_env)
        test_envs.append(test_env)
    ml1_train_envs = MultiEnvWrapper(train_envs,
                                     sample_strategy=round_robin_strategy,
                                     env_names=env_names)
    ml1_test_envs = MultiEnvWrapper(test_envs,
                                    sample_strategy=round_robin_strategy,
                                    env_names=env_names)
    policy = TanhGaussianMLPPolicy(
        env_spec=ml1_train_envs.spec,
        hidden_sizes=[400, 400, 400],
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=ml1_train_envs.spec,
                                 hidden_sizes=[400, 400, 400],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=ml1_train_envs.spec,
                                 hidden_sizes=[400, 400, 400],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )

    timesteps = 10000000
    batch_size = int(150 * ml1_train_envs.num_tasks)
    num_evaluation_points = 500
    epochs = timesteps // batch_size
    epoch_cycles = epochs // num_evaluation_points
    epochs = epochs // epoch_cycles
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=150,
                  max_path_length=150,
                  eval_env=ml1_test_envs,
                  env_spec=ml1_train_envs.spec,
                  num_tasks=50,
                  steps_per_epoch=epoch_cycles,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1500,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=1280)
    if _gpu is not None:
        set_gpu_mode(True, _gpu)
    mtsac.to()
    runner.setup(algo=mtsac, env=ml1_train_envs, sampler_cls=LocalSampler)
    runner.train(n_epochs=epochs, batch_size=batch_size)
示例#25
0
    def __init__(self,
                 env,
                 inner_policy,
                 qf,
                 vf,
                 num_train_tasks,
                 num_test_tasks,
                 latent_dim,
                 encoder_hidden_sizes,
                 test_env_sampler,
                 policy_class=ContextConditionedPolicy,
                 encoder_class=MLPEncoder,
                 policy_lr=3E-4,
                 qf_lr=3E-4,
                 vf_lr=3E-4,
                 context_lr=3E-4,
                 policy_mean_reg_coeff=1E-3,
                 policy_std_reg_coeff=1E-3,
                 policy_pre_activation_coeff=0.,
                 soft_target_tau=0.005,
                 kl_lambda=.1,
                 optimizer_class=torch.optim.Adam,
                 use_information_bottleneck=True,
                 use_next_obs_in_context=False,
                 meta_batch_size=64,
                 num_steps_per_epoch=1000,
                 num_initial_steps=100,
                 num_tasks_sample=100,
                 num_steps_prior=100,
                 num_steps_posterior=0,
                 num_extra_rl_steps_posterior=100,
                 batch_size=1024,
                 embedding_batch_size=1024,
                 embedding_mini_batch_size=1024,
                 max_path_length=1000,
                 discount=0.99,
                 replay_buffer_size=1000000,
                 reward_scale=1,
                 update_post_train=1):

        self._env = env
        self._qf1 = qf
        self._qf2 = copy.deepcopy(qf)
        self._vf = vf
        self._num_train_tasks = num_train_tasks
        self._num_test_tasks = num_test_tasks
        self._latent_dim = latent_dim

        self._policy_mean_reg_coeff = policy_mean_reg_coeff
        self._policy_std_reg_coeff = policy_std_reg_coeff
        self._policy_pre_activation_coeff = policy_pre_activation_coeff
        self._soft_target_tau = soft_target_tau
        self._kl_lambda = kl_lambda
        self._use_information_bottleneck = use_information_bottleneck
        self._use_next_obs_in_context = use_next_obs_in_context

        self._meta_batch_size = meta_batch_size
        self._num_steps_per_epoch = num_steps_per_epoch
        self._num_initial_steps = num_initial_steps
        self._num_tasks_sample = num_tasks_sample
        self._num_steps_prior = num_steps_prior
        self._num_steps_posterior = num_steps_posterior
        self._num_extra_rl_steps_posterior = num_extra_rl_steps_posterior
        self._batch_size = batch_size
        self._embedding_batch_size = embedding_batch_size
        self._embedding_mini_batch_size = embedding_mini_batch_size
        self.max_path_length = max_path_length
        self._discount = discount
        self._replay_buffer_size = replay_buffer_size
        self._reward_scale = reward_scale
        self._update_post_train = update_post_train
        self._task_idx = None

        self._is_resuming = False

        worker_args = dict(deterministic=True, accum_context=True)
        self._evaluator = MetaEvaluator(test_task_sampler=test_env_sampler,
                                        max_path_length=max_path_length,
                                        worker_class=PEARLWorker,
                                        worker_args=worker_args,
                                        n_test_tasks=num_test_tasks)

        encoder_spec = self.get_env_spec(env[0](), latent_dim, 'encoder')
        encoder_in_dim = int(np.prod(encoder_spec.input_space.shape))
        encoder_out_dim = int(np.prod(encoder_spec.output_space.shape))
        context_encoder = encoder_class(input_dim=encoder_in_dim,
                                        output_dim=encoder_out_dim,
                                        hidden_sizes=encoder_hidden_sizes)

        self._policy = policy_class(
            latent_dim=latent_dim,
            context_encoder=context_encoder,
            policy=inner_policy,
            use_information_bottleneck=use_information_bottleneck,
            use_next_obs=use_next_obs_in_context)

        # buffer for training RL update
        self._replay_buffers = {
            i: PathBuffer(replay_buffer_size)
            for i in range(num_train_tasks)
        }

        self._context_replay_buffers = {
            i: PathBuffer(replay_buffer_size)
            for i in range(num_train_tasks)
        }

        self.target_vf = copy.deepcopy(self._vf)
        self.vf_criterion = torch.nn.MSELoss()

        self._policy_optimizer = optimizer_class(
            self._policy.networks[1].parameters(),
            lr=policy_lr,
        )
        self.qf1_optimizer = optimizer_class(
            self._qf1.parameters(),
            lr=qf_lr,
        )
        self.qf2_optimizer = optimizer_class(
            self._qf2.parameters(),
            lr=qf_lr,
        )
        self.vf_optimizer = optimizer_class(
            self._vf.parameters(),
            lr=vf_lr,
        )
        self.context_optimizer = optimizer_class(
            self._policy.networks[0].parameters(),
            lr=context_lr,
        )
示例#26
0
def td3_metarl_tf(ctxt, env_id, seed):
    """Create metarl TensorFlow TD3 model and training.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = ContinuousMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=hyper_parameters['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh)

        exploration_policy = AddGaussianNoise(
            env.spec,
            policy,
            max_sigma=hyper_parameters['sigma'],
            min_sigma=hyper_parameters['sigma'])

        qf = ContinuousMLPQFunction(
            name='ContinuousMLPQFunction',
            env_spec=env.spec,
            hidden_sizes=hyper_parameters['qf_hidden_sizes'],
            action_merge_layer=0,
            hidden_nonlinearity=tf.nn.relu)

        qf2 = ContinuousMLPQFunction(
            name='ContinuousMLPQFunction2',
            env_spec=env.spec,
            hidden_sizes=hyper_parameters['qf_hidden_sizes'],
            action_merge_layer=0,
            hidden_nonlinearity=tf.nn.relu)

        replay_buffer = PathBuffer(
            capacity_in_transitions=hyper_parameters['replay_buffer_size'])

        td3 = TD3(env.spec,
                  policy=policy,
                  qf=qf,
                  qf2=qf2,
                  replay_buffer=replay_buffer,
                  steps_per_epoch=hyper_parameters['steps_per_epoch'],
                  policy_lr=hyper_parameters['policy_lr'],
                  qf_lr=hyper_parameters['qf_lr'],
                  target_update_tau=hyper_parameters['tau'],
                  n_train_steps=hyper_parameters['n_train_steps'],
                  discount=hyper_parameters['discount'],
                  smooth_return=hyper_parameters['smooth_return'],
                  min_buffer_size=hyper_parameters['min_buffer_size'],
                  buffer_batch_size=hyper_parameters['buffer_batch_size'],
                  exploration_policy=exploration_policy,
                  policy_optimizer=tf.compat.v1.train.AdamOptimizer,
                  qf_optimizer=tf.compat.v1.train.AdamOptimizer)

        runner.setup(td3, env)
        runner.train(n_epochs=hyper_parameters['n_epochs'],
                     batch_size=hyper_parameters['n_rollout_steps'])