예제 #1
0
features = torch.FloatTensor(features[np.newaxis])
# features_tack = torch.FloatTensor(features_tack[np.newaxis])
if not sparse:
    adj = torch.FloatTensor(adj[np.newaxis])
labels = torch.FloatTensor(labels[np.newaxis])
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)

model = DGI(ft_size,
            hid_units,
            nonlinearity,
            critic=args.critic,
            dataset=dataset)
model.eval()

if torch.cuda.is_available():
    print('Using CUDA')
    model.cuda()
    features = features.cuda()
    # features_tack = features_tack.cuda()
    if sparse:
        sp_adj = sp_adj.cuda()
        sp_A = sp_A.cuda()
        # adj_tack = adj_tack.cuda()
    else:
        adj = adj.cuda()
    labels = labels.cuda()
    idx_train = idx_train.cuda()
    idx_val = idx_val.cuda()
예제 #2
0
파일: execute.py 프로젝트: HekpoMaH/DGI
def process_inductive(dataset, gnn_type="GCNConv", K=None, random_init=False, runs=10):

    hyperparameters = get_hyperparameters()
    nb_epochs = hyperparameters["nb_epochs"]
    patience = hyperparameters["patience"]
    lr = hyperparameters["lr"]
    l2_coef = hyperparameters["l2_coef"]
    drop_prob = hyperparameters["drop_prob"]
    hid_units = hyperparameters["hid_units"]
    nonlinearity = hyperparameters["nonlinearity"]
    batch_size = hyperparameters["batch_size"]

    norm_features = torch_geometric.transforms.NormalizeFeatures()
    dataset_train = PPI(
        "./geometric_datasets/"+dataset,
        split="train",
        transform=norm_features,
    )
    print(dataset_train)
    dataset_val = PPI(
        "./geometric_datasets/"+dataset,
        split="val",
        transform=norm_features,
    )
    print(dataset_val)
    dataset_test = PPI(
        "./geometric_datasets/"+dataset,
        split="test",
        transform=norm_features,
    )
    data = []
    for d in dataset_train:
        data.append(d)
    for d in dataset_val:
        data.append(d)

    ft_size = dataset_train[0].x.shape[1]
    nb_classes = dataset_train[0].y.shape[1] # multilabel
    b_xent = nn.BCEWithLogitsLoss()

    loader_train = DataLoader(
        data,
        batch_size=hyperparameters["batch_size"],
        shuffle=True,
    )
    loader_test = DataLoader(
        dataset_test,
        batch_size=hyperparameters["batch_size"],
        shuffle=False
    )

    all_accs = []
    for _ in range(runs):
        model = DGI(ft_size, hid_units, nonlinearity, update_rule=gnn_type, batch_size=1, K=K)
        model_name = get_model_name(dataset, gnn_type, K, random_init=random_init)
        print(model)
        optimiser = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2_coef)

        if torch.cuda.is_available():
            print('Using CUDA')
            model = model.cuda()
        model.train()

        torch.cuda.empty_cache()
        for epoch in range(20):
            if random_init:
                break
            total_loss = 0
            batch_id = 0
            model.train()
            loaded = list(loader_train)
            for batch in loaded:
                optimiser.zero_grad()
                if torch.cuda.is_available:
                    batch = batch.to('cuda')
                nb_nodes = batch.x.shape[0]
                features = batch.x
                labels = batch.y
                edge_index = batch.edge_index

                idx = np.random.randint(0, len(data))
                while idx == batch_id:
                    idx = np.random.randint(0, len(data))
                shuf_fts = torch.nn.functional.dropout(loaded[idx].x, drop_prob)
                edge_index2 = loaded[idx].edge_index

                lbl_1 = torch.ones(nb_nodes)
                lbl_2 = torch.zeros(shuf_fts.shape[0])
                lbl = torch.cat((lbl_1, lbl_2), 0)

                if torch.cuda.is_available():
                    shuf_fts = shuf_fts.cuda()
                    if edge_index2 is not None:
                        edge_index2 = edge_index2.cuda()
                    lbl = lbl.cuda()
                
                logits = model(features, shuf_fts, edge_index, batch=batch.batch, edge_index_alt=edge_index2)

                loss = b_xent(logits, lbl)
                loss.backward()
                optimiser.step()
                batch_id += 1
                total_loss += loss.item()


            print(epoch, 'Train Loss:', total_loss/(len(dataset_train)))

        torch.save(model.state_dict(), './trained_models/'+model_name)
        torch.cuda.empty_cache()

        print('Loading last epoch')
        if not random_init:
            model.load_state_dict(torch.load('./trained_models/'+model_name))
        model.eval()

        b_xent_reg = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(2.25))
        train_embs, whole_train_data = preprocess_embeddings(model, dataset_train)
        val_embs, whole_val_data = preprocess_embeddings(model, dataset_val)
        test_embs, whole_test_data = preprocess_embeddings(model, dataset_test)

        for _ in range(50):
            log = LogReg(hid_units, nb_classes)
            opt = torch.optim.Adam(log.parameters(), lr=0.01, weight_decay=0.0)
            log.cuda()

            pat_steps = 0
            best = 1e9
            log.train()
            for _ in range(250):
                opt.zero_grad()

                logits = log(train_embs)
                loss = b_xent_reg(logits, whole_train_data.y)
                
                loss.backward()
                opt.step()

                log.eval()
                val_logits = log(val_embs) 
                loss = b_xent_reg(val_logits, whole_val_data.y)
                if loss.item() < best:
                    best = loss.item()
                    pat_steps = 0
                if pat_steps >= 5:
                    break

                pat_steps += 1


            log.eval()
            logits = log(test_embs)
            preds = torch.sigmoid(logits) > 0.5
            f1 = sklearn.metrics.f1_score(whole_test_data.y.cpu(), preds.long().cpu(), average='micro')
            all_accs.append(float(f1))
            print()
            print('Micro-averaged f1:', f1)

    all_accs = torch.tensor(all_accs)

    with open("./results/"+model_name[:-4]+"_results.txt", "w") as f:
        f.writelines([str(all_accs.mean().item())+'\n', str(all_accs.std().item())])
    print(all_accs.mean())
    print(all_accs.std())
예제 #3
0
파일: execute.py 프로젝트: HekpoMaH/DGI
def process_link_prediction(dataset, gnn_type="GCNConv", K=None, runs=10, drop_sigma=False):

    batch_size = 1 # Transductive setting
    hyperparameters = get_hyperparameters()
    nb_epochs = hyperparameters["nb_epochs"]
    patience = hyperparameters["patience"]
    lr = hyperparameters["lr"]
    xent = nn.CrossEntropyLoss()
    drop_prob = hyperparameters["drop_prob"]
    hid_units = hyperparameters["hid_units"]
    nonlinearity = hyperparameters["nonlinearity"]

    dataset_str = dataset
    dataset = Planetoid("./geometric_datasets"+'/'+dataset,
                        dataset,
                        transform=torch_geometric.transforms.NormalizeFeatures())[0]
    nb_nodes = dataset.x.shape[0]
    ft_size = dataset.x.shape[1]
    nb_classes = torch.max(dataset.y).item()+1 # 0 based cnt
    features = dataset.x
    labels = dataset.y

    mask_train = dataset.train_mask
    mask_val = dataset.val_mask
    mask_test = dataset.test_mask

    all_auc, all_ap = [], []

    for _ in range(runs):
        model = DGI(ft_size, hid_units, nonlinearity, update_rule=gnn_type, K=K, drop_sigma=drop_sigma)
        print(model)
        model_name = get_model_name(dataset_str, gnn_type, K, link_prediction=True, drop_sigma=drop_sigma)
        dataset = Planetoid("./geometric_datasets"+'/'+dataset_str,
                            dataset_str,
                            transform=torch_geometric.transforms.NormalizeFeatures())[0]
        gae = nng.GAE(model)
        gae_data = gae.split_edges(dataset)
        edge_index = gae_data.train_pos_edge_index
        optimiser = torch.optim.Adam(model.parameters(), lr=lr)

        if torch.cuda.is_available():
            print('Using CUDA')
            features = features.cuda()
            labels = labels.cuda()
            edge_index = edge_index.cuda()
            mask_train = mask_train.cuda()
            mask_val = mask_val.cuda()
            mask_test = mask_test.cuda()
            model = model.cuda()

        best_t = train_transductive(dataset, dataset_str, edge_index, gnn_type, model_name, drop_sigma=drop_sigma, K=K)
        print('Loading {}th epoch'.format(best_t))
        model.load_state_dict(torch.load('./trained_models/'+model_name))
        model.eval()
        Z = gae.encode(features, None, edge_index, embed_gae=True)
        res = gae.test(Z, gae_data.test_pos_edge_index.cuda(), gae_data.test_neg_edge_index.cuda())
        auc = res[0]
        ap = res[1]
        print(auc, ap)
        all_auc.append(auc)
        all_ap.append(ap)

    all_auc = torch.tensor(all_auc)
    all_ap = torch.tensor(all_ap)
    with open("./results/"+model_name[:-4]+"_results.txt", "w") as f:
        f.writelines([str(all_auc.mean().item())+'\n', str(all_auc.std().item())+'\n'])
        f.writelines([str(all_ap.mean().item())+'\n', str(all_ap.std().item())])

    print(str(all_auc.mean().item()), str(all_auc.std().item()))
    print(str(all_ap.mean().item()), str(all_ap.std().item()))
예제 #4
0
파일: execute.py 프로젝트: HekpoMaH/DGI
def process_transductive(dataset, gnn_type='GCNConv', K=None, random_init=False, runs=10, drop_sigma=False, just_plot=False):
    dataset_str = dataset
    norm_features = torch_geometric.transforms.NormalizeFeatures()
    dataset = Planetoid("./geometric_datasets"+'/'+dataset,
                        dataset,
                        transform=norm_features)[0]

    # training params
    batch_size = 1 # Transductive setting
    hyperparameters = get_hyperparameters()
    nb_epochs = hyperparameters["nb_epochs"]
    patience = hyperparameters["patience"]
    lr = hyperparameters["lr"]
    xent = nn.CrossEntropyLoss()
    l2_coef = hyperparameters["l2_coef"]
    drop_prob = hyperparameters["drop_prob"]
    hid_units = hyperparameters["hid_units"]
    nonlinearity = hyperparameters["nonlinearity"]

    nb_nodes = dataset.x.shape[0]
    ft_size = dataset.x.shape[1]
    nb_classes = torch.max(dataset.y).item()+1 # 0 based cnt
    features = dataset.x
    labels = dataset.y
    edge_index = dataset.edge_index
    edge_index, _ = torch_geometric.utils.add_remaining_self_loops(edge_index)

    mask_train = dataset.train_mask
    mask_val = dataset.val_mask
    mask_test = dataset.test_mask

    model_name = get_model_name(dataset_str, gnn_type, K, random_init=random_init, drop_sigma=drop_sigma)
    with open("./results/"+model_name[:-4]+"_results.txt", "w") as f:
        pass

    accs = []

    for i in range(runs): 
        model = DGI(ft_size, hid_units, nonlinearity, update_rule=gnn_type, K=K, drop_sigma=drop_sigma)
        print(model, model_name, drop_sigma)
        optimiser = torch.optim.Adam(model.parameters(), lr=lr)

        if torch.cuda.is_available():
            print('Using CUDA')
            features = features.cuda()
            labels = labels.cuda()
            edge_index = edge_index.cuda()
            mask_train = mask_train.cuda()
            mask_val = mask_val.cuda()
            mask_test = mask_test.cuda()
            model = model.cuda()

        best_t = train_transductive(dataset, dataset_str, edge_index, gnn_type, model_name, K=K, random_init=random_init, drop_sigma=drop_sigma)

        xent = nn.CrossEntropyLoss()
        print('Loading {}th epoch'.format(best_t))
        print(model, model_name)
        if not random_init:
            model.load_state_dict(torch.load('./trained_models/'+model_name))
        model.eval()

        embeds, _ = model.embed(features, edge_index, None, standardise=False)
        if just_plot:
            plot_tsne(embeds, labels, model_name)
            exit(0)
        train_embs = embeds[mask_train, :]
        val_embs = embeds[mask_val, :]
        test_embs = embeds[mask_test, :]

        train_lbls = labels[mask_train]
        val_lbls = labels[mask_val]
        test_lbls = labels[mask_test]

        tot = torch.zeros(1)
        tot = tot.cuda()

        for _ in range(50):
            log = LogReg(hid_units, nb_classes)
            opt = torch.optim.Adam(log.parameters(), lr=0.01, weight_decay=0.0)
            log.cuda()

            pat_steps = 0
            best_acc = torch.zeros(1)
            best_acc = best_acc.cuda()
            for _ in range(150):
                log.train()
                opt.zero_grad()

                logits = log(train_embs)
                loss = xent(logits, train_lbls)
                
                loss.backward()
                opt.step()

            logits = log(test_embs)
            preds = torch.argmax(logits, dim=1)
            acc = torch.sum(preds == test_lbls).float() / test_lbls.shape[0]
            accs.append(acc * 100)
            print(acc)
            tot += acc

        print('Average accuracy:', tot / 50)
        
    all_accs = torch.stack(accs, dim=0)
    with open("./results/"+model_name[:-4]+"_results.txt", "a+") as f:
        f.writelines([str(all_accs.mean().item())+'\n', str(all_accs.std().item())+'\n'])

    print(all_accs.mean())
    print(all_accs.std())