Пример #1
0
def make_layers(cfg, batch_norm=False,deconv=None, norm_type='none'):
    layers = []
    in_channels = 3
    if not deconv:
        for v in cfg:
            if v == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
                if batch_norm:
                    layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
                else:
                    layers += [conv2d, nn.ReLU(inplace=True)]
                in_channels = v
    else:
        for i,v in enumerate(cfg):

            if v == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                if in_channels==3:
                    conv2d = deconv(in_channels, v, kernel_size=3, padding=1, freeze=True, n_iter=15, sampling_stride=3)
                else:
                    conv2d = deconv(in_channels, v, kernel_size=3, padding=1)

                
                if batch_norm:
                    layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
                else:
                    layers += [conv2d, nn.ReLU(inplace=True)]
                in_channels = v


    return nn.Sequential(*layers)
Пример #2
0
def conv1x1(in_planes, out_planes, stride=1, deconv=None):
    """1x1 convolution"""
    if deconv:
        return deconv(in_planes, out_planes, kernel_size=1, stride=stride)
    else:
        return nn.Conv2d(in_planes,
                         out_planes,
                         kernel_size=1,
                         stride=stride,
                         bias=False)
Пример #3
0
    def __init__(self, conv_dim=64, noise_dim=32, init_zero_weights=False):
        super(CycleGenerator, self).__init__()
        self.conv_dim = conv_dim
        self.noise_dim = noise_dim

        # 1. Define the encoder part of the generator (that extracts features from the input image)
        self.conv1 = conv(3, conv_dim, 4, padding=1, stride=2)
        self.conv2 = conv(conv_dim, conv_dim * 2, 4, padding=1, stride=2)

        # 2. Define the transformation part of the generator
        self.resnet_block = ResnetBlock(conv_dim * 2)

        # 3. Define the decoder part of the generator (that builds up the output image from features)
        self.deconv1 = deconv(conv_dim * 2 + noise_dim,
                              conv_dim,
                              4,
                              padding=1,
                              stride=2)
        self.deconv2 = deconv(conv_dim,
                              3,
                              4,
                              padding=1,
                              stride=2,
                              batch_norm=False)
Пример #4
0
def conv3x3(in_planes,
            out_planes,
            stride=1,
            groups=1,
            dilation=1,
            deconv=None):
    """3x3 convolution with padding"""
    if deconv:
        return deconv(in_planes,
                      out_planes,
                      kernel_size=3,
                      stride=stride,
                      padding=dilation,
                      dilation=dilation)  #
    else:
        return nn.Conv2d(in_planes,
                         out_planes,
                         kernel_size=3,
                         stride=stride,
                         padding=dilation,
                         bias=False,
                         dilation=dilation,
                         groups=groups)  #
Пример #5
0
    def __init__(self,
                 block,
                 layers,
                 num_classes=1000,
                 zero_init_residual=False,
                 groups=1,
                 width_per_group=64,
                 replace_stride_with_dilation=None,
                 norm_layer=None,
                 deconv=None,
                 channel_deconv=None):
        super(ResNet, self).__init__()

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(
                                 replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        if not deconv:
            self.conv1 = nn.Conv2d(3,
                                   self.inplanes,
                                   kernel_size=7,
                                   stride=2,
                                   padding=3,
                                   bias=False)
            self.bn1 = norm_layer(self.inplanes)
        else:
            self.conv1 = deconv(3,
                                self.inplanes,
                                kernel_size=7,
                                stride=2,
                                padding=3)
            # this line is really recent, take extreme care if the result is not good. Batch size really matters here.

        if channel_deconv:
            self.deconv1 = channel_deconv()

        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], deconv=deconv)
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[0],
                                       deconv=deconv)
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[1],
                                       deconv=deconv)
        self.layer4 = self._make_layer(block,
                                       512,
                                       layers[3],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[2],
                                       deconv=deconv)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, DeConv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode='fan_out',
                                        nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)