def make_layers(cfg, batch_norm=False,deconv=None, norm_type='none'): layers = [] in_channels = 3 if not deconv: for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v else: for i,v in enumerate(cfg): if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: if in_channels==3: conv2d = deconv(in_channels, v, kernel_size=3, padding=1, freeze=True, n_iter=15, sampling_stride=3) else: conv2d = deconv(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers)
def conv1x1(in_planes, out_planes, stride=1, deconv=None): """1x1 convolution""" if deconv: return deconv(in_planes, out_planes, kernel_size=1, stride=stride) else: return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def __init__(self, conv_dim=64, noise_dim=32, init_zero_weights=False): super(CycleGenerator, self).__init__() self.conv_dim = conv_dim self.noise_dim = noise_dim # 1. Define the encoder part of the generator (that extracts features from the input image) self.conv1 = conv(3, conv_dim, 4, padding=1, stride=2) self.conv2 = conv(conv_dim, conv_dim * 2, 4, padding=1, stride=2) # 2. Define the transformation part of the generator self.resnet_block = ResnetBlock(conv_dim * 2) # 3. Define the decoder part of the generator (that builds up the output image from features) self.deconv1 = deconv(conv_dim * 2 + noise_dim, conv_dim, 4, padding=1, stride=2) self.deconv2 = deconv(conv_dim, 3, 4, padding=1, stride=2, batch_norm=False)
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1, deconv=None): """3x3 convolution with padding""" if deconv: return deconv(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation) # else: return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation, groups=groups) #
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, deconv=None, channel_deconv=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format( replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group if not deconv: self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) else: self.conv1 = deconv(3, self.inplanes, kernel_size=7, stride=2, padding=3) # this line is really recent, take extreme care if the result is not good. Batch size really matters here. if channel_deconv: self.deconv1 = channel_deconv() self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], deconv=deconv) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0], deconv=deconv) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1], deconv=deconv) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2], deconv=deconv) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, DeConv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0)