def ModelIt(name, cut, df, myconfig): config = ConfigParser.RawConfigParser() config.read(myconfig) #MySQL info: db_username = config.get('DB', 'username') db_pwd = config.get('DB', 'pwd') #Database connection: con = mdb.connect('localhost', db_username, db_pwd, 'InsightPaths') path = "/home/ubuntu/WebApp/Web/FanGuardFlask/files" #Prefilter Models: vp1, vp2, pcutval = GetPFModel(name, con, path) c0 = GetPred(df, vp1, vp2) #p0 = pmodel.predict_proba(Xp0)[:,1] #Spoiler Filter Models: smodel, vs1, vs2, scutval = GetSFModel(name, con, path, cut) p1 = modelmaker.model_tester(df, smodel, vs1, vs2) #c0 = (p0>pcutval).astype(int) #c0 = c0.reshape(c0.shape[0],1) c1 = (p1 > scutval).astype(int) c1 = c1.reshape(c1.shape[0], 1) return c0 * c1
def Train_A_Model_Direct(tag, model, vocab1,vocab2,df_Train,df_Test): #Train the actual model: trained_model,trained_vocab,tagged_vocab = modelmaker.model_trainer(df_Train,model,vocab1,vocab2) #Get predictions result = modelmaker.model_tester(df_Test,trained_model,trained_vocab,tagged_vocab) return trained_model, trained_vocab, tagged_vocab, result, df_Test
def Train_A_Model_Direct(tag, model, vocab1, vocab2, df_Train, df_Test): #Train the actual model: trained_model, trained_vocab, tagged_vocab = modelmaker.model_trainer( df_Train, model, vocab1, vocab2) #Get predictions result = modelmaker.model_tester(df_Test, trained_model, trained_vocab, tagged_vocab) return trained_model, trained_vocab, tagged_vocab, result, df_Test
def Train_A_Model(tag, model, vocab1,vocab2,myconfig,downsample=True): df_all = dfmaker.get_train_dfs(tag,myconfig) df_Train, df_Test = dfmaker.GenerateTestTrain(df_all) #Train the actual model: trained_model,trained_vocab,tagged_vocab = modelmaker.model_trainer(df_Train,model,vocab1,vocab2,downsample) #Get predictions result = modelmaker.model_tester(df_Test,trained_model,trained_vocab,tagged_vocab) return trained_model, trained_vocab, tagged_vocab, result, df_Test
def Train_A_Model(tag, model, vocab1, vocab2, myconfig, downsample=True): df_all = dfmaker.get_train_dfs(tag, myconfig) df_Train, df_Test = dfmaker.GenerateTestTrain(df_all) #Train the actual model: trained_model, trained_vocab, tagged_vocab = modelmaker.model_trainer( df_Train, model, vocab1, vocab2, downsample) #Get predictions result = modelmaker.model_tester(df_Test, trained_model, trained_vocab, tagged_vocab) return trained_model, trained_vocab, tagged_vocab, result, df_Test
def Train_A_Model_Direct(tag, model, vocab1,vocab2,df_Train,df_Test): """Given a testing and training dataframe, train a model tag = tag name model = model object (sklearn) to train to vocab1 = Body vocab vocab2 = Tag vocab df_Train = Train dataframe df_Test = Test dataframe """ #Train the actual model: trained_model,trained_vocab,tagged_vocab = modelmaker.model_trainer(df_Train,model,vocab1,vocab2) #Get predictions result = modelmaker.model_tester(df_Test,trained_model,trained_vocab,tagged_vocab) #Return trained model, vocab, prediction: return trained_model, trained_vocab, tagged_vocab, result, df_Test
def Train_A_Model(tag, model, vocab1,vocab2,myconfig,downsample=True): """Given a tag name, train a model tag = tag name model = model object (sklearn) to train to vocab1 = Body vocab vocab2 = Tag vocab myconfig = config file for accessing MySQL database downsample = force spoiler and non-spoiler sets to have same size """ #Get the data and make Test/Train frames: df_all = dfmaker.get_train_dfs(tag,myconfig) df_Train, df_Test = dfmaker.GenerateTestTrain(df_all) #Train the actual model: trained_model,trained_vocab,tagged_vocab = modelmaker.model_trainer(df_Train,model,vocab1,vocab2,downsample) #Get predictions result = modelmaker.model_tester(df_Test,trained_model,trained_vocab,tagged_vocab) #Return trained model, vocab, prediction: return trained_model, trained_vocab, tagged_vocab, result, df_Test