예제 #1
0
def main():
    global msglogger

    script_dir = os.path.dirname(__file__)

    args = parse_args()

    # Distiller loggers
    msglogger = apputils.config_pylogger('logging.conf',
                                         args.name,
                                         output_dir=args.output_dir)
    tflogger = TensorBoardLogger(msglogger.logdir)
    # tflogger.log_gradients = True
    # pylogger = PythonLogger(msglogger)

    if args.seed is not None:
        msglogger.info("Using seed = {}".format(args.seed))
        torch.manual_seed(args.seed)
        np.random.seed(seed=args.seed)

    args.qe_mode = str(args.qe_mode).split('.')[1]
    args.qe_clip_acts = str(args.qe_clip_acts).split('.')[1]

    apputils.log_execution_env_state(sys.argv)

    if args.gpus is not None:
        try:
            args.gpus = [int(s) for s in args.gpus.split(',')]
        except ValueError:
            msglogger.error(
                'ERROR: Argument --gpus must be a comma-separated list of integers only'
            )
            exit(1)
        if len(args.gpus) > 1:
            msglogger.error('ERROR: Only single GPU supported for NCF')
            exit(1)
        available_gpus = torch.cuda.device_count()
        for dev_id in args.gpus:
            if dev_id >= available_gpus:
                msglogger.error(
                    'ERROR: GPU device ID {0} requested, but only {1} devices available'
                    .format(dev_id, available_gpus))
                exit(1)
        # Set default device in case the first one on the list != 0
        torch.cuda.set_device(args.gpus[0])

    # Save configuration to file
    config = {k: v for k, v in args.__dict__.items()}
    config['timestamp'] = "{:.0f}".format(datetime.utcnow().timestamp())
    config['local_timestamp'] = str(datetime.now())
    run_dir = msglogger.logdir
    msglogger.info("Saving config and results to {}".format(run_dir))
    if not os.path.exists(run_dir) and run_dir != '':
        os.makedirs(run_dir)
    utils.save_config(config, run_dir)

    # Check that GPUs are actually available
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    t1 = time.time()
    # Load Data
    training = not (args.eval or args.qe_calibration
                    or args.activation_histograms)
    msglogger.info('Loading data')
    if training:
        train_dataset = CFTrainDataset(
            os.path.join(args.data, TRAIN_RATINGS_FILENAME),
            args.negative_samples)
        train_dataloader = torch.utils.data.DataLoader(
            dataset=train_dataset,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.workers,
            pin_memory=True)
        nb_users, nb_items = train_dataset.nb_users, train_dataset.nb_items
    else:
        train_dataset = None
        train_dataloader = None
        nb_users, nb_items = (138493, 26744)

    test_ratings = load_test_ratings(
        os.path.join(args.data, TEST_RATINGS_FILENAME))  # noqa: E501
    test_negs = load_test_negs(os.path.join(args.data, TEST_NEG_FILENAME))

    msglogger.info(
        'Load data done [%.1f s]. #user=%d, #item=%d, #train=%s, #test=%d' %
        (time.time() - t1, nb_users, nb_items,
         str(train_dataset.mat.nnz) if training else 'N/A', len(test_ratings)))

    # Create model
    model = NeuMF(nb_users,
                  nb_items,
                  mf_dim=args.factors,
                  mf_reg=0.,
                  mlp_layer_sizes=args.layers,
                  mlp_layer_regs=[0. for i in args.layers],
                  split_final=args.split_final)
    if use_cuda:
        model = model.cuda()
    msglogger.info(model)
    msglogger.info("{} parameters".format(utils.count_parameters(model)))

    # Save model text description
    with open(os.path.join(run_dir, 'model.txt'), 'w') as file:
        file.write(str(model))

    compression_scheduler = None
    start_epoch = 0
    optimizer = None
    if args.load:
        if training:
            model, compression_scheduler, optimizer, start_epoch = apputils.load_checkpoint(
                model, args.load)
            if args.reset_optimizer:
                start_epoch = 0
                optimizer = None
        else:
            model = apputils.load_lean_checkpoint(model, args.load)

    # Add loss to graph
    criterion = nn.BCEWithLogitsLoss()

    if use_cuda:
        criterion = criterion.cuda()

    if training and optimizer is None:
        optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
        msglogger.info('Optimizer Type: %s', type(optimizer))
        msglogger.info('Optimizer Args: %s', optimizer.defaults)

    if args.compress:
        compression_scheduler = distiller.file_config(model, optimizer,
                                                      args.compress)
        model.cuda()

    # Create files for tracking training
    valid_results_file = os.path.join(run_dir, 'valid_results.csv')

    if args.qe_calibration or args.activation_histograms:
        calib = {
            'portion':
            args.qe_calibration,
            'desc_str':
            'quantization calibration stats',
            'collect_func':
            partial(distiller.data_loggers.collect_quant_stats,
                    inplace_runtime_check=True,
                    disable_inplace_attrs=True)
        }
        hists = {
            'portion':
            args.activation_histograms,
            'desc_str':
            'activation histograms',
            'collect_func':
            partial(distiller.data_loggers.collect_histograms,
                    activation_stats=None,
                    nbins=2048,
                    save_hist_imgs=True)
        }
        d = calib if args.qe_calibration else hists

        distiller.utils.assign_layer_fq_names(model)
        num_users = int(np.floor(len(test_ratings) * d['portion']))
        msglogger.info(
            "Generating {} based on {:.1%} of the test-set ({} users)".format(
                d['desc_str'], d['portion'], num_users))

        test_fn = partial(val_epoch,
                          ratings=test_ratings,
                          negs=test_negs,
                          K=args.topk,
                          use_cuda=use_cuda,
                          processes=args.processes,
                          num_users=num_users)
        d['collect_func'](model=model,
                          test_fn=test_fn,
                          save_dir=run_dir,
                          classes=None)

        return 0

    if args.eval:
        if args.quantize_eval and args.qe_calibration is None:
            model.cpu()
            quantizer = quantization.PostTrainLinearQuantizer.from_args(
                model, args)
            dummy_input = (torch.tensor([1]), torch.tensor([1]),
                           torch.tensor([True], dtype=torch.bool))
            quantizer.prepare_model(dummy_input)
            model.cuda()

        distiller.utils.assign_layer_fq_names(model)

        if args.eval_fp16:
            model = model.half()

        # Calculate initial Hit Ratio and NDCG
        begin = time.time()
        hits, ndcgs = val_epoch(model,
                                test_ratings,
                                test_negs,
                                args.topk,
                                use_cuda=use_cuda,
                                processes=args.processes)
        val_time = time.time() - begin
        hit_rate = np.mean(hits)
        msglogger.info(
            'Initial HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}, val_time = {val_time:.2f}'
            .format(K=args.topk,
                    hit_rate=hit_rate,
                    ndcg=np.mean(ndcgs),
                    val_time=val_time))
        hit_rate = 0

        if args.quantize_eval:
            checkpoint_name = 'quantized'
            apputils.save_checkpoint(0,
                                     'NCF',
                                     model,
                                     optimizer=None,
                                     extras={'quantized_hr@10': hit_rate},
                                     name='_'.join([args.name, 'quantized'])
                                     if args.name else checkpoint_name,
                                     dir=msglogger.logdir)
        return 0

    total_samples = len(train_dataloader.sampler)
    steps_per_epoch = math.ceil(total_samples / args.batch_size)
    best_hit_rate = 0
    best_epoch = 0
    for epoch in range(start_epoch, args.epochs):
        msglogger.info('')
        model.train()
        losses = utils.AverageMeter()

        begin = time.time()

        if compression_scheduler:
            compression_scheduler.on_epoch_begin(epoch, optimizer)

        loader = tqdm.tqdm(train_dataloader)
        for batch_index, (user, item, label) in enumerate(loader):
            user = torch.autograd.Variable(user, requires_grad=False)
            item = torch.autograd.Variable(item, requires_grad=False)
            label = torch.autograd.Variable(label, requires_grad=False)
            if use_cuda:
                user = user.cuda(async=True)
                item = item.cuda(async=True)
                label = label.cuda(async=True)

            if compression_scheduler:
                compression_scheduler.on_minibatch_begin(
                    epoch, batch_index, steps_per_epoch, optimizer)

            outputs = model(user, item, torch.tensor([False],
                                                     dtype=torch.bool))
            loss = criterion(outputs, label)

            if compression_scheduler:
                compression_scheduler.before_backward_pass(
                    epoch,
                    batch_index,
                    steps_per_epoch,
                    loss,
                    optimizer,
                    return_loss_components=False)

            losses.update(loss.data.item(), user.size(0))

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if compression_scheduler:
                compression_scheduler.on_minibatch_end(epoch, batch_index,
                                                       steps_per_epoch,
                                                       optimizer)

            # Save stats to file
            description = (
                'Epoch {} Loss {loss.val:.4f} ({loss.avg:.4f})'.format(
                    epoch, loss=losses))
            loader.set_description(description)

            steps_completed = batch_index + 1
            if steps_completed % args.log_freq == 0:
                stats_dict = OrderedDict()
                stats_dict['Loss'] = losses.avg
                stats = ('Performance/Training/', stats_dict)
                params = model.named_parameters(
                ) if args.log_params_histograms else None
                distiller.log_training_progress(stats, params, epoch,
                                                steps_completed,
                                                steps_per_epoch, args.log_freq,
                                                [tflogger])

                tflogger.log_model_buffers(model,
                                           ['tracked_min', 'tracked_max'],
                                           'Quant/Train/Acts/TrackedMinMax',
                                           epoch, steps_completed,
                                           steps_per_epoch, args.log_freq)

        train_time = time.time() - begin
        begin = time.time()
        hits, ndcgs = val_epoch(model,
                                test_ratings,
                                test_negs,
                                args.topk,
                                use_cuda=use_cuda,
                                output=valid_results_file,
                                epoch=epoch,
                                processes=args.processes)
        val_time = time.time() - begin

        if compression_scheduler:
            compression_scheduler.on_epoch_end(epoch, optimizer)

        hit_rate = np.mean(hits)
        mean_ndcgs = np.mean(ndcgs)

        stats_dict = OrderedDict()
        stats_dict['HR@{0}'.format(args.topk)] = hit_rate
        stats_dict['NDCG@{0}'.format(args.topk)] = mean_ndcgs
        stats = ('Performance/Validation/', stats_dict)
        distiller.log_training_progress(stats,
                                        None,
                                        epoch,
                                        steps_completed=0,
                                        total_steps=1,
                                        log_freq=1,
                                        loggers=[tflogger])

        msglogger.info(
            'Epoch {epoch}: HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}, AvgTrainLoss = {loss.avg:.4f}, '
            'train_time = {train_time:.2f}, val_time = {val_time:.2f}'.format(
                epoch=epoch,
                K=args.topk,
                hit_rate=hit_rate,
                ndcg=mean_ndcgs,
                loss=losses,
                train_time=train_time,
                val_time=val_time))

        is_best = False
        if hit_rate > best_hit_rate:
            best_hit_rate = hit_rate
            is_best = True
            best_epoch = epoch
        extras = {
            'current_hr@10': hit_rate,
            'best_hr@10': best_hit_rate,
            'best_epoch': best_epoch
        }
        apputils.save_checkpoint(epoch,
                                 'NCF',
                                 model,
                                 optimizer,
                                 compression_scheduler,
                                 extras,
                                 is_best,
                                 dir=run_dir)

        if args.threshold is not None:
            if np.mean(hits) >= args.threshold:
                msglogger.info("Hit threshold of {}".format(args.threshold))
                break
예제 #2
0
def main():
    from grace_dl.dist.helper import timer, volume, tensor_bits

    args = parse_args()
    init_distributed(args)
    if args.weak_scaling:
        args.batch_size *= args.world_size
    init_wandb(args)
    init_grace(args)

    if args.local_rank == 0:
        dllogger.init(backends=[
            dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE,
                                       filename=args.log_path),
            dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE)
        ])
    else:
        dllogger.init(backends=[])

    dllogger.log(data=vars(args), step='PARAMETER')

    if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir:
        print("Saving results to {}".format(args.checkpoint_dir))
        os.makedirs(args.checkpoint_dir, exist_ok=True)

    # sync workers before timing
    if args.distributed:
        torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0)
    torch.cuda.synchronize()

    main_start_time = time.time()

    if args.seed is not None:
        torch.manual_seed(args.seed)

    train_ratings = torch.load(args.data + '/train_ratings.pt',
                               map_location=torch.device('cuda:0'))
    test_ratings = torch.load(args.data + '/test_ratings.pt',
                              map_location=torch.device('cuda:0'))
    test_negs = torch.load(args.data + '/test_negatives.pt',
                           map_location=torch.device('cuda:0'))

    valid_negative = test_negs.shape[1]

    nb_maxs = torch.max(train_ratings, 0)[0]
    nb_users = nb_maxs[0].item() + 1
    nb_items = nb_maxs[1].item() + 1

    all_test_users = test_ratings.shape[0]

    test_users, test_items, dup_mask, real_indices = dataloading.create_test_data(
        test_ratings, test_negs, args)

    # make pytorch memory behavior more consistent later
    torch.cuda.empty_cache()

    # Create model
    model = NeuMF(nb_users,
                  nb_items,
                  mf_dim=args.factors,
                  mlp_layer_sizes=args.layers,
                  dropout=args.dropout)

    optimizer = FusedAdam(model.parameters(),
                          lr=args.learning_rate,
                          betas=(args.beta1, args.beta2),
                          eps=args.eps)

    criterion = nn.BCEWithLogitsLoss(
        reduction='none'
    )  # use torch.mean() with dim later to avoid copy to host
    # Move model and loss to GPU
    model = model.cuda()
    criterion = criterion.cuda()

    if args.amp:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level="O2",
                                          keep_batchnorm_fp32=False,
                                          loss_scale='dynamic')

    # if args.distributed:
    #     model = DDP(model)

    local_batch = args.batch_size // args.world_size
    traced_criterion = torch.jit.trace(
        criterion.forward,
        (torch.rand(local_batch, 1), torch.rand(local_batch, 1)))

    if args.local_rank == 0:
        print(model)
        print("{} parameters".format(utils.count_parameters(model)))
        # [print(parameter) for parameter in model.parameters()]

    if args.load_checkpoint_path:
        state_dict = torch.load(args.load_checkpoint_path)
        state_dict = {
            k.replace('module.', ''): v
            for k, v in state_dict.items()
        }
        model.load_state_dict(state_dict)

    if args.mode == 'test':
        start = time.time()
        hr, ndcg = val_epoch(model,
                             test_users,
                             test_items,
                             dup_mask,
                             real_indices,
                             args.topk,
                             samples_per_user=valid_negative + 1,
                             num_user=all_test_users,
                             distributed=args.distributed)
        val_time = time.time() - start
        eval_size = all_test_users * (valid_negative + 1)
        eval_throughput = eval_size / val_time

        dllogger.log(step=tuple(),
                     data={
                         'best_eval_throughput': eval_throughput,
                         'hr@10': hr
                     })
        return

    max_hr = 0
    best_epoch = 0
    train_throughputs, eval_throughputs = [], []

    # broadcast model states from rank0 to other nodes !!! This is important!
    [torch.distributed.broadcast(p.data, src=0) for p in model.parameters()]
    # if args.local_rank == 0:
    #     save_initial_state_path = os.path.join(args.checkpoint_dir, 'model_init.pth')
    #     print("Saving the model to: ", save_initial_state_path)
    #     torch.save(model.state_dict(), save_initial_state_path)

    for epoch in range(args.epochs):

        begin = time.time()
        train_time = 0

        epoch_users, epoch_items, epoch_label = dataloading.prepare_epoch_train_data(
            train_ratings, nb_items, args)
        num_batches = len(epoch_users)
        for i in range(num_batches // args.grads_accumulated):
            batch_start = time.time()
            for j in range(args.grads_accumulated):
                batch_idx = (args.grads_accumulated * i) + j
                user = epoch_users[batch_idx]
                item = epoch_items[batch_idx]
                label = epoch_label[batch_idx].view(-1, 1)

                outputs = model(user, item)
                loss = traced_criterion(outputs, label).float()
                loss = torch.mean(loss.view(-1), 0)

                if args.amp:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

            # check grad sparsity
            if args.sparsity_check:
                total_nonzero = 0
                total_numel = 0
                for index, (name, p) in enumerate(model.named_parameters()):
                    sparsity = 1.0 - torch.sum(
                        p.grad.data.abs() > 0).float() / p.grad.data.numel()
                    total_nonzero += torch.sum(p.grad.data.abs() > 0).float()
                    total_numel += p.grad.data.numel()
                    if args.local_rank == 0:
                        wandb.log(
                            {
                                f"{name}(sparsity)(numel={p.grad.data.numel()})":
                                sparsity,
                            },
                            commit=False)
                if args.local_rank == 0:
                    wandb.log(
                        {
                            f"total_sparsity(numel={total_numel})":
                            1 - total_nonzero / total_numel,
                        },
                        commit=True)

            # add grace just before optimizer.step()
            torch.cuda.synchronize()
            comm_start = time.time()
            for index, (name, p) in enumerate(model.named_parameters()):
                new_grad = args.grc.step(p.grad.data, name)
                p.grad.data = new_grad
            torch.cuda.synchronize()
            timer['comm'] = time.time() - comm_start

            # [torch.distributed.all_reduce(p.grad.data) for p in model.parameters()]
            # for param in model.parameters():
            #     dist.all_reduce(param.grad.data)
            #     param.grad.data /= float(args.world_size)

            optimizer.step()
            for p in model.parameters():
                p.grad = None
            if args.throughput:
                torch.cuda.synchronize()

            if args.log_time and args.local_rank == 0:
                timer['batch_time'] = time.time() - batch_start
                timer['computation'] = timer['batch_time'] - timer['comm']
                print("Timer:", timer, '\n')

                timer['en/decoding'] = 0
                timer['batch_time'] = 0
                timer['computation'] = 0
                timer['comm'] = 0

            if args.log_volume and args.local_rank == 0:
                ratio = volume['compress'] / volume['nocompress']
                volume['ratio_acc'].append(ratio)
                avg_ratio = sum(volume['ratio_acc']) / len(volume['ratio_acc'])
                print(
                    f"Data volume:: compress {volume['compress']} no_compress {volume['nocompress']} ratio {ratio:.4f} avg_ratio {avg_ratio:.4f}"
                )
                volume['compress'] = 0
                volume['nocompress'] = 0

            batch_throughput = args.batch_size / (time.time() - batch_start
                                                  )  # global throughput
            train_time += time.time() - batch_start
            if (args.throughput
                    or args.eval_at_every_batch) and args.local_rank == 0:
                print(
                    f"Train :: Epoch [{epoch}/{args.epochs}] \t Batch [{i}/{num_batches}] \t "
                    f"Time {time.time()-batch_start:.5f} \t Throughput {batch_throughput:.2f}"
                )

            if args.throughput and i == 3:
                break
            if args.local_rank == 0:
                print(
                    f"Train :: Epoch [{epoch}/{args.epochs}] \t Batch [{i}/{num_batches}] \t "
                    f"Time {time.time()-batch_start:.5f} \t Throughput {batch_throughput:.2f}"
                )
            if args.eval_at_every_batch:
                hr, ndcg = val_epoch(model,
                                     test_users,
                                     test_items,
                                     dup_mask,
                                     real_indices,
                                     args.topk,
                                     samples_per_user=valid_negative + 1,
                                     num_user=all_test_users,
                                     epoch=epoch,
                                     distributed=args.distributed)
                if args.local_rank == 0:
                    wandb.log({
                        "eval/hr@10": hr,
                    })

        del epoch_users, epoch_items, epoch_label
        # train_time = time.time() - begin
        begin = time.time()

        epoch_samples = len(train_ratings) * (args.negative_samples + 1)
        train_throughput = epoch_samples / train_time
        if args.throughput:
            train_throughput = batch_throughput
        train_throughputs.append(train_throughput)

        hr, ndcg = val_epoch(model,
                             test_users,
                             test_items,
                             dup_mask,
                             real_indices,
                             args.topk,
                             samples_per_user=valid_negative + 1,
                             num_user=all_test_users,
                             epoch=epoch,
                             distributed=args.distributed)

        val_time = time.time() - begin

        eval_size = all_test_users * (valid_negative + 1)
        eval_throughput = eval_size / val_time
        eval_throughputs.append(eval_throughput)

        dllogger.log(step=(epoch, ),
                     data={
                         'train_throughput': train_throughput,
                         'hr@10': hr,
                         'train_epoch_time': train_time,
                         'validation_epoch_time': val_time,
                         'eval_throughput': eval_throughput
                     })

        if args.local_rank == 0:
            wandb.log(
                {
                    "train_epoch_time": train_time,
                    'validation_epoch_time': val_time,
                    'eval_throughput': eval_throughput,
                    'train_throughput': train_throughput,
                },
                commit=False)
            if not args.eval_at_every_batch:
                wandb.log({
                    "eval/hr@10": hr,
                }, commit=False)
            wandb.log({"epoch": epoch})

        if hr > max_hr and args.local_rank == 0:
            max_hr = hr
            best_epoch = epoch
            print("New best hr!")
            if args.checkpoint_dir:
                save_checkpoint_path = os.path.join(args.checkpoint_dir,
                                                    'model.pth')
                print("Saving the model to: ", save_checkpoint_path)
                torch.save(model.state_dict(), save_checkpoint_path)
            best_model_timestamp = time.time()

        if args.threshold is not None:
            if hr >= args.threshold:
                print("Hit threshold of {}".format(args.threshold))
                break

        if args.throughput:
            break

    if args.local_rank == 0:
        dllogger.log(data={
            'best_train_throughput':
            max(train_throughputs),
            'best_eval_throughput':
            max(eval_throughputs),
            'mean_train_throughput':
            np.mean(train_throughputs),
            'mean_eval_throughput':
            np.mean(eval_throughputs),
            'best_accuracy':
            max_hr,
            'best_epoch':
            best_epoch,
            'time_to_target':
            time.time() - main_start_time,
            'time_to_best_model':
            best_model_timestamp - main_start_time
        },
                     step=tuple())

        wandb.log({
            'best_train_throughput': max(train_throughputs),
            'best_eval_throughput': max(eval_throughputs),
            'mean_train_throughput': np.mean(train_throughputs),
            'mean_eval_throughput': np.mean(eval_throughputs),
            'best_accuracy': max_hr,
            'best_epoch': best_epoch,
            'time_to_target': time.time() - main_start_time,
            'time_to_best_model': best_model_timestamp - main_start_time
        })