예제 #1
0
def main():
    args = parse_args()
    dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE,
                                                       filename=args.log_path),
                            dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE)])

    dllogger.log(data=vars(args), step='PARAMETER')

    model = NeuMF(nb_users=args.n_users, nb_items=args.n_items, mf_dim=args.factors,
                  mlp_layer_sizes=args.layers, dropout=args.dropout)

    model = model.cuda()

    if args.load_checkpoint_path:
        state_dict = torch.load(args.load_checkpoint_path)
        model.load_state_dict(state_dict)

    if args.fp16:
        model.half()
    model.eval()
    
    batch_sizes = args.batch_sizes.split(',')
    batch_sizes = [int(s) for s in batch_sizes]

    result_data = {}
    for batch_size in batch_sizes:
        print('benchmarking batch size: ', batch_size)
        users = torch.cuda.LongTensor(batch_size).random_(0, args.n_users)
        items = torch.cuda.LongTensor(batch_size).random_(0, args.n_items)

        latencies = []
        for _ in range(args.num_batches):
            torch.cuda.synchronize()
            start = time.time()
            _ = model(users, items, sigmoid=True)
            torch.cuda.synchronize()
            latencies.append(time.time() - start)

        result_data[f'batch_{batch_size}_mean_throughput'] = batch_size / np.mean(latencies)
        result_data[f'batch_{batch_size}_mean_latency'] = np.mean(latencies)
        result_data[f'batch_{batch_size}_p90_latency'] = np.percentile(latencies, 0.90)
        result_data[f'batch_{batch_size}_p95_latency'] = np.percentile(latencies, 0.95)
        result_data[f'batch_{batch_size}_p99_latency'] = np.percentile(latencies, 0.99)

    dllogger.log(data=result_data, step=tuple())
    dllogger.flush()
    return
예제 #2
0
def main():

    args = parse_args()
    args.distributed, args.world_size = init_distributed(args.local_rank)
    if args.seed is not None:
        print("Using seed = {}".format(args.seed))
        torch.manual_seed(args.seed)

    # Save configuration to file
    config = {k: v for k, v in args.__dict__.items()}
    config['timestamp'] = "{:.0f}".format(datetime.utcnow().timestamp())
    config['local_timestamp'] = str(datetime.now())
    run_dir = "./run/neumf/{}.{}".format(config['timestamp'],args.local_rank)
    print("Saving config and results to {}".format(run_dir))
    if not os.path.exists(run_dir) and run_dir != '':
        os.makedirs(run_dir)
    utils.save_config(config, run_dir)

    # Check that GPUs are actually available
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    # more like load trigger timmer now
    mlperf_log.ncf_print(key=mlperf_log.PREPROC_HP_NUM_EVAL, value=args.valid_negative)
    # The default of np.random.choice is replace=True, so does pytorch random_()
    mlperf_log.ncf_print(key=mlperf_log.PREPROC_HP_SAMPLE_EVAL_REPLACEMENT, value=True)
    mlperf_log.ncf_print(key=mlperf_log.INPUT_HP_SAMPLE_TRAIN_REPLACEMENT)
    mlperf_log.ncf_print(key=mlperf_log.INPUT_STEP_EVAL_NEG_GEN)

    # sync worker before timing.
    if args.distributed:
        torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0)
    torch.cuda.synchronize()

    #===========================================================================
    #== The clock starts on loading the preprocessed data. =====================
    #===========================================================================
    mlperf_log.ncf_print(key=mlperf_log.RUN_START)
    run_start_time = time.time()

    # load not converted data, just seperate one for test
    train_ratings = torch.load(args.data+'/train_ratings.pt', map_location=torch.device('cuda:{}'.format(args.local_rank)))
    test_ratings = torch.load(args.data+'/test_ratings.pt', map_location=torch.device('cuda:{}'.format(args.local_rank)))

    # get input data
    # get dims
    nb_maxs = torch.max(train_ratings, 0)[0]
    nb_users = nb_maxs[0].item()+1
    nb_items = nb_maxs[1].item()+1
    train_users = train_ratings[:,0]
    train_items = train_ratings[:,1]
    del nb_maxs, train_ratings
    mlperf_log.ncf_print(key=mlperf_log.INPUT_SIZE, value=len(train_users))
    # produce things not change between epoch
    # mask for filtering duplicates with real sample
    # note: test data is removed before create mask, same as reference
    mat = torch.cuda.ByteTensor(nb_users, nb_items).fill_(1)
    mat[train_users, train_items] = 0
    # create label
    train_label = torch.ones_like(train_users, dtype=torch.float32)
    neg_label = torch.zeros_like(train_label, dtype=torch.float32)
    neg_label = neg_label.repeat(args.negative_samples)
    train_label = torch.cat((train_label,neg_label))
    del neg_label
    if args.fp16:
        train_label = train_label.half()

    # produce validation negative sample on GPU
    all_test_users = test_ratings.shape[0]

    test_users = test_ratings[:,0]
    test_pos = test_ratings[:,1].reshape(-1,1)
    test_negs = generate_neg(test_users, mat, nb_items, args.valid_negative, True)[1]

    # create items with real sample at last position
    test_users = test_users.reshape(-1,1).repeat(1,1+args.valid_negative)
    test_items = torch.cat((test_negs.reshape(-1,args.valid_negative), test_pos), dim=1)
    del test_ratings, test_negs

    # generate dup mask and real indice for exact same behavior on duplication compare to reference
    # here we need a sort that is stable(keep order of duplicates)
    # this is a version works on integer
    sorted_items, indices = torch.sort(test_items) # [1,1,1,2], [3,1,0,2]
    sum_item_indices = sorted_items.float()+indices.float()/len(indices[0]) #[1.75,1.25,1.0,2.5]
    indices_order = torch.sort(sum_item_indices)[1] #[2,1,0,3]
    stable_indices = torch.gather(indices, 1, indices_order) #[0,1,3,2]
    # produce -1 mask
    dup_mask = (sorted_items[:,0:-1] == sorted_items[:,1:])
    dup_mask = torch.cat((torch.zeros_like(test_pos, dtype=torch.uint8), dup_mask),dim=1)
    dup_mask = torch.gather(dup_mask,1,stable_indices.sort()[1])
    # produce real sample indices to later check in topk
    sorted_items, indices = (test_items != test_pos).sort()
    sum_item_indices = sorted_items.float()+indices.float()/len(indices[0])
    indices_order = torch.sort(sum_item_indices)[1]
    stable_indices = torch.gather(indices, 1, indices_order)
    real_indices = stable_indices[:,0]
    del sorted_items, indices, sum_item_indices, indices_order, stable_indices, test_pos

    if args.distributed:
        test_users = torch.chunk(test_users, args.world_size)[args.local_rank]
        test_items = torch.chunk(test_items, args.world_size)[args.local_rank]
        dup_mask = torch.chunk(dup_mask, args.world_size)[args.local_rank]
        real_indices = torch.chunk(real_indices, args.world_size)[args.local_rank]

    # make pytorch memory behavior more consistent later
    torch.cuda.empty_cache()

    mlperf_log.ncf_print(key=mlperf_log.INPUT_BATCH_SIZE, value=args.batch_size)
    mlperf_log.ncf_print(key=mlperf_log.INPUT_ORDER)  # we shuffled later with randperm

    print('Load data done [%.1f s]. #user=%d, #item=%d, #train=%d, #test=%d'
          % (time.time()-run_start_time, nb_users, nb_items, len(train_users),
             nb_users))

    # Create model
    model = NeuMF(nb_users, nb_items,
                  mf_dim=args.factors, mf_reg=0.,
                  mlp_layer_sizes=args.layers,
                  mlp_layer_regs=[0. for i in args.layers])

    if args.fp16:
        model = model.half()

    print(model)
    print("{} parameters".format(utils.count_parameters(model)))

    # Save model text description
    with open(os.path.join(run_dir, 'model.txt'), 'w') as file:
        file.write(str(model))

    # Add optimizer and loss to graph
    if args.fp16:
        fp_optimizer = Fp16Optimizer(model, args.loss_scale)
        params = fp_optimizer.fp32_params
    else:
        params = model.parameters()

    #optimizer = torch.optim.Adam(params, lr=args.learning_rate, betas=(args.beta1, args.beta2), eps=args.eps)
    # optimizer = AdamOpt(params, lr=args.learning_rate, betas=(args.beta1, args.beta2), eps=args.eps)
    optimizer = FusedAdam(params, lr=args.learning_rate, betas=(args.beta1, args.beta2), eps=args.eps, eps_inside_sqrt=False)
    criterion = nn.BCEWithLogitsLoss(reduction = 'none') # use torch.mean() with dim later to avoid copy to host
    mlperf_log.ncf_print(key=mlperf_log.OPT_LR, value=args.learning_rate)
    mlperf_log.ncf_print(key=mlperf_log.OPT_NAME, value="Adam")
    mlperf_log.ncf_print(key=mlperf_log.OPT_HP_ADAM_BETA1, value=args.beta1)
    mlperf_log.ncf_print(key=mlperf_log.OPT_HP_ADAM_BETA2, value=args.beta2)
    mlperf_log.ncf_print(key=mlperf_log.OPT_HP_ADAM_EPSILON, value=args.eps)
    mlperf_log.ncf_print(key=mlperf_log.MODEL_HP_LOSS_FN, value=mlperf_log.BCE)

    if use_cuda:
        # Move model and loss to GPU
        model = model.cuda()
        criterion = criterion.cuda()

    if args.distributed:
        model = DDP(model)
        local_batch = args.batch_size // int(os.environ['WORLD_SIZE'])
    else:
        local_batch = args.batch_size
    traced_criterion = torch.jit.trace(criterion.forward, (torch.rand(local_batch,1),torch.rand(local_batch,1)))

    # Create files for tracking training
    valid_results_file = os.path.join(run_dir, 'valid_results.csv')
    # Calculate initial Hit Ratio and NDCG
    test_x = test_users.view(-1).split(args.valid_batch_size)
    test_y = test_items.view(-1).split(args.valid_batch_size)

    hr, ndcg = val_epoch(model, test_x, test_y, dup_mask, real_indices, args.topk, samples_per_user=test_items.size(1),
                         num_user=all_test_users, distributed=args.distributed)
    print('Initial HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}'
          .format(K=args.topk, hit_rate=hr, ndcg=ndcg))
    success = False
    mlperf_log.ncf_print(key=mlperf_log.TRAIN_LOOP)
    for epoch in range(args.epochs):

        mlperf_log.ncf_print(key=mlperf_log.TRAIN_EPOCH, value=epoch)
        mlperf_log.ncf_print(key=mlperf_log.INPUT_HP_NUM_NEG, value=args.negative_samples)
        mlperf_log.ncf_print(key=mlperf_log.INPUT_STEP_TRAIN_NEG_GEN)

        begin = time.time()

        # prepare data for epoch
        neg_users, neg_items = generate_neg(train_users, mat, nb_items, args.negative_samples)
        epoch_users = torch.cat((train_users,neg_users))
        epoch_items = torch.cat((train_items,neg_items))
        del neg_users, neg_items

        # shuffle prepared data and split into batches
        epoch_indices = torch.randperm(len(epoch_users), device='cuda:{}'.format(args.local_rank))
        epoch_users = epoch_users[epoch_indices]
        epoch_items = epoch_items[epoch_indices]
        epoch_label = train_label[epoch_indices]
        if args.distributed:
            epoch_users = torch.chunk(epoch_users, args.world_size)[args.local_rank]
            epoch_items = torch.chunk(epoch_items, args.world_size)[args.local_rank]
            epoch_label = torch.chunk(epoch_label, args.world_size)[args.local_rank]
        epoch_users_list = epoch_users.split(local_batch)
        epoch_items_list = epoch_items.split(local_batch)
        epoch_label_list = epoch_label.split(local_batch)

        # only print progress bar on rank 0
        num_batches = (len(epoch_indices) + args.batch_size - 1) // args.batch_size
        if args.local_rank == 0:
            qbar = tqdm.tqdm(range(num_batches))
        else:
            qbar = range(num_batches)
        # handle extremely rare case where last batch size < number of worker
        if len(epoch_users_list) < num_batches:
            print("epoch_size % batch_size < number of worker!")
            exit(1)

        for i in qbar:
            # selecting input from prepared data
            user = epoch_users_list[i]
            item = epoch_items_list[i]
            label = epoch_label_list[i].view(-1,1)

            for p in model.parameters():
                p.grad = None

            outputs = model(user, item)
            loss = traced_criterion(outputs, label).float()
            loss = torch.mean(loss.view(-1), 0)

            if args.fp16:
                fp_optimizer.step(loss, optimizer)
            else:
                loss.backward()
                optimizer.step()

        del epoch_users, epoch_items, epoch_label, epoch_users_list, epoch_items_list, epoch_label_list, user, item, label
        train_time = time.time() - begin
        begin = time.time()

        mlperf_log.ncf_print(key=mlperf_log.EVAL_START)

        hr, ndcg = val_epoch(model, test_x, test_y, dup_mask, real_indices, args.topk, samples_per_user=test_items.size(1),
                             num_user=all_test_users, output=valid_results_file, epoch=epoch, distributed=args.distributed)

        val_time = time.time() - begin
        print('Epoch {epoch}: HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f},'
              ' train_time = {train_time:.2f}, val_time = {val_time:.2f}'
              .format(epoch=epoch, K=args.topk, hit_rate=hr,
                      ndcg=ndcg, train_time=train_time,
                      val_time=val_time))

        mlperf_log.ncf_print(key=mlperf_log.EVAL_ACCURACY, value={"epoch": epoch, "value": hr})
        mlperf_log.ncf_print(key=mlperf_log.EVAL_TARGET, value=args.threshold)
        mlperf_log.ncf_print(key=mlperf_log.EVAL_STOP)

        if args.threshold is not None:
            if hr >= args.threshold:
                print("Hit threshold of {}".format(args.threshold))
                success = True
                break

    mlperf_log.ncf_print(key=mlperf_log.RUN_STOP, value={"success": success})
    run_stop_time = time.time()
    mlperf_log.ncf_print(key=mlperf_log.RUN_FINAL)

    # easy way of tracking mlperf score
    if success:
        print("mlperf_score", run_stop_time - run_start_time)
예제 #3
0
def main():
    global msglogger

    script_dir = os.path.dirname(__file__)

    args = parse_args()

    # Distiller loggers
    msglogger = apputils.config_pylogger('logging.conf',
                                         args.name,
                                         output_dir=args.output_dir)
    tflogger = TensorBoardLogger(msglogger.logdir)
    # tflogger.log_gradients = True
    # pylogger = PythonLogger(msglogger)

    if args.seed is not None:
        msglogger.info("Using seed = {}".format(args.seed))
        torch.manual_seed(args.seed)
        np.random.seed(seed=args.seed)

    args.qe_mode = str(args.qe_mode).split('.')[1]
    args.qe_clip_acts = str(args.qe_clip_acts).split('.')[1]

    apputils.log_execution_env_state(sys.argv)

    if args.gpus is not None:
        try:
            args.gpus = [int(s) for s in args.gpus.split(',')]
        except ValueError:
            msglogger.error(
                'ERROR: Argument --gpus must be a comma-separated list of integers only'
            )
            exit(1)
        if len(args.gpus) > 1:
            msglogger.error('ERROR: Only single GPU supported for NCF')
            exit(1)
        available_gpus = torch.cuda.device_count()
        for dev_id in args.gpus:
            if dev_id >= available_gpus:
                msglogger.error(
                    'ERROR: GPU device ID {0} requested, but only {1} devices available'
                    .format(dev_id, available_gpus))
                exit(1)
        # Set default device in case the first one on the list != 0
        torch.cuda.set_device(args.gpus[0])

    # Save configuration to file
    config = {k: v for k, v in args.__dict__.items()}
    config['timestamp'] = "{:.0f}".format(datetime.utcnow().timestamp())
    config['local_timestamp'] = str(datetime.now())
    run_dir = msglogger.logdir
    msglogger.info("Saving config and results to {}".format(run_dir))
    if not os.path.exists(run_dir) and run_dir != '':
        os.makedirs(run_dir)
    utils.save_config(config, run_dir)

    # Check that GPUs are actually available
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    t1 = time.time()
    # Load Data
    training = not (args.eval or args.qe_calibration
                    or args.activation_histograms)
    msglogger.info('Loading data')
    if training:
        train_dataset = CFTrainDataset(
            os.path.join(args.data, TRAIN_RATINGS_FILENAME),
            args.negative_samples)
        train_dataloader = torch.utils.data.DataLoader(
            dataset=train_dataset,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.workers,
            pin_memory=True)
        nb_users, nb_items = train_dataset.nb_users, train_dataset.nb_items
    else:
        train_dataset = None
        train_dataloader = None
        nb_users, nb_items = (138493, 26744)

    test_ratings = load_test_ratings(
        os.path.join(args.data, TEST_RATINGS_FILENAME))  # noqa: E501
    test_negs = load_test_negs(os.path.join(args.data, TEST_NEG_FILENAME))

    msglogger.info(
        'Load data done [%.1f s]. #user=%d, #item=%d, #train=%s, #test=%d' %
        (time.time() - t1, nb_users, nb_items,
         str(train_dataset.mat.nnz) if training else 'N/A', len(test_ratings)))

    # Create model
    model = NeuMF(nb_users,
                  nb_items,
                  mf_dim=args.factors,
                  mf_reg=0.,
                  mlp_layer_sizes=args.layers,
                  mlp_layer_regs=[0. for i in args.layers],
                  split_final=args.split_final)
    if use_cuda:
        model = model.cuda()
    msglogger.info(model)
    msglogger.info("{} parameters".format(utils.count_parameters(model)))

    # Save model text description
    with open(os.path.join(run_dir, 'model.txt'), 'w') as file:
        file.write(str(model))

    compression_scheduler = None
    start_epoch = 0
    optimizer = None
    if args.load:
        if training:
            model, compression_scheduler, optimizer, start_epoch = apputils.load_checkpoint(
                model, args.load)
            if args.reset_optimizer:
                start_epoch = 0
                optimizer = None
        else:
            model = apputils.load_lean_checkpoint(model, args.load)

    # Add loss to graph
    criterion = nn.BCEWithLogitsLoss()

    if use_cuda:
        criterion = criterion.cuda()

    if training and optimizer is None:
        optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
        msglogger.info('Optimizer Type: %s', type(optimizer))
        msglogger.info('Optimizer Args: %s', optimizer.defaults)

    if args.compress:
        compression_scheduler = distiller.file_config(model, optimizer,
                                                      args.compress)
        model.cuda()

    # Create files for tracking training
    valid_results_file = os.path.join(run_dir, 'valid_results.csv')

    if args.qe_calibration or args.activation_histograms:
        calib = {
            'portion':
            args.qe_calibration,
            'desc_str':
            'quantization calibration stats',
            'collect_func':
            partial(distiller.data_loggers.collect_quant_stats,
                    inplace_runtime_check=True,
                    disable_inplace_attrs=True)
        }
        hists = {
            'portion':
            args.activation_histograms,
            'desc_str':
            'activation histograms',
            'collect_func':
            partial(distiller.data_loggers.collect_histograms,
                    activation_stats=None,
                    nbins=2048,
                    save_hist_imgs=True)
        }
        d = calib if args.qe_calibration else hists

        distiller.utils.assign_layer_fq_names(model)
        num_users = int(np.floor(len(test_ratings) * d['portion']))
        msglogger.info(
            "Generating {} based on {:.1%} of the test-set ({} users)".format(
                d['desc_str'], d['portion'], num_users))

        test_fn = partial(val_epoch,
                          ratings=test_ratings,
                          negs=test_negs,
                          K=args.topk,
                          use_cuda=use_cuda,
                          processes=args.processes,
                          num_users=num_users)
        d['collect_func'](model=model,
                          test_fn=test_fn,
                          save_dir=run_dir,
                          classes=None)

        return 0

    if args.eval:
        if args.quantize_eval and args.qe_calibration is None:
            model.cpu()
            quantizer = quantization.PostTrainLinearQuantizer.from_args(
                model, args)
            dummy_input = (torch.tensor([1]), torch.tensor([1]),
                           torch.tensor([True], dtype=torch.bool))
            quantizer.prepare_model(dummy_input)
            model.cuda()

        distiller.utils.assign_layer_fq_names(model)

        if args.eval_fp16:
            model = model.half()

        # Calculate initial Hit Ratio and NDCG
        begin = time.time()
        hits, ndcgs = val_epoch(model,
                                test_ratings,
                                test_negs,
                                args.topk,
                                use_cuda=use_cuda,
                                processes=args.processes)
        val_time = time.time() - begin
        hit_rate = np.mean(hits)
        msglogger.info(
            'Initial HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}, val_time = {val_time:.2f}'
            .format(K=args.topk,
                    hit_rate=hit_rate,
                    ndcg=np.mean(ndcgs),
                    val_time=val_time))
        hit_rate = 0

        if args.quantize_eval:
            checkpoint_name = 'quantized'
            apputils.save_checkpoint(0,
                                     'NCF',
                                     model,
                                     optimizer=None,
                                     extras={'quantized_hr@10': hit_rate},
                                     name='_'.join([args.name, 'quantized'])
                                     if args.name else checkpoint_name,
                                     dir=msglogger.logdir)
        return 0

    total_samples = len(train_dataloader.sampler)
    steps_per_epoch = math.ceil(total_samples / args.batch_size)
    best_hit_rate = 0
    best_epoch = 0
    for epoch in range(start_epoch, args.epochs):
        msglogger.info('')
        model.train()
        losses = utils.AverageMeter()

        begin = time.time()

        if compression_scheduler:
            compression_scheduler.on_epoch_begin(epoch, optimizer)

        loader = tqdm.tqdm(train_dataloader)
        for batch_index, (user, item, label) in enumerate(loader):
            user = torch.autograd.Variable(user, requires_grad=False)
            item = torch.autograd.Variable(item, requires_grad=False)
            label = torch.autograd.Variable(label, requires_grad=False)
            if use_cuda:
                user = user.cuda(async=True)
                item = item.cuda(async=True)
                label = label.cuda(async=True)

            if compression_scheduler:
                compression_scheduler.on_minibatch_begin(
                    epoch, batch_index, steps_per_epoch, optimizer)

            outputs = model(user, item, torch.tensor([False],
                                                     dtype=torch.bool))
            loss = criterion(outputs, label)

            if compression_scheduler:
                compression_scheduler.before_backward_pass(
                    epoch,
                    batch_index,
                    steps_per_epoch,
                    loss,
                    optimizer,
                    return_loss_components=False)

            losses.update(loss.data.item(), user.size(0))

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if compression_scheduler:
                compression_scheduler.on_minibatch_end(epoch, batch_index,
                                                       steps_per_epoch,
                                                       optimizer)

            # Save stats to file
            description = (
                'Epoch {} Loss {loss.val:.4f} ({loss.avg:.4f})'.format(
                    epoch, loss=losses))
            loader.set_description(description)

            steps_completed = batch_index + 1
            if steps_completed % args.log_freq == 0:
                stats_dict = OrderedDict()
                stats_dict['Loss'] = losses.avg
                stats = ('Performance/Training/', stats_dict)
                params = model.named_parameters(
                ) if args.log_params_histograms else None
                distiller.log_training_progress(stats, params, epoch,
                                                steps_completed,
                                                steps_per_epoch, args.log_freq,
                                                [tflogger])

                tflogger.log_model_buffers(model,
                                           ['tracked_min', 'tracked_max'],
                                           'Quant/Train/Acts/TrackedMinMax',
                                           epoch, steps_completed,
                                           steps_per_epoch, args.log_freq)

        train_time = time.time() - begin
        begin = time.time()
        hits, ndcgs = val_epoch(model,
                                test_ratings,
                                test_negs,
                                args.topk,
                                use_cuda=use_cuda,
                                output=valid_results_file,
                                epoch=epoch,
                                processes=args.processes)
        val_time = time.time() - begin

        if compression_scheduler:
            compression_scheduler.on_epoch_end(epoch, optimizer)

        hit_rate = np.mean(hits)
        mean_ndcgs = np.mean(ndcgs)

        stats_dict = OrderedDict()
        stats_dict['HR@{0}'.format(args.topk)] = hit_rate
        stats_dict['NDCG@{0}'.format(args.topk)] = mean_ndcgs
        stats = ('Performance/Validation/', stats_dict)
        distiller.log_training_progress(stats,
                                        None,
                                        epoch,
                                        steps_completed=0,
                                        total_steps=1,
                                        log_freq=1,
                                        loggers=[tflogger])

        msglogger.info(
            'Epoch {epoch}: HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}, AvgTrainLoss = {loss.avg:.4f}, '
            'train_time = {train_time:.2f}, val_time = {val_time:.2f}'.format(
                epoch=epoch,
                K=args.topk,
                hit_rate=hit_rate,
                ndcg=mean_ndcgs,
                loss=losses,
                train_time=train_time,
                val_time=val_time))

        is_best = False
        if hit_rate > best_hit_rate:
            best_hit_rate = hit_rate
            is_best = True
            best_epoch = epoch
        extras = {
            'current_hr@10': hit_rate,
            'best_hr@10': best_hit_rate,
            'best_epoch': best_epoch
        }
        apputils.save_checkpoint(epoch,
                                 'NCF',
                                 model,
                                 optimizer,
                                 compression_scheduler,
                                 extras,
                                 is_best,
                                 dir=run_dir)

        if args.threshold is not None:
            if np.mean(hits) >= args.threshold:
                msglogger.info("Hit threshold of {}".format(args.threshold))
                break
예제 #4
0
def main():
    log_hardware()

    args = parse_args()
    args.distributed, args.world_size = init_distributed(args.local_rank)
    log_args(args)

    main_start_time = time.time()

    if args.seed is not None:
        torch.manual_seed(args.seed)

    # Save configuration to file
    timestamp = "{:.0f}".format(datetime.utcnow().timestamp())
    run_dir = "./run/neumf/{}.{}".format(timestamp, args.local_rank)
    print("Saving results to {}".format(run_dir))
    if not os.path.exists(run_dir) and run_dir != '':
        os.makedirs(run_dir)

    # more like load trigger timer now
    LOGGER.log(key=tags.PREPROC_HP_NUM_EVAL, value=args.valid_negative)
    # The default of np.random.choice is replace=True, so does pytorch random_()
    LOGGER.log(key=tags.PREPROC_HP_SAMPLE_EVAL_REPLACEMENT, value=True)
    LOGGER.log(key=tags.INPUT_HP_SAMPLE_TRAIN_REPLACEMENT, value=True)
    LOGGER.log(key=tags.INPUT_STEP_EVAL_NEG_GEN)

    # sync worker before timing.
    if args.distributed:
        torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0)
    torch.cuda.synchronize()

    LOGGER.log(key=tags.RUN_START)
    run_start_time = time.time()

    # load not converted data, just seperate one for test
    train_ratings = torch.load(args.data + '/train_ratings.pt',
                               map_location=torch.device('cuda:{}'.format(
                                   args.local_rank)))
    test_ratings = torch.load(args.data + '/test_ratings.pt',
                              map_location=torch.device('cuda:{}'.format(
                                  args.local_rank)))

    # get input data
    # get dims
    nb_maxs = torch.max(train_ratings, 0)[0]
    nb_users = nb_maxs[0].item() + 1
    nb_items = nb_maxs[1].item() + 1
    train_users = train_ratings[:, 0]
    train_items = train_ratings[:, 1]
    del nb_maxs, train_ratings
    LOGGER.log(key=tags.INPUT_SIZE, value=len(train_users))
    # produce things not change between epoch
    # mask for filtering duplicates with real sample
    # note: test data is removed before create mask, same as reference
    mat = torch.cuda.ByteTensor(nb_users, nb_items).fill_(1)
    mat[train_users, train_items] = 0
    # create label
    train_label = torch.ones_like(train_users, dtype=torch.float32)
    neg_label = torch.zeros_like(train_label, dtype=torch.float32)
    neg_label = neg_label.repeat(args.negative_samples)
    train_label = torch.cat((train_label, neg_label))
    del neg_label
    if args.fp16:
        train_label = train_label.half()

    # produce validation negative sample on GPU
    all_test_users = test_ratings.shape[0]

    test_users = test_ratings[:, 0]
    test_pos = test_ratings[:, 1].reshape(-1, 1)
    test_negs = generate_neg(test_users, mat, nb_items, args.valid_negative,
                             True)[1]

    # create items with real sample at last position
    test_users = test_users.reshape(-1, 1).repeat(1, 1 + args.valid_negative)
    test_items = torch.cat(
        (test_negs.reshape(-1, args.valid_negative), test_pos), dim=1)
    del test_ratings, test_negs

    # generate dup mask and real indice for exact same behavior on duplication compare to reference
    # here we need a sort that is stable(keep order of duplicates)
    # this is a version works on integer
    sorted_items, indices = torch.sort(test_items)  # [1,1,1,2], [3,1,0,2]
    sum_item_indices = sorted_items.float() + indices.float() / len(
        indices[0])  #[1.75,1.25,1.0,2.5]
    indices_order = torch.sort(sum_item_indices)[1]  #[2,1,0,3]
    stable_indices = torch.gather(indices, 1, indices_order)  #[0,1,3,2]
    # produce -1 mask
    dup_mask = (sorted_items[:, 0:-1] == sorted_items[:, 1:])
    dup_mask = torch.cat(
        (torch.zeros_like(test_pos, dtype=torch.uint8), dup_mask), dim=1)
    dup_mask = torch.gather(dup_mask, 1, stable_indices.sort()[1])
    # produce real sample indices to later check in topk
    sorted_items, indices = (test_items != test_pos).sort()
    sum_item_indices = sorted_items.float() + indices.float() / len(indices[0])
    indices_order = torch.sort(sum_item_indices)[1]
    stable_indices = torch.gather(indices, 1, indices_order)
    real_indices = stable_indices[:, 0]
    del sorted_items, indices, sum_item_indices, indices_order, stable_indices, test_pos

    if args.distributed:
        test_users = torch.chunk(test_users, args.world_size)[args.local_rank]
        test_items = torch.chunk(test_items, args.world_size)[args.local_rank]
        dup_mask = torch.chunk(dup_mask, args.world_size)[args.local_rank]
        real_indices = torch.chunk(real_indices,
                                   args.world_size)[args.local_rank]

    # make pytorch memory behavior more consistent later
    torch.cuda.empty_cache()

    LOGGER.log(key=tags.INPUT_BATCH_SIZE, value=args.batch_size)
    LOGGER.log(key=tags.INPUT_ORDER)  # we shuffled later with randperm

    print('Load data done [%.1f s]. #user=%d, #item=%d, #train=%d, #test=%d' %
          (time.time() - run_start_time, nb_users, nb_items, len(train_users),
           nb_users))

    # Create model
    model = NeuMF(nb_users,
                  nb_items,
                  mf_dim=args.factors,
                  mf_reg=0.,
                  mlp_layer_sizes=args.layers,
                  mlp_layer_regs=[0. for i in args.layers],
                  dropout=args.dropout)

    if args.fp16:
        model = model.half()

    print(model)
    print("{} parameters".format(utils.count_parameters(model)))

    # Save model text description
    with open(os.path.join(run_dir, 'model.txt'), 'w') as file:
        file.write(str(model))

    # Add optimizer and loss to graph
    if args.fp16:
        fp_optimizer = Fp16Optimizer(model, args.loss_scale)
        params = fp_optimizer.fp32_params
    else:
        params = model.parameters()

    optimizer = FusedAdam(params,
                          lr=args.learning_rate,
                          betas=(args.beta1, args.beta2),
                          eps=args.eps,
                          eps_inside_sqrt=False)
    criterion = nn.BCEWithLogitsLoss(
        reduction='none'
    )  # use torch.mean() with dim later to avoid copy to host
    LOGGER.log(key=tags.OPT_LR, value=args.learning_rate)
    LOGGER.log(key=tags.OPT_NAME, value="Adam")
    LOGGER.log(key=tags.OPT_HP_ADAM_BETA1, value=args.beta1)
    LOGGER.log(key=tags.OPT_HP_ADAM_BETA2, value=args.beta2)
    LOGGER.log(key=tags.OPT_HP_ADAM_EPSILON, value=args.eps)
    LOGGER.log(key=tags.MODEL_HP_LOSS_FN, value=tags.VALUE_BCE)

    # Move model and loss to GPU
    model = model.cuda()
    criterion = criterion.cuda()

    if args.distributed:
        model = DDP(model)
        local_batch = args.batch_size // int(os.environ['WORLD_SIZE'])
    else:
        local_batch = args.batch_size
    traced_criterion = torch.jit.trace(
        criterion.forward,
        (torch.rand(local_batch, 1), torch.rand(local_batch, 1)))

    train_users_per_worker = len(train_label) / int(os.environ['WORLD_SIZE'])
    train_users_begin = int(train_users_per_worker * args.local_rank)
    train_users_end = int(train_users_per_worker * (args.local_rank + 1))

    # Create files for tracking training
    valid_results_file = os.path.join(run_dir, 'valid_results.csv')
    # Calculate initial Hit Ratio and NDCG
    test_x = test_users.view(-1).split(args.valid_batch_size)
    test_y = test_items.view(-1).split(args.valid_batch_size)

    if args.mode == 'test':
        state_dict = torch.load(args.checkpoint_path)
        model.load_state_dict(state_dict)

    begin = time.time()
    LOGGER.log(key=tags.EVAL_START, value=-1)

    hr, ndcg = val_epoch(model,
                         test_x,
                         test_y,
                         dup_mask,
                         real_indices,
                         args.topk,
                         samples_per_user=test_items.size(1),
                         num_user=all_test_users,
                         distributed=args.distributed)
    val_time = time.time() - begin
    print(
        'Initial HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}, valid_time: {val_time:.4f}'
        .format(K=args.topk, hit_rate=hr, ndcg=ndcg, val_time=val_time))

    LOGGER.log(key=tags.EVAL_ACCURACY, value={"epoch": -1, "value": hr})
    LOGGER.log(key=tags.EVAL_TARGET, value=args.threshold)
    LOGGER.log(key=tags.EVAL_STOP, value=-1)

    if args.mode == 'test':
        return

    success = False
    max_hr = 0
    LOGGER.log(key=tags.TRAIN_LOOP)
    train_throughputs = []
    eval_throughputs = []

    for epoch in range(args.epochs):

        LOGGER.log(key=tags.TRAIN_EPOCH_START, value=epoch)
        LOGGER.log(key=tags.INPUT_HP_NUM_NEG, value=args.negative_samples)
        LOGGER.log(key=tags.INPUT_STEP_TRAIN_NEG_GEN)

        begin = time.time()

        # prepare data for epoch
        neg_users, neg_items = generate_neg(train_users, mat, nb_items,
                                            args.negative_samples)
        epoch_users = torch.cat((train_users, neg_users))
        epoch_items = torch.cat((train_items, neg_items))

        del neg_users, neg_items

        # shuffle prepared data and split into batches
        epoch_indices = torch.randperm(train_users_end - train_users_begin,
                                       device='cuda:{}'.format(
                                           args.local_rank))
        epoch_indices += train_users_begin

        epoch_users = epoch_users[epoch_indices]
        epoch_items = epoch_items[epoch_indices]
        epoch_label = train_label[epoch_indices]

        epoch_users_list = epoch_users.split(local_batch)
        epoch_items_list = epoch_items.split(local_batch)
        epoch_label_list = epoch_label.split(local_batch)

        # only print progress bar on rank 0
        num_batches = len(epoch_users_list)
        # handle extremely rare case where last batch size < number of worker
        if len(epoch_users) % args.batch_size < args.world_size:
            print("epoch_size % batch_size < number of worker!")
            exit(1)

        for i in range(num_batches // args.grads_accumulated):
            for j in range(args.grads_accumulated):
                batch_idx = (args.grads_accumulated * i) + j
                user = epoch_users_list[batch_idx]
                item = epoch_items_list[batch_idx]
                label = epoch_label_list[batch_idx].view(-1, 1)

                outputs = model(user, item)
                loss = traced_criterion(outputs, label).float()
                loss = torch.mean(loss.view(-1), 0)
                if args.fp16:
                    fp_optimizer.backward(loss)
                else:
                    loss.backward()

            if args.fp16:
                fp_optimizer.step(optimizer)
            else:
                optimizer.step()

            for p in model.parameters():
                p.grad = None

        del epoch_users, epoch_items, epoch_label, epoch_users_list, epoch_items_list, epoch_label_list, user, item, label
        train_time = time.time() - begin
        begin = time.time()

        epoch_samples = len(train_users) * (args.negative_samples + 1)
        train_throughput = epoch_samples / train_time
        train_throughputs.append(train_throughput)
        LOGGER.log(key='train_throughput', value=train_throughput)
        LOGGER.log(key=tags.TRAIN_EPOCH_STOP, value=epoch)
        LOGGER.log(key=tags.EVAL_START, value=epoch)

        hr, ndcg = val_epoch(model,
                             test_x,
                             test_y,
                             dup_mask,
                             real_indices,
                             args.topk,
                             samples_per_user=test_items.size(1),
                             num_user=all_test_users,
                             output=valid_results_file,
                             epoch=epoch,
                             distributed=args.distributed)

        val_time = time.time() - begin
        print(
            'Epoch {epoch}: HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f},'
            ' train_time = {train_time:.2f}, val_time = {val_time:.2f}'.format(
                epoch=epoch,
                K=args.topk,
                hit_rate=hr,
                ndcg=ndcg,
                train_time=train_time,
                val_time=val_time))

        LOGGER.log(key=tags.EVAL_ACCURACY, value={"epoch": epoch, "value": hr})
        LOGGER.log(key=tags.EVAL_TARGET, value=args.threshold)
        LOGGER.log(key=tags.EVAL_STOP, value=epoch)

        eval_size = all_test_users * test_items.size(1)
        eval_throughput = eval_size / val_time
        eval_throughputs.append(eval_throughput)
        LOGGER.log(key='eval_throughput', value=eval_throughput)

        if hr > max_hr and args.local_rank == 0:
            max_hr = hr
            print("New best hr! Saving the model to: ", args.checkpoint_path)
            torch.save(model.state_dict(), args.checkpoint_path)

        if args.threshold is not None:
            if hr >= args.threshold:
                print("Hit threshold of {}".format(args.threshold))
                success = True
                break

    LOGGER.log(key='best_train_throughput', value=max(train_throughputs))
    LOGGER.log(key='best_eval_throughput', value=max(eval_throughputs))
    LOGGER.log(key='best_accuracy', value=max_hr)
    LOGGER.log(key='time_to_target', value=time.time() - main_start_time)

    LOGGER.log(key=tags.RUN_STOP, value={"success": success})
    LOGGER.log(key=tags.RUN_FINAL)