def train(opt):

    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    train_dataloader, val_dataloader = create_dataloader(opt)
    net = Classification()  # 定义训练的网络模型
    net.to(device)
    net.train()
    loss_function = nn.CrossEntropyLoss()  # 定义损失函数为交叉熵损失函数
    optimizer = optim.Adam(net.parameters(), lr=0.001)  # 定义优化器(训练参数,学习率)

    for epoch in range(opt.num_epochs):  # 一个epoch即对整个训练集进行一次训练
        running_loss = 0.0
        correct = 0
        total = 0
        time_start = time.perf_counter()

        for step, data in enumerate(train_dataloader,
                                    start=0):  # 遍历训练集,step从0开始计算
            inputs, labels = data # 获取训练集的图像和标签
            inputs, labels = inputs.to(device), labels.to(device)
            optimizer.zero_grad()  # 清除历史梯度

            # forward + backward + optimize
            # outputs = net(inputs.permute(0,1,3,2))  # 正向传播
            outputs = net(inputs)  # 正向传播
            print('outputs.shape', outputs.shape, labels.shape)
            loss = loss_function(outputs, labels)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 优化器更新参数
            predict_y = torch.max(outputs, dim=1)[1]
            total += labels.size(0)
            correct += (predict_y == labels).sum().item()
            running_loss += loss.item()
            # print statistics

            # print('train_dataloader length: ', len(train_dataloader))
        acc = correct / total
        print('Train on epoch {}: loss:{}, acc:{}%'.format(epoch + 1, running_loss / total, 100 * correct / total))
        # 保存训练得到的参数
        if opt.model == 'basic':
            save_weight_name = os.path.join(opt.save_path,
                                            'Basic_Epoch_{0}_Accuracy_{1:.2f}.pth'.format(
                                                epoch + 1,
                                                acc))
        elif opt.model == 'plus':
            save_weight_name = os.path.join(opt.save_path,
                                            'Plus_Epoch_{0}_Accuracy_{1:.2f}.pth'.format(
                                                epoch + 1,
                                                acc))
        torch.save(net.state_dict(), save_weight_name)
    print('Finished Training')
    cifar_10_train_dt = MyCustomDataset('data',
                                        download=True,
                                        transform=ToTensor())
    cifar_10_train_l = DataLoader(cifar_10_train_dt,
                                  batch_size=batch_size,
                                  shuffle=True,
                                  drop_last=True,
                                  pin_memory=torch.cuda.is_available())

    encoder = Encoder().to(device)
    loss_fn = DeepInfoMaxLoss(1, 0, 1).to(device)
    classification = Classification().to(device)
    encoder_optim = Adam(encoder.parameters(), lr=1e-4)
    loss_optim = Adam(loss_fn.parameters(), lr=1e-4)
    classification_optim = Adam(classification.parameters(), lr=1e-4)

    epoch_restart = 0
    root = Path(r'models')

    if epoch_restart > 0 and root is not None:
        enc_file = root / Path('encoder' + str(epoch_restart) + '.wgt')
        loss_file = root / Path('loss' + str(epoch_restart) + '.wgt')
        classification_loss_file = root / Path('classification_loss' +
                                               str(epoch_restart) + '.wgt')
        encoder.load_state_dict(torch.load(str(enc_file)))
        loss_fn.load_state_dict(torch.load(str(loss_file)))
        classification.load_state_dict(
            torch.load(str(classification_loss_file)))

    for epoch in range(epoch_restart + 1, 501):
예제 #3
0
    config = args.parse_args()
    config2 = Config()

    dataset = SentenceClassificationDataset('../data/processing_data',
                                            config.strmaxlen)

    print('unique labels = {}'.format(dataset.get_unique_labels_num()))
    print('vocab size = {}'.format(dataset.get_vocab_size()))

    if config.model_name == 'CNN':
        model = Classification(config.embedding, config.strmaxlen,
                               dataset.get_unique_labels_num(),
                               dataset.get_vocab_size())
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.01)

    elif config.model_name == 'RCNN':
        model = RCNN(config.embedding, config.strmaxlen,
                     dataset.get_unique_labels_num(), dataset.get_vocab_size())
        if config.mode == 'train':
            model = model.cuda()

        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.01)

    elif config.model_name == "DUALRCNN":
        model = DualRCNN(config.embedding, config.strmaxlen,
                         dataset.get_unique_labels_num(),
                         dataset.get_vocab_size())
        if torch.cuda.is_available():