def train(opt):

    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    train_dataloader, val_dataloader = create_dataloader(opt)
    net = Classification()  # 定义训练的网络模型
    net.to(device)
    net.train()
    loss_function = nn.CrossEntropyLoss()  # 定义损失函数为交叉熵损失函数
    optimizer = optim.Adam(net.parameters(), lr=0.001)  # 定义优化器(训练参数,学习率)

    for epoch in range(opt.num_epochs):  # 一个epoch即对整个训练集进行一次训练
        running_loss = 0.0
        correct = 0
        total = 0
        time_start = time.perf_counter()

        for step, data in enumerate(train_dataloader,
                                    start=0):  # 遍历训练集,step从0开始计算
            inputs, labels = data # 获取训练集的图像和标签
            inputs, labels = inputs.to(device), labels.to(device)
            optimizer.zero_grad()  # 清除历史梯度

            # forward + backward + optimize
            # outputs = net(inputs.permute(0,1,3,2))  # 正向传播
            outputs = net(inputs)  # 正向传播
            print('outputs.shape', outputs.shape, labels.shape)
            loss = loss_function(outputs, labels)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 优化器更新参数
            predict_y = torch.max(outputs, dim=1)[1]
            total += labels.size(0)
            correct += (predict_y == labels).sum().item()
            running_loss += loss.item()
            # print statistics

            # print('train_dataloader length: ', len(train_dataloader))
        acc = correct / total
        print('Train on epoch {}: loss:{}, acc:{}%'.format(epoch + 1, running_loss / total, 100 * correct / total))
        # 保存训练得到的参数
        if opt.model == 'basic':
            save_weight_name = os.path.join(opt.save_path,
                                            'Basic_Epoch_{0}_Accuracy_{1:.2f}.pth'.format(
                                                epoch + 1,
                                                acc))
        elif opt.model == 'plus':
            save_weight_name = os.path.join(opt.save_path,
                                            'Plus_Epoch_{0}_Accuracy_{1:.2f}.pth'.format(
                                                epoch + 1,
                                                acc))
        torch.save(net.state_dict(), save_weight_name)
    print('Finished Training')
                str(epoch) + ' Loss: ' + str(stats.mean(train_loss[-1:])))
            loss_total.backward()
            encoder_optim.step()
            loss_optim.step()
            classification_optim.step()

        if epoch % 10 == 0:
            root = Path(r'models')
            enc_file = root / Path('encoder' + str(epoch) + '.wgt')
            loss_file = root / Path('loss' + str(epoch) + '.wgt')
            classification_loss_file = root / Path('classification_loss' +
                                                   str(epoch) + '.wgt')
            enc_file.parent.mkdir(parents=True, exist_ok=True)
            torch.save(encoder.state_dict(), str(enc_file))
            torch.save(loss_fn.state_dict(), str(loss_file))
            torch.save(classification.state_dict(),
                       str(classification_loss_file))

        if epoch > 1:
            with open('loss.pickle', 'rb') as handle:
                loss_dict = pickle.load(handle)
                loss_dict[str(epoch)] = stats.mean(train_loss[-20:])
            with open('loss.pickle', 'wb') as handle:
                pickle.dump(loss_dict,
                            handle,
                            protocol=pickle.HIGHEST_PROTOCOL)
        else:
            with open('loss.pickle', 'wb') as handle:
                loss_dict = {}
                loss_dict[str(epoch)] = stats.mean(train_loss[-20:])
                pickle.dump(loss_dict,