def model_to_dtc(self): dtc = DataTC() dtc.attrs = self.attrs try: dtc.backend = self.get_backend() except: dtc.backend = self.backend if hasattr(self, 'rheobase'): dtc.rheobase = self.rheobase return dtc
def test_ap_threshold(self): from neuronunit.models.reduced import ReducedModel from neuronunit.optimization import get_neab from neuronunit.tests.waveform import InjectedCurrentAPThresholdTest as T from neuronunit.optimization.optimization_management import format_test from neuronunit.optimization.data_transport_container import DataTC dtc = DataTC() dtc.rheobase = self.rheobase dtc = format_test(dtc) self.model = ReducedModel(get_neab.LEMS_MODEL_PATH, backend=('NEURON', { 'DTC': dtc })) #score = self.run_test(T) score = self.run_test(T, pred=self.rheobase) assert score.norm_score is not None self.assertTrue(score.norm_score is not None)
def generate_prediction(self,model = None): if self.prediction is None: dtc = DataTC() dtc.backed = model.backend dtc.attrs = model.attrs dtc.rheobase = model.rheobase dtc.tests = [self] dtc = three_step_protocol(dtc) dtc,ephys0 = allen_wave_predictions(dtc,thirty=True) dtc,ephys1 = allen_wave_predictions(dtc,thirty=False) if self.name in ephys0.keys(): feature = ephys0[self.name] self.prediction = {} self.prediction['value'] = feature #self.prediction['std'] = feature if self.name in ephys1.keys(): feature = ephys1[self.name] self.prediction = {} self.prediction['value'] = feature #self.prediction['std'] = feature return self.prediction