예제 #1
0
 def transform(ind):
     from neuronunit.optimization.data_transport_container import DataTC
     dtc = DataTC()
     print(dtc)
     param_dict = {}
     for i, j in enumerate(ind):
         param_dict[td[i]] = str(j)
     dtc.attrs = param_dict
     dtc.evaluated = False
     return dtc
    def transform(ind):
        import dask.bag as db
        from neuronunit.optimization.data_transport_container import DataTC
        dtc = DataTC()
        import neuronunit
        LEMS_MODEL_PATH = str(neuronunit.__path__[0])+str('/models/NeuroML2/LEMS_2007One.xml')
        if backend is not None:
            dtc.backend = backend
        else:
            dtc.backend = 'NEURON'

        dtc.attrs = {}
        for i,j in enumerate(ind):
            dtc.attrs[str(td[i])] = j
        dtc.evaluated = False
        return dtc
예제 #3
0
def transform(xargs):
    (ind, td, backend) = xargs

    # The merits of defining a function in a function
    # is that it yields a semi global scoped variables.
    # conisider refactoring outer function as a decorator.
    dtc = DataTC()

    LEMS_MODEL_PATH = str(
        neuronunit.__path__[0]) + str('/models/NeuroML2/LEMS_2007One.xml')
    dtc.backend = 'RAW'
    dtc.attrs = {}
    for i, j in enumerate(ind):
        dtc.attrs[str(td[i])] = j

    dtc.evaluated = False
    return dtc
예제 #4
0
    def transform(ind):
        # The merits of defining a function in a function
        # is that it yields a semi global scoped variables.
        #
        dtc = DataTC()
        LEMS_MODEL_PATH = str(neuronunit.__path__[0])+str('/models/NeuroML2/LEMS_2007One.xml')
        if backend is not None:
            dtc.backend = backend
        else:
            dtc.backend = 'NEURON'

        dtc.attrs = {}
        if isinstance(ind, Iterable):
            for i,j in enumerate(ind):
                dtc.attrs[str(td[i])] = j
        else:
            dtc.attrs[str(td[0])] = ind
        dtc.evaluated = False
        return dtc