cnt_wait = 0 torch.save(model.state_dict(), args.save_name) else: cnt_wait += 1 if cnt_wait == patience: print('Early stopping!') break loss.backward() optimiser.step() print('Loading {}th epoch'.format(best_t)) model.load_state_dict(torch.load(args.save_name)) embeds, _ = model.embed(features, sp_adj if sparse else adj, sparse, None) train_embs = embeds[0, idx_train] val_embs = embeds[0, idx_val] test_embs = embeds[0, idx_test] train_lbls = torch.argmax(labels[0, idx_train], dim=1) val_lbls = torch.argmax(labels[0, idx_val], dim=1) test_lbls = torch.argmax(labels[0, idx_test], dim=1) tot = torch.zeros(1) tot = tot.cuda() accs = [] for _ in range(50): log = LogReg(hid_units, nb_classes)
def main(): saved_graph = os.path.join('assets', 'saved_graphs', 'best_dgi.pickle') saved_logreg = os.path.join('assets', 'saved_graphs', 'best_logreg.pickle') dataset = 'cora' # training params batch_size = 1 nb_epochs = 10000 patience = 25 lr = 0.001 l2_coef = 0.0 drop_prob = 0.0 hid_units = 512 sparse = True nonlinearity = 'prelu' # special name to separate parameters adj, features, labels, idx_train, idx_test, idx_val = process.load_data(dataset) features, _ = process.preprocess_features(features) nb_nodes = features.shape[0] ft_size = features.shape[1] nb_classes = labels.shape[1] adj = process.normalize_adj(adj + sp.eye(adj.shape[0])) if sparse: adj = process.sparse_mx_to_torch_sparse_tensor(adj) else: adj = (adj + sp.eye(adj.shape[0])).todense() features = torch.FloatTensor(features[np.newaxis]) if not sparse: adj = torch.FloatTensor(adj[np.newaxis]) labels = torch.FloatTensor(labels[np.newaxis]) idx_train = torch.LongTensor(idx_train) idx_val = torch.LongTensor(idx_val) idx_test = torch.LongTensor(idx_test) print("Training Nodes: {}, Testing Nodes: {}, Validation Nodes: {}".format(len(idx_train), len(idx_test), len(idx_val))) model = DGI(ft_size, hid_units, nonlinearity) optimiser = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2_coef) if torch.cuda.is_available(): print('Using CUDA') model.cuda() features = features.cuda() if sparse: sp_adj = sp_adj.cuda() else: adj = adj.cuda() labels = labels.cuda() idx_train = idx_train.cuda() idx_val = idx_val.cuda() idx_test = idx_test.cuda() b_xent = nn.BCEWithLogitsLoss() xent = nn.CrossEntropyLoss() cant_wait = 0 best = 1e9 best_t = 0 if not os.path.exists(saved_graph): pbar = trange(nb_epochs) for epoch in pbar: model.train() optimiser.zero_grad() idx = np.random.permutation(nb_nodes) shuf_fts = features[:, idx, :] lbl_1 = torch.ones(batch_size, nb_nodes) lbl_2 = torch.zeros(batch_size, nb_nodes) lbl = torch.cat((lbl_1, lbl_2), 1) if torch.cuda.is_available(): shuf_fts = shuf_fts.cuda() lbl = lbl.cuda() logits = model(features, shuf_fts, adj, sparse, None, None, None) loss = b_xent(logits, lbl) pbar.desc = 'Loss: {:.4f}'.format(loss) if loss < best: best = loss best_t = epoch cnt_wait = 0 torch.save(model.state_dict(), saved_graph) else: cant_wait += 1 if cant_wait == patience: tqdm.write('Early stopping!') break loss.backward() optimiser.step() print('Loading {}th Epoch'.format(best_t) if best_t else 'Loading Existing Graph') model.load_state_dict(torch.load(saved_graph)) embeds, _ = model.embed(features, adj, sparse, None) train_embs = embeds[0, idx_train] val_embs = embeds[0, idx_val] test_embs = embeds[0, idx_test] train_lbls = torch.argmax(labels[0, idx_train], dim=1) val_lbls = torch.argmax(labels[0, idx_val], dim=1) test_lbls = torch.argmax(labels[0, idx_test], dim=1) tot = torch.zeros(1) if torch.cuda.is_available(): tot = tot.cuda() accs = [] print("\nValidation:") pbar = trange(50) for _ in pbar: log = LogReg(hid_units, nb_classes) opt = torch.optim.Adam(log.parameters(), lr=0.01, weight_decay=0.0) pat_steps = 0 best_acc = torch.zeros(1) if torch.cuda.is_available(): log.cuda() best_acc = best_acc.cuda() for _ in range(100): log.train() opt.zero_grad() logits = log(train_embs) loss = xent(logits, train_lbls) loss.backward() opt.step() logits = log(test_embs) preds = torch.argmax(logits, dim=1) acc = torch.sum(preds == test_lbls).float() / test_lbls.shape[0] accs.append(acc * 100) pbar.desc = "Accuracy: {:.2f}%".format(100 * acc) tot += acc torch.save(log.state_dict(), saved_logreg) accs = torch.stack(accs) print('Average Accuracy: {:.2f}%'.format(accs.mean())) print('Standard Deviation: {:.3f}'.format(accs.std())) print("\nTesting") logits = log(val_embs) preds = torch.argmax(logits, dim=1) acc = torch.sum(preds == val_lbls).float() / val_lbls.shape[0] print("Accuracy: {:.2f}%".format(100 * acc))
idx_val = idx_val.cuda() idx_test = idx_test.cuda() sp_adj_ori = sp_adj.clone() if attack_mode != 'A': features_ori = features.clone() xent = nn.CrossEntropyLoss() if args.gpu == "": model.load_state_dict( torch.load(args.model, map_location=torch.device('cpu'))) else: model.load_state_dict(torch.load(args.model)) print("Load model") embeds, _ = model.embed(features, sp_adj if sparse else adj, sparse, None) train_embs = embeds[0, idx_train] val_embs = embeds[0, idx_val] test_embs = embeds[0, idx_test] train_lbls = torch.argmax(labels[0, idx_train], dim=1) val_lbls = torch.argmax(labels[0, idx_val], dim=1) test_lbls = torch.argmax(labels[0, idx_test], dim=1) tot = torch.zeros(1) if torch.cuda.is_available(): tot = tot.cuda() accs = [] for _ in range(50):
if args.hinge: loss_ori = mi_loss(encoder, sp_adj_ori, features_ori, nb_nodes, b_xent, batch_size, sparse) RV = loss - loss_ori print("RV: {}; RV-tau: {}; MI-nature: {}; MI-worst: {}".format(RV.detach().cpu().numpy(), (RV - args.tau).detach().cpu().numpy(), loss_ori.detach().cpu().numpy(), loss.detach().cpu().numpy())) if RV - args.tau < 0: loss = loss_ori if args.show_task and epoch%5==0: adv = atm(sp_adj_ori, sp_A, None, n_flips, b_xent=b_xent, step_size=20, eps_x=args.epsilon, step_size_x=1e-3, iterations=50, should_normalize=True, random_restarts=False, make_adv=True) if attack_mode == 'A': embeds, _ = encoder.embed(features_ori, adv, sparse, None) elif attack_mode == 'X': embeds, _ = encoder.embed(adv, sp_adj_ori, sparse, None) elif attack_mode == 'both': embeds, _ = encoder.embed(adv[1], adv[0], sparse, None) acc_adv = task(embeds) embeds, _ = encoder.embed(features_ori, sp_adj_ori, sparse, None) acc_nat = task(embeds) print('Epoch:{} Step_size: {:.4f} Loss:{:.4f} Natural_Acc:{:.4f} Adv_Acc:{:.4f}'.format( epoch, step_size, loss.detach().cpu().numpy(), acc_nat, acc_adv)) else: print('Epoch:{} Step_size: {:.4f} Loss:{:.4f}'.format(epoch, step_size, loss.detach().cpu().numpy())) if loss < best:
print("wait: " + str(cnt_wait)) if cnt_wait == patience: print('Early stopping!') break loss.backward() optimiser.step() print('Loading {}th epoch'.format(best_t)) model.load_state_dict( torch.load( str('best_dgi_head_' + str(args.nb_heads) + '_nhidden_' + str(args.hidden) + '_exp_' + str(exp) + '.pkl'))) embeds, _ = model.embed(features, nor_adjs, sparse, None) train_embs = embeds[0, idx_train] val_embs = embeds[0, idx_val] test_embs = embeds[0, idx_test] train_lbls = torch.argmax(labels[0, idx_train], dim=1) val_lbls = torch.argmax(labels[0, idx_val], dim=1) test_lbls = torch.argmax(labels[0, idx_test], dim=1) tot = torch.zeros(1) if args.cuda: tot = tot.cuda() tot_mac = 0 accs = [] mac_f1 = []
for epoch in range(nb_epochs): model.train() optimiser.zero_grad() idx = np.random.permutation(nb_nodes) shuf_fts = features[:, idx, :] lbl_1 = torch.ones(batch_size, nb_nodes) lbl_2 = torch.zeros(batch_size, nb_nodes) lbl = torch.cat((lbl_1, lbl_2), 1) logits = model(features, shuf_fts, adj, sparse, None, None, None) loss = b_xent(logits, lbl) embed, _ = model.embed(features, adj, sparse, None) pred = kmeans.fit_predict(embed.squeeze(0).data.numpy()) # logits = model(features, adj, sparse) # embed = model.embed(features, adj, sparse) # loss = b_xent(logits, adj) # pred = kmeans.fit_predict(embed.data.numpy()) cm = metrics.clustering_metrics(labels.tolist(), pred.tolist()) acc, nmi, ari = cm.Evaluation_Cluster_Model_From_Label() mod = metrics.get_modularity(pred.tolist(), g) print( "epoch={:.4f} loss={:.4f} nmi={:.4f} ari={:.4f} acc={:.4f} mod={:.4f}". format(epoch, loss, nmi, ari, acc, mod))
def process_transductive(dataset, gnn_type='GCNConv', K=None, random_init=False, runs=10, drop_sigma=False, just_plot=False): dataset_str = dataset norm_features = torch_geometric.transforms.NormalizeFeatures() dataset = Planetoid("./geometric_datasets"+'/'+dataset, dataset, transform=norm_features)[0] # training params batch_size = 1 # Transductive setting hyperparameters = get_hyperparameters() nb_epochs = hyperparameters["nb_epochs"] patience = hyperparameters["patience"] lr = hyperparameters["lr"] xent = nn.CrossEntropyLoss() l2_coef = hyperparameters["l2_coef"] drop_prob = hyperparameters["drop_prob"] hid_units = hyperparameters["hid_units"] nonlinearity = hyperparameters["nonlinearity"] nb_nodes = dataset.x.shape[0] ft_size = dataset.x.shape[1] nb_classes = torch.max(dataset.y).item()+1 # 0 based cnt features = dataset.x labels = dataset.y edge_index = dataset.edge_index edge_index, _ = torch_geometric.utils.add_remaining_self_loops(edge_index) mask_train = dataset.train_mask mask_val = dataset.val_mask mask_test = dataset.test_mask model_name = get_model_name(dataset_str, gnn_type, K, random_init=random_init, drop_sigma=drop_sigma) with open("./results/"+model_name[:-4]+"_results.txt", "w") as f: pass accs = [] for i in range(runs): model = DGI(ft_size, hid_units, nonlinearity, update_rule=gnn_type, K=K, drop_sigma=drop_sigma) print(model, model_name, drop_sigma) optimiser = torch.optim.Adam(model.parameters(), lr=lr) if torch.cuda.is_available(): print('Using CUDA') features = features.cuda() labels = labels.cuda() edge_index = edge_index.cuda() mask_train = mask_train.cuda() mask_val = mask_val.cuda() mask_test = mask_test.cuda() model = model.cuda() best_t = train_transductive(dataset, dataset_str, edge_index, gnn_type, model_name, K=K, random_init=random_init, drop_sigma=drop_sigma) xent = nn.CrossEntropyLoss() print('Loading {}th epoch'.format(best_t)) print(model, model_name) if not random_init: model.load_state_dict(torch.load('./trained_models/'+model_name)) model.eval() embeds, _ = model.embed(features, edge_index, None, standardise=False) if just_plot: plot_tsne(embeds, labels, model_name) exit(0) train_embs = embeds[mask_train, :] val_embs = embeds[mask_val, :] test_embs = embeds[mask_test, :] train_lbls = labels[mask_train] val_lbls = labels[mask_val] test_lbls = labels[mask_test] tot = torch.zeros(1) tot = tot.cuda() for _ in range(50): log = LogReg(hid_units, nb_classes) opt = torch.optim.Adam(log.parameters(), lr=0.01, weight_decay=0.0) log.cuda() pat_steps = 0 best_acc = torch.zeros(1) best_acc = best_acc.cuda() for _ in range(150): log.train() opt.zero_grad() logits = log(train_embs) loss = xent(logits, train_lbls) loss.backward() opt.step() logits = log(test_embs) preds = torch.argmax(logits, dim=1) acc = torch.sum(preds == test_lbls).float() / test_lbls.shape[0] accs.append(acc * 100) print(acc) tot += acc print('Average accuracy:', tot / 50) all_accs = torch.stack(accs, dim=0) with open("./results/"+model_name[:-4]+"_results.txt", "a+") as f: f.writelines([str(all_accs.mean().item())+'\n', str(all_accs.std().item())+'\n']) print(all_accs.mean()) print(all_accs.std())
cnt_wait = 0 torch.save(model.state_dict(), 'best_dgi.pkl') else: cnt_wait += 1 if cnt_wait == patience: print('Early stopping!') break loss.backward() optimiser.step() print('Loading {}th epoch'.format(best_t)) model.load_state_dict(torch.load('best_dgi.pkl')) embeds, _ = model.embed(features, sp_nor_adjs if sparse else nor_adjs, sparse, None) train_embs = embeds[0, idx_train] val_embs = embeds[0, idx_val] test_embs = embeds[0, idx_test] train_lbls = torch.argmax(labels[0, idx_train], dim=1) val_lbls = torch.argmax(labels[0, idx_val], dim=1) test_lbls = torch.argmax(labels[0, idx_test], dim=1) tot = torch.zeros(1) tot = tot.cuda() tot_mac = 0 accs = [] mac_f1 = [] for _ in range(5):