def main():
    input_parser = InputArgparser(
        description="Create and write random rigid motion transformations. "
        "Simulated transformations are exported as (Simple)ITK transforms. ",
    )
    input_parser.add_dir_output(required=True)
    input_parser.add_option(
        option_string="--simulations",
        type=int,
        required=True,
        help="Number of simulated motion transformations."
    )
    input_parser.add_option(
        option_string="--angle-max",
        default=10,
        help="random angles (in degree) are drawn such "
        "that |angle| <= angle_max."
    )
    input_parser.add_option(
        option_string="--translation-max",
        default=10,
        help="random translations (in millimetre) are drawn such "
        "that |translation| <= translation_max."
    )
    input_parser.add_option(
        option_string="--seed",
        type=int,
        default=1,
        help="Seed for pseudo-random data generation"
    )
    input_parser.add_option(
        option_string="--dimension",
        type=int,
        default=3,
        help="Spatial dimension for transformations."
    )
    input_parser.add_prefix_output(default="EulerTransform_slice")
    input_parser.add_verbose(default=1)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    motion_simulator = ms.RandomRigidMotionSimulator(
        dimension=args.dimension,
        angle_max_deg=args.angle_max,
        translation_max=args.translation_max,
        verbose=args.verbose)
    motion_simulator.simulate_motion(
        seed=args.seed,
        simulations=args.simulations,
    )

    motion_simulator.write_transforms_sitk(
        directory=args.dir_output,
        prefix_filename=args.prefix_output,
    )

    return 0
예제 #2
0
def main():

    time_start = ph.start_timing()

    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Register an obtained reconstruction (moving) "
        "to a template image/space (fixed) using rigid registration. "
        "The resulting registration can optionally be applied to previously "
        "obtained motion correction slice transforms so that a volumetric "
        "reconstruction is possible in the (standard anatomical) space "
        "defined by the fixed.", )
    input_parser.add_fixed(required=True)
    input_parser.add_moving(required=True)
    input_parser.add_output(help="Path to registration transform (.txt)",
                            required=True)
    input_parser.add_fixed_mask(required=False)
    input_parser.add_moving_mask(required=False)
    input_parser.add_option(
        option_string="--initial-transform",
        type=str,
        help="Path to initial transform. "
        "If not provided, registration will be initialized based on "
        "rigid alignment of eigenbasis of the fixed/moving image masks "
        "using principal component analysis",
        default=None)
    input_parser.add_v2v_method(
        option_string="--method",
        help="Registration method used for the registration.",
        default="RegAladin",
    )
    input_parser.add_argument(
        "--refine-pca",
        "-refine-pca",
        action='store_true',
        help="If given, PCA-based initializations will be refined using "
        "RegAladin registrations.")
    input_parser.add_dir_input_mc()
    input_parser.add_verbose(default=0)
    input_parser.add_log_config(default=1)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    if not args.output.endswith(".txt"):
        raise IOError("output transformation path must end in '.txt'")

    dir_output = os.path.dirname(args.output)
    ph.create_directory(dir_output)

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")
    fixed = st.Stack.from_filename(file_path=args.fixed,
                                   file_path_mask=args.fixed_mask,
                                   extract_slices=False)
    moving = st.Stack.from_filename(file_path=args.moving,
                                    file_path_mask=args.moving_mask,
                                    extract_slices=False)

    path_to_tmp_output = os.path.join(
        DIR_TMP, ph.append_to_filename(os.path.basename(args.moving),
                                       "_warped"))

    # ---------------------------- Initialization ----------------------------
    if args.initial_transform is None:
        ph.print_title("Estimate initial transform using PCA")

        if args.moving_mask is None or args.fixed_mask is None:
            ph.print_warning("Fixed and moving masks are strongly recommended")
        transform_initializer = tinit.TransformInitializer(
            fixed=fixed,
            moving=moving,
            similarity_measure="NMI",
            refine_pca_initializations=args.refine_pca,
        )
        transform_initializer.run()
        transform_init_sitk = transform_initializer.get_transform_sitk()
    else:
        transform_init_sitk = sitkh.read_transform_sitk(args.initial_transform)
    sitk.WriteTransform(transform_init_sitk, args.output)

    # -------------------Register Reconstruction to Template-------------------
    ph.print_title("Registration")

    if args.method == "RegAladin":

        path_to_transform_regaladin = os.path.join(DIR_TMP,
                                                   "transform_regaladin.txt")

        # Convert SimpleITK to RegAladin transform
        cmd = "simplereg_transform -sitk2nreg %s %s" % (
            args.output, path_to_transform_regaladin)
        ph.execute_command(cmd, verbose=False)

        # Run NiftyReg
        cmd_args = ["reg_aladin"]
        cmd_args.append("-ref '%s'" % args.fixed)
        cmd_args.append("-flo '%s'" % args.moving)
        cmd_args.append("-res '%s'" % path_to_tmp_output)
        cmd_args.append("-inaff '%s'" % path_to_transform_regaladin)
        cmd_args.append("-aff '%s'" % path_to_transform_regaladin)
        cmd_args.append("-rigOnly")
        cmd_args.append("-ln 2")  # seems to perform better for spina bifida
        cmd_args.append("-voff")
        if args.fixed_mask is not None:
            cmd_args.append("-rmask '%s'" % args.fixed_mask)

        # To avoid error "0 correspondences between blocks were found" that can
        # occur for some cases. Also, disable moving mask, as this would be ignored
        # anyway
        cmd_args.append("-noSym")
        # if args.moving_mask is not None:
        #     cmd_args.append("-fmask '%s'" % args.moving_mask)

        ph.print_info("Run Registration (RegAladin) ... ", newline=False)
        ph.execute_command(" ".join(cmd_args), verbose=False)
        print("done")

        # Convert RegAladin to SimpleITK transform
        cmd = "simplereg_transform -nreg2sitk '%s' '%s'" % (
            path_to_transform_regaladin, args.output)
        ph.execute_command(cmd, verbose=False)

    else:
        path_to_transform_flirt = os.path.join(DIR_TMP, "transform_flirt.txt")

        # Convert SimpleITK into FLIRT transform
        cmd = "simplereg_transform -sitk2flirt '%s' '%s' '%s' '%s'" % (
            args.output, args.fixed, args.moving, path_to_transform_flirt)
        ph.execute_command(cmd, verbose=False)

        # Define search angle ranges for FLIRT in all three dimensions
        search_angles = [
            "-searchr%s -%d %d" % (x, 180, 180) for x in ["x", "y", "z"]
        ]

        cmd_args = ["flirt"]
        cmd_args.append("-in '%s'" % args.moving)
        cmd_args.append("-ref '%s'" % args.fixed)
        if args.initial_transform is not None:
            cmd_args.append("-init '%s'" % path_to_transform_flirt)
        cmd_args.append("-omat '%s'" % path_to_transform_flirt)
        cmd_args.append("-out '%s'" % path_to_tmp_output)
        cmd_args.append("-dof 6")
        cmd_args.append((" ").join(search_angles))
        if args.moving_mask is not None:
            cmd_args.append("-inweight '%s'" % args.moving_mask)
        if args.fixed_mask is not None:
            cmd_args.append("-refweight '%s'" % args.fixed_mask)
        ph.print_info("Run Registration (FLIRT) ... ", newline=False)
        ph.execute_command(" ".join(cmd_args), verbose=False)
        print("done")

        # Convert FLIRT to SimpleITK transform
        cmd = "simplereg_transform -flirt2sitk '%s' '%s' '%s' '%s'" % (
            path_to_transform_flirt, args.fixed, args.moving, args.output)
        ph.execute_command(cmd, verbose=False)

    if args.dir_input_mc is not None:
        ph.print_title("Update Motion-Correction Transformations")
        transform_sitk = sitkh.read_transform_sitk(args.output, inverse=1)

        if args.dir_input_mc.endswith("/"):
            subdir_mc = args.dir_input_mc.split("/")[-2]
        else:
            subdir_mc = args.dir_input_mc.split("/")[-1]
        dir_output_mc = os.path.join(dir_output, subdir_mc)

        ph.create_directory(dir_output_mc, delete_files=True)
        pattern = REGEX_FILENAMES + "[.]tfm"
        p = re.compile(pattern)
        trafos = [t for t in os.listdir(args.dir_input_mc) if p.match(t)]
        for t in trafos:
            path_to_input_transform = os.path.join(args.dir_input_mc, t)
            path_to_output_transform = os.path.join(dir_output_mc, t)
            t_sitk = sitkh.read_transform_sitk(path_to_input_transform)
            t_sitk = sitkh.get_composite_sitk_affine_transform(
                transform_sitk, t_sitk)
            sitk.WriteTransform(t_sitk, path_to_output_transform)
        ph.print_info("%d transformations written to '%s'" %
                      (len(trafos), dir_output_mc))

    if args.verbose:
        ph.show_niftis([args.fixed, path_to_tmp_output])

    elapsed_time_total = ph.stop_timing(time_start)

    # Summary
    ph.print_title("Summary")
    print("Computational Time: %s" % (elapsed_time_total))

    return 0
def main():

    input_parser = InputArgparser(
        description="Simulate stacks from obtained reconstruction. "
        "Script simulates/projects the slices at estimated positions "
        "within reconstructed volume. Ideally, if motion correction was "
        "correct, the resulting stack of such obtained projected slices, "
        "corresponds to the originally acquired (motion corrupted) data.",
    )
    input_parser.add_filenames(required=True)
    input_parser.add_filenames_masks()
    input_parser.add_dir_input_mc(required=True)
    input_parser.add_reconstruction(required=True)
    input_parser.add_dir_output(required=True)
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_prefix_output(default="Simulated_")
    input_parser.add_option(
        option_string="--copy-data",
        type=int,
        help="Turn on/off copying of original data (including masks) to "
        "output folder.",
        default=0)
    input_parser.add_option(
        option_string="--reconstruction-mask",
        type=str,
        help="If given, reconstruction image mask is propagated to "
        "simulated stack(s) of slices as well",
        default=None)
    input_parser.add_interpolator(
        option_string="--interpolator-mask",
        help="Choose the interpolator type to propagate the reconstruction "
        "mask (%s)." % (INTERPOLATOR_TYPES),
        default="NearestNeighbor")
    input_parser.add_log_config(default=0)
    input_parser.add_verbose(default=0)
    input_parser.add_slice_thicknesses(default=None)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.interpolator_mask not in ALLOWED_INTERPOLATORS:
        raise IOError(
            "Unknown interpolator provided. Possible choices are %s" % (
                INTERPOLATOR_TYPES))

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    # Read motion corrected data
    data_reader = dr.MultipleImagesReader(
        file_paths=args.filenames,
        file_paths_masks=args.filenames_masks,
        suffix_mask=args.suffix_mask,
        dir_motion_correction=args.dir_input_mc,
        stacks_slice_thicknesses=args.slice_thicknesses,
    )
    data_reader.read_data()
    stacks = data_reader.get_data()

    reconstruction = st.Stack.from_filename(
        args.reconstruction, args.reconstruction_mask, extract_slices=False)

    linear_operators = lin_op.LinearOperators()

    for i, stack in enumerate(stacks):

        # initialize image data array(s)
        nda = np.zeros_like(sitk.GetArrayFromImage(stack.sitk))
        nda[:] = np.nan

        if args.reconstruction_mask:
            nda_mask = np.zeros_like(sitk.GetArrayFromImage(stack.sitk_mask))

        slices = stack.get_slices()
        kept_indices = [s.get_slice_number() for s in slices]

        # Fill stack information "as if slice was acquired consecutively"
        # Therefore, simulated stack slices correspond to acquired slices
        # (in case motion correction was correct)
        for j in range(nda.shape[0]):
            if j in kept_indices:
                index = kept_indices.index(j)
                simulated_slice = linear_operators.A(
                    reconstruction,
                    slices[index],
                    interpolator_mask=args.interpolator_mask
                )
                nda[j, :, :] = sitk.GetArrayFromImage(simulated_slice.sitk)

                if args.reconstruction_mask:
                    nda_mask[j, :, :] = sitk.GetArrayFromImage(
                        simulated_slice.sitk_mask)

        # Create nifti image with same image header as original stack
        simulated_stack_sitk = sitk.GetImageFromArray(nda)
        simulated_stack_sitk.CopyInformation(stack.sitk)

        if args.reconstruction_mask:
            simulated_stack_sitk_mask = sitk.GetImageFromArray(nda_mask)
            simulated_stack_sitk_mask.CopyInformation(stack.sitk_mask)
        else:
            simulated_stack_sitk_mask = None

        simulated_stack = st.Stack.from_sitk_image(
            image_sitk=simulated_stack_sitk,
            image_sitk_mask=simulated_stack_sitk_mask,
            filename=args.prefix_output + stack.get_filename(),
            extract_slices=False,
            slice_thickness=stack.get_slice_thickness(),
        )

        if args.verbose:
            sitkh.show_stacks([
                stack, simulated_stack],
                segmentation=stack)

        simulated_stack.write(
            args.dir_output,
            write_mask=False,
            write_slices=False,
            suffix_mask=args.suffix_mask)

        if args.copy_data:
            stack.write(
                args.dir_output,
                write_mask=True,
                write_slices=False,
                suffix_mask="_mask")

    return 0
예제 #4
0
def main():

    time_start = ph.start_timing()

    # Set print options for numpy
    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Volumetric MRI reconstruction framework to reconstruct "
        "an isotropic, high-resolution 3D volume from multiple stacks of 2D "
        "slices with motion correction. The resolution of the computed "
        "Super-Resolution Reconstruction (SRR) is given by the in-plane "
        "spacing of the selected target stack. A region of interest can be "
        "specified by providing a mask for the selected target stack. Only "
        "this region will then be reconstructed by the SRR algorithm which "
        "can substantially reduce the computational time.",
    )
    input_parser.add_filenames(required=True)
    input_parser.add_filenames_masks()
    input_parser.add_output(required=True)
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_target_stack(default=None)
    input_parser.add_search_angle(default=45)
    input_parser.add_multiresolution(default=0)
    input_parser.add_shrink_factors(default=[3, 2, 1])
    input_parser.add_smoothing_sigmas(default=[1.5, 1, 0])
    input_parser.add_sigma(default=1)
    input_parser.add_reconstruction_type(default="TK1L2")
    input_parser.add_iterations(default=15)
    input_parser.add_alpha(default=0.015)
    input_parser.add_alpha_first(default=0.2)
    input_parser.add_iter_max(default=10)
    input_parser.add_iter_max_first(default=5)
    input_parser.add_dilation_radius(default=3)
    input_parser.add_extra_frame_target(default=10)
    input_parser.add_bias_field_correction(default=0)
    input_parser.add_intensity_correction(default=1)
    input_parser.add_isotropic_resolution(default=1)
    input_parser.add_log_config(default=1)
    input_parser.add_subfolder_motion_correction()
    input_parser.add_write_motion_correction(default=1)
    input_parser.add_verbose(default=0)
    input_parser.add_two_step_cycles(default=3)
    input_parser.add_use_masks_srr(default=0)
    input_parser.add_boundary_stacks(default=[10, 10, 0])
    input_parser.add_metric(default="Correlation")
    input_parser.add_metric_radius(default=10)
    input_parser.add_reference()
    input_parser.add_reference_mask()
    input_parser.add_outlier_rejection(default=1)
    input_parser.add_threshold_first(default=0.5)
    input_parser.add_threshold(default=0.8)
    input_parser.add_interleave(default=3)
    input_parser.add_slice_thicknesses(default=None)
    input_parser.add_viewer(default="itksnap")
    input_parser.add_v2v_method(default="RegAladin")
    input_parser.add_argument(
        "--v2v-robust", "-v2v-robust",
        action='store_true',
        help="If given, a more robust volume-to-volume registration step is "
        "performed, i.e. four rigid registrations are performed using four "
        "rigid transform initializations based on "
        "principal component alignment of associated masks."
    )
    input_parser.add_argument(
        "--s2v-hierarchical", "-s2v-hierarchical",
        action='store_true',
        help="If given, a hierarchical approach for the first slice-to-volume "
        "registration cycle is used, i.e. sub-packages defined by the "
        "specified interleave (--interleave) are registered until each "
        "slice is registered independently."
    )
    input_parser.add_argument(
        "--sda", "-sda",
        action='store_true',
        help="If given, the volumetric reconstructions are performed using "
        "Scattered Data Approximation (Vercauteren et al., 2006). "
        "'alpha' is considered the final 'sigma' for the "
        "iterative adjustment. "
        "Recommended value is, e.g., --alpha 0.8"
    )
    input_parser.add_option(
        option_string="--transforms-history",
        type=int,
        help="Write entire history of applied slice motion correction "
        "transformations to motion correction output directory",
        default=0,
    )

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    rejection_measure = "NCC"
    threshold_v2v = -2  # 0.3
    debug = False

    if args.v2v_method not in V2V_METHOD_OPTIONS:
        raise ValueError("v2v-method must be in {%s}" % (
            ", ".join(V2V_METHOD_OPTIONS)))

    if np.alltrue([not args.output.endswith(t) for t in ALLOWED_EXTENSIONS]):
        raise ValueError(
            "output filename invalid; allowed extensions are: %s" %
            ", ".join(ALLOWED_EXTENSIONS))

    if args.alpha_first < args.alpha and not args.sda:
        raise ValueError("It must hold alpha-first >= alpha")

    if args.threshold_first > args.threshold:
        raise ValueError("It must hold threshold-first <= threshold")

    dir_output = os.path.dirname(args.output)
    ph.create_directory(dir_output)

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")
    data_reader = dr.MultipleImagesReader(
        file_paths=args.filenames,
        file_paths_masks=args.filenames_masks,
        suffix_mask=args.suffix_mask,
        stacks_slice_thicknesses=args.slice_thicknesses,
    )

    if len(args.boundary_stacks) is not 3:
        raise IOError(
            "Provide exactly three values for '--boundary-stacks' to define "
            "cropping in i-, j-, and k-dimension of the input stacks")

    data_reader.read_data()
    stacks = data_reader.get_data()
    ph.print_info("%d input stacks read for further processing" % len(stacks))

    if all(s.is_unity_mask() is True for s in stacks):
        ph.print_warning("No mask is provided! "
                         "Generated reconstruction space may be very big!")
        ph.print_warning("Consider using a mask to speed up computations")

        # args.extra_frame_target = 0
        # ph.wrint_warning("Overwritten: extra-frame-target set to 0")

    # Specify target stack for intensity correction and reconstruction space
    if args.target_stack is None:
        target_stack_index = 0
    else:
        try:
            target_stack_index = args.filenames.index(args.target_stack)
        except ValueError as e:
            raise ValueError(
                "--target-stack must correspond to an image as provided by "
                "--filenames")

    # ---------------------------Data Preprocessing---------------------------
    ph.print_title("Data Preprocessing")

    segmentation_propagator = segprop.SegmentationPropagation(
        # registration_method=regflirt.FLIRT(use_verbose=args.verbose),
        # registration_method=niftyreg.RegAladin(use_verbose=False),
        dilation_radius=args.dilation_radius,
        dilation_kernel="Ball",
    )

    data_preprocessing = dp.DataPreprocessing(
        stacks=stacks,
        segmentation_propagator=segmentation_propagator,
        use_cropping_to_mask=True,
        use_N4BiasFieldCorrector=args.bias_field_correction,
        target_stack_index=target_stack_index,
        boundary_i=args.boundary_stacks[0],
        boundary_j=args.boundary_stacks[1],
        boundary_k=args.boundary_stacks[2],
        unit="mm",
    )
    data_preprocessing.run()
    time_data_preprocessing = data_preprocessing.get_computational_time()

    # Get preprocessed stacks
    stacks = data_preprocessing.get_preprocessed_stacks()

    # Define reference/target stack for registration and reconstruction
    if args.reference is not None:
        reference = st.Stack.from_filename(
            file_path=args.reference,
            file_path_mask=args.reference_mask,
            extract_slices=False)

    else:
        reference = st.Stack.from_stack(stacks[target_stack_index])

    # ------------------------Volume-to-Volume Registration--------------------
    if len(stacks) > 1:

        if args.v2v_method == "FLIRT":
            # Define search angle ranges for FLIRT in all three dimensions
            search_angles = ["-searchr%s -%d %d" %
                             (x, args.search_angle, args.search_angle)
                             for x in ["x", "y", "z"]]
            options = (" ").join(search_angles)
            # options += " -noresample"

            vol_registration = regflirt.FLIRT(
                registration_type="Rigid",
                use_fixed_mask=True,
                use_moving_mask=True,
                options=options,
                use_verbose=False,
            )
        else:
            vol_registration = niftyreg.RegAladin(
                registration_type="Rigid",
                use_fixed_mask=True,
                use_moving_mask=True,
                # options="-ln 2 -voff",
                use_verbose=False,
            )
        v2vreg = pipeline.VolumeToVolumeRegistration(
            stacks=stacks,
            reference=reference,
            registration_method=vol_registration,
            verbose=debug,
            robust=args.v2v_robust,
        )
        v2vreg.run()
        stacks = v2vreg.get_stacks()
        time_registration = v2vreg.get_computational_time()

    else:
        time_registration = ph.get_zero_time()

    # ---------------------------Intensity Correction--------------------------
    if args.intensity_correction:
        ph.print_title("Intensity Correction")
        intensity_corrector = ic.IntensityCorrection()
        intensity_corrector.use_individual_slice_correction(False)
        intensity_corrector.use_reference_mask(True)
        intensity_corrector.use_stack_mask(True)
        intensity_corrector.use_verbose(False)

        for i, stack in enumerate(stacks):
            if i == target_stack_index:
                ph.print_info("Stack %d (%s): Reference image. Skipped." % (
                    i + 1, stack.get_filename()))
                continue
            else:
                ph.print_info("Stack %d (%s): Intensity Correction ... " % (
                    i + 1, stack.get_filename()), newline=False)
            intensity_corrector.set_stack(stack)
            intensity_corrector.set_reference(
                stacks[target_stack_index].get_resampled_stack(
                    resampling_grid=stack.sitk,
                    interpolator="NearestNeighbor",
                ))
            intensity_corrector.run_linear_intensity_correction()
            stacks[i] = intensity_corrector.get_intensity_corrected_stack()
            print("done (c1 = %g) " %
                  intensity_corrector.get_intensity_correction_coefficients())

    # ---------------------------Create first volume---------------------------
    time_tmp = ph.start_timing()

    # Isotropic resampling to define HR target space
    ph.print_title("Reconstruction Space Generation")
    HR_volume = reference.get_isotropically_resampled_stack(
        resolution=args.isotropic_resolution)
    ph.print_info(
        "Isotropic reconstruction space with %g mm resolution is created" %
        HR_volume.sitk.GetSpacing()[0])

    if args.reference is None:
        # Create joint image mask in target space
        joint_image_mask_builder = imb.JointImageMaskBuilder(
            stacks=stacks,
            target=HR_volume,
            dilation_radius=1,
        )
        joint_image_mask_builder.run()
        HR_volume = joint_image_mask_builder.get_stack()
        ph.print_info(
            "Isotropic reconstruction space is centered around "
            "joint stack masks. ")

        # Crop to space defined by mask (plus extra margin)
        HR_volume = HR_volume.get_cropped_stack_based_on_mask(
            boundary_i=args.extra_frame_target,
            boundary_j=args.extra_frame_target,
            boundary_k=args.extra_frame_target,
            unit="mm",
        )

        # Create first volume
        # If outlier rejection is activated, eliminate obvious outliers early
        # from stack and re-run SDA to get initial volume without them
        ph.print_title("First Estimate of HR Volume")
        if args.outlier_rejection and threshold_v2v > -1:
            ph.print_subtitle("SDA Approximation")
            SDA = sda.ScatteredDataApproximation(
                stacks, HR_volume, sigma=args.sigma)
            SDA.run()
            HR_volume = SDA.get_reconstruction()

            # Identify and reject outliers
            ph.print_subtitle("Eliminate slice outliers (%s < %g)" % (
                rejection_measure, threshold_v2v))
            outlier_rejector = outre.OutlierRejector(
                stacks=stacks,
                reference=HR_volume,
                threshold=threshold_v2v,
                measure=rejection_measure,
                verbose=True,
            )
            outlier_rejector.run()
            stacks = outlier_rejector.get_stacks()

        ph.print_subtitle("SDA Approximation Image")
        SDA = sda.ScatteredDataApproximation(
            stacks, HR_volume, sigma=args.sigma)
        SDA.run()
        HR_volume = SDA.get_reconstruction()

        ph.print_subtitle("SDA Approximation Image Mask")
        SDA = sda.ScatteredDataApproximation(
            stacks, HR_volume, sigma=args.sigma, sda_mask=True)
        SDA.run()
        # HR volume contains updated mask based on SDA
        HR_volume = SDA.get_reconstruction()

        HR_volume.set_filename(SDA.get_setting_specific_filename())

    time_reconstruction = ph.stop_timing(time_tmp)

    if args.verbose:
        tmp = list(stacks)
        tmp.insert(0, HR_volume)
        sitkh.show_stacks(tmp, segmentation=HR_volume, viewer=args.viewer)

    # -----------Two-step Slice-to-Volume Registration-Reconstruction----------
    if args.two_step_cycles > 0:

        # Slice-to-volume registration set-up
        if args.metric == "ANTSNeighborhoodCorrelation":
            metric_params = {"radius": args.metric_radius}
        else:
            metric_params = None
        registration = regsitk.SimpleItkRegistration(
            moving=HR_volume,
            use_fixed_mask=True,
            use_moving_mask=True,
            interpolator="Linear",
            metric=args.metric,
            metric_params=metric_params,
            use_multiresolution_framework=args.multiresolution,
            shrink_factors=args.shrink_factors,
            smoothing_sigmas=args.smoothing_sigmas,
            initializer_type="SelfGEOMETRY",
            optimizer="ConjugateGradientLineSearch",
            optimizer_params={
                "learningRate": 1,
                "numberOfIterations": 100,
                "lineSearchUpperLimit": 2,
            },
            scales_estimator="Jacobian",
            use_verbose=debug,
        )

        # Volumetric reconstruction set-up
        if args.sda:
            recon_method = sda.ScatteredDataApproximation(
                stacks,
                HR_volume,
                sigma=args.sigma,
                use_masks=args.use_masks_srr,
            )
            alpha_range = [args.sigma, args.alpha]
        else:
            recon_method = tk.TikhonovSolver(
                stacks=stacks,
                reconstruction=HR_volume,
                reg_type="TK1",
                minimizer="lsmr",
                alpha=args.alpha_first,
                iter_max=np.min([args.iter_max_first, args.iter_max]),
                verbose=True,
                use_masks=args.use_masks_srr,
            )
            alpha_range = [args.alpha_first, args.alpha]

        # Define the regularization parameters for the individual
        # reconstruction steps in the two-step cycles
        alphas = np.linspace(
            alpha_range[0], alpha_range[1], args.two_step_cycles)

        # Define outlier rejection threshold after each S2V-reg step
        thresholds = np.linspace(
            args.threshold_first, args.threshold, args.two_step_cycles)

        two_step_s2v_reg_recon = \
            pipeline.TwoStepSliceToVolumeRegistrationReconstruction(
                stacks=stacks,
                reference=HR_volume,
                registration_method=registration,
                reconstruction_method=recon_method,
                cycles=args.two_step_cycles,
                alphas=alphas[0:args.two_step_cycles - 1],
                outlier_rejection=args.outlier_rejection,
                threshold_measure=rejection_measure,
                thresholds=thresholds,
                interleave=args.interleave,
                viewer=args.viewer,
                verbose=args.verbose,
                use_hierarchical_registration=args.s2v_hierarchical,
            )
        two_step_s2v_reg_recon.run()
        HR_volume_iterations = \
            two_step_s2v_reg_recon.get_iterative_reconstructions()
        time_registration += \
            two_step_s2v_reg_recon.get_computational_time_registration()
        time_reconstruction += \
            two_step_s2v_reg_recon.get_computational_time_reconstruction()
        stacks = two_step_s2v_reg_recon.get_stacks()

    # no two-step s2v-registration/reconstruction iterations
    else:
        HR_volume_iterations = []

    # Write motion-correction results
    ph.print_title("Write Motion Correction Results")
    if args.write_motion_correction:
        dir_output_mc = os.path.join(
            dir_output, args.subfolder_motion_correction)
        ph.clear_directory(dir_output_mc)

        for stack in stacks:
            stack.write(
                dir_output_mc,
                write_stack=False,
                write_mask=False,
                write_slices=False,
                write_transforms=True,
                write_transforms_history=args.transforms_history,
            )

        if args.outlier_rejection:
            deleted_slices_dic = {}
            for i, stack in enumerate(stacks):
                deleted_slices = stack.get_deleted_slice_numbers()
                deleted_slices_dic[stack.get_filename()] = deleted_slices

            # check whether any stack was removed entirely
            stacks0 = data_preprocessing.get_preprocessed_stacks()
            if len(stacks) != len(stacks0):
                stacks_remain = [s.get_filename() for s in stacks]
                for stack in stacks0:
                    if stack.get_filename() in stacks_remain:
                        continue

                    # add info that all slices of this stack were rejected
                    deleted_slices = [
                        slice.get_slice_number()
                        for slice in stack.get_slices()
                    ]
                    deleted_slices_dic[stack.get_filename()] = deleted_slices
                    ph.print_info(
                        "All slices of stack '%s' were rejected entirely. "
                        "Information added." % stack.get_filename())

            ph.write_dictionary_to_json(
                deleted_slices_dic,
                os.path.join(
                    dir_output,
                    args.subfolder_motion_correction,
                    "rejected_slices.json"
                )
            )

    # ---------------------Final Volumetric Reconstruction---------------------
    ph.print_title("Final Volumetric Reconstruction")
    if args.sda:
        recon_method = sda.ScatteredDataApproximation(
            stacks,
            HR_volume,
            sigma=args.alpha,
            use_masks=args.use_masks_srr,
        )
    else:
        if args.reconstruction_type in ["TVL2", "HuberL2"]:
            recon_method = pd.PrimalDualSolver(
                stacks=stacks,
                reconstruction=HR_volume,
                reg_type="TV" if args.reconstruction_type == "TVL2" else "huber",
                iterations=args.iterations,
                use_masks=args.use_masks_srr,
            )
        else:
            recon_method = tk.TikhonovSolver(
                stacks=stacks,
                reconstruction=HR_volume,
                reg_type="TK1" if args.reconstruction_type == "TK1L2" else "TK0",
                use_masks=args.use_masks_srr,
            )
        recon_method.set_alpha(args.alpha)
        recon_method.set_iter_max(args.iter_max)
        recon_method.set_verbose(True)
    recon_method.run()
    time_reconstruction += recon_method.get_computational_time()
    HR_volume_final = recon_method.get_reconstruction()

    ph.print_subtitle("Final SDA Approximation Image Mask")
    SDA = sda.ScatteredDataApproximation(
        stacks, HR_volume_final, sigma=args.sigma, sda_mask=True)
    SDA.run()
    # HR volume contains updated mask based on SDA
    HR_volume_final = SDA.get_reconstruction()
    time_reconstruction += SDA.get_computational_time()

    elapsed_time_total = ph.stop_timing(time_start)

    # Write SRR result
    filename = recon_method.get_setting_specific_filename()
    HR_volume_final.set_filename(filename)
    dw.DataWriter.write_image(
        HR_volume_final.sitk,
        args.output,
        description=filename)
    dw.DataWriter.write_mask(
        HR_volume_final.sitk_mask,
        ph.append_to_filename(args.output, "_mask"),
        description=SDA.get_setting_specific_filename())

    HR_volume_iterations.insert(0, HR_volume_final)
    for stack in stacks:
        HR_volume_iterations.append(stack)

    if args.verbose:
        sitkh.show_stacks(
            HR_volume_iterations,
            segmentation=HR_volume_final,
            viewer=args.viewer,
        )

    # Summary
    ph.print_title("Summary")
    exe_file_info = os.path.basename(os.path.abspath(__file__)).split(".")[0]
    print("%s | Computational Time for Data Preprocessing: %s" %
          (exe_file_info, time_data_preprocessing))
    print("%s | Computational Time for Registrations: %s" %
          (exe_file_info, time_registration))
    print("%s | Computational Time for Reconstructions: %s" %
          (exe_file_info, time_reconstruction))
    print("%s | Computational Time for Entire Reconstruction Pipeline: %s" %
          (exe_file_info, elapsed_time_total))

    ph.print_line_separator()

    return 0
def main():

    time_start = ph.start_timing()

    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Perform (linear) intensity correction across "
        "stacks/images given a reference stack/image", )
    input_parser.add_filenames(required=True)
    input_parser.add_dir_output(required=True)
    input_parser.add_reference(required=True)
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_search_angle(default=180)
    input_parser.add_prefix_output(default="IC_")
    input_parser.add_log_config(default=1)
    input_parser.add_option(
        option_string="--registration",
        type=int,
        help="Turn on/off registration from image to reference prior to "
        "intensity correction.",
        default=0)
    input_parser.add_verbose(default=0)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    if args.reference in args.filenames:
        args.filenames.remove(args.reference)

    # Read data
    data_reader = dr.MultipleImagesReader(args.filenames,
                                          suffix_mask=args.suffix_mask,
                                          extract_slices=False)
    data_reader.read_data()
    stacks = data_reader.get_data()

    data_reader = dr.MultipleImagesReader([args.reference],
                                          suffix_mask=args.suffix_mask,
                                          extract_slices=False)
    data_reader.read_data()
    reference = data_reader.get_data()[0]

    if args.registration:
        # Define search angle ranges for FLIRT in all three dimensions
        search_angles = [
            "-searchr%s -%d %d" % (x, args.search_angle, args.search_angle)
            for x in ["x", "y", "z"]
        ]
        search_angles = (" ").join(search_angles)
        registration = regflirt.FLIRT(
            moving=reference,
            registration_type="Rigid",
            use_fixed_mask=True,
            use_moving_mask=True,
            options=search_angles,
            use_verbose=False,
        )

    # Perform Intensity Correction
    ph.print_title("Perform Intensity Correction")
    intensity_corrector = ic.IntensityCorrection(
        use_reference_mask=True,
        use_individual_slice_correction=False,
        prefix_corrected=args.prefix_output,
        use_verbose=False,
    )
    stacks_corrected = [None] * len(stacks)
    for i, stack in enumerate(stacks):
        if args.registration:
            ph.print_info("Image %d/%d: Registration ... " %
                          (i + 1, len(stacks)),
                          newline=False)
            registration.set_fixed(stack)
            registration.run()
            transform_sitk = registration.get_registration_transform_sitk()
            stack.update_motion_correction(transform_sitk)
            print("done")

        ph.print_info("Image %d/%d: Intensity Correction ... " %
                      (i + 1, len(stacks)),
                      newline=False)

        ref = reference.get_resampled_stack(stack.sitk)
        ref = st.Stack.from_sitk_image(image_sitk=ref.sitk,
                                       image_sitk_mask=stack.sitk_mask *
                                       ref.sitk_mask,
                                       filename=reference.get_filename())
        intensity_corrector.set_stack(stack)
        intensity_corrector.set_reference(ref)
        intensity_corrector.run_linear_intensity_correction()
        # intensity_corrector.run_affine_intensity_correction()
        stacks_corrected[i] = \
            intensity_corrector.get_intensity_corrected_stack()
        print("done (c1 = %g) " %
              intensity_corrector.get_intensity_correction_coefficients())

        # Write Data
        stacks_corrected[i].write(args.dir_output,
                                  write_mask=True,
                                  suffix_mask=args.suffix_mask)

        if args.verbose:
            sitkh.show_stacks(
                [
                    reference,
                    stacks_corrected[i],
                    # stacks[i],
                ],
                segmentation=stacks_corrected[i])
            # ph.pause()

    # Write reference too (although not intensity corrected)
    reference.write(args.dir_output,
                    filename=args.prefix_output + reference.get_filename(),
                    write_mask=True,
                    suffix_mask=args.suffix_mask)

    elapsed_time = ph.stop_timing(time_start)

    ph.print_title("Summary")
    print("Computational Time for Intensity Correction(s): %s" %
          (elapsed_time))

    return 0
def main():

    time_start = ph.start_timing()

    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Run reconstruction pipeline including "
        "(i) bias field correction, "
        "(ii) volumetric reconstruction in subject space, "
        "(iii) volumetric reconstruction in template space, "
        "and (iv) some diagnostics to assess the obtained reconstruction.", )
    input_parser.add_filenames(required=True)
    input_parser.add_filenames_masks(required=True)
    input_parser.add_target_stack(required=False)
    input_parser.add_suffix_mask(default="")
    input_parser.add_dir_output(required=True)
    input_parser.add_alpha(default=0.01)
    input_parser.add_verbose(default=0)
    input_parser.add_gestational_age(required=False)
    input_parser.add_prefix_output(default="")
    input_parser.add_search_angle(default=180)
    input_parser.add_multiresolution(default=0)
    input_parser.add_log_config(default=1)
    input_parser.add_isotropic_resolution()
    input_parser.add_reference()
    input_parser.add_reference_mask()
    input_parser.add_bias_field_correction(default=1)
    input_parser.add_intensity_correction(default=1)
    input_parser.add_iter_max(default=10)
    input_parser.add_two_step_cycles(default=3)
    input_parser.add_slice_thicknesses(default=None)
    input_parser.add_option(
        option_string="--run-bias-field-correction",
        type=int,
        help="Turn on/off bias field correction. "
        "If off, it is assumed that this step was already performed "
        "if --bias-field-correction is active.",
        default=1)
    input_parser.add_option(
        option_string="--run-recon-subject-space",
        type=int,
        help="Turn on/off reconstruction in subject space. "
        "If off, it is assumed that this step was already performed.",
        default=1)
    input_parser.add_option(
        option_string="--run-recon-template-space",
        type=int,
        help="Turn on/off reconstruction in template space. "
        "If off, it is assumed that this step was already performed.",
        default=1)
    input_parser.add_option(
        option_string="--run-diagnostics",
        type=int,
        help="Turn on/off diagnostics of the obtained volumetric "
        "reconstruction. ",
        default=0)
    input_parser.add_option(
        option_string="--initial-transform",
        type=str,
        help="Set initial transform to be used for register_image.",
        default=None)
    input_parser.add_outlier_rejection(default=1)
    input_parser.add_threshold_first(default=0.5)
    input_parser.add_threshold(default=0.8)
    input_parser.add_argument(
        "--sda",
        "-sda",
        action='store_true',
        help="If given, the volume is reconstructed using "
        "Scattered Data Approximation (Vercauteren et al., 2006). "
        "--alpha is considered the value for the standard deviation then. "
        "Recommended value is, e.g., --alpha 0.8")
    input_parser.add_argument(
        "--v2v-robust",
        "-v2v-robust",
        action='store_true',
        help="If given, a more robust volume-to-volume registration step is "
        "performed, i.e. four rigid registrations are performed using four "
        "rigid transform initializations based on "
        "principal component alignment of associated masks.")
    input_parser.add_interleave(default=3)
    input_parser.add_argument(
        "--s2v-hierarchical",
        "-s2v-hierarchical",
        action='store_true',
        help="If given, a hierarchical approach for the first slice-to-volume "
        "registration cycle is used, i.e. sub-packages defined by the "
        "specified interleave (--interleave) are registered until each "
        "slice is registered independently.")

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    filename_srr = "srr"
    dir_output_preprocessing = os.path.join(args.dir_output,
                                            "preprocessing_n4itk")
    dir_output_recon_subject_space = os.path.join(args.dir_output,
                                                  "recon_subject_space")
    dir_output_recon_template_space = os.path.join(args.dir_output,
                                                   "recon_template_space")
    dir_output_diagnostics = os.path.join(args.dir_output, "diagnostics")

    srr_subject = os.path.join(dir_output_recon_subject_space,
                               "%s_subject.nii.gz" % filename_srr)
    srr_subject_mask = ph.append_to_filename(srr_subject, "_mask")
    srr_template = os.path.join(dir_output_recon_template_space,
                                "%s_template.nii.gz" % filename_srr)
    srr_template_mask = ph.append_to_filename(srr_template, "_mask")
    trafo_template = os.path.join(dir_output_recon_template_space,
                                  "registration_transform_sitk.txt")
    srr_slice_coverage = os.path.join(
        dir_output_diagnostics,
        "%s_template_slicecoverage.nii.gz" % filename_srr)

    if args.bias_field_correction and args.run_bias_field_correction:
        for i, f in enumerate(args.filenames):
            output = os.path.join(dir_output_preprocessing,
                                  os.path.basename(f))
            cmd_args = []
            cmd_args.append("--filename '%s'" % f)
            cmd_args.append("--filename-mask '%s'" % args.filenames_masks[i])
            cmd_args.append("--output '%s'" % output)
            # cmd_args.append("--verbose %d" % args.verbose)
            cmd_args.append("--log-config %d" % args.log_config)
            cmd = "niftymic_correct_bias_field %s" % (" ").join(cmd_args)
            time_start_bias = ph.start_timing()
            exit_code = ph.execute_command(cmd)
            if exit_code != 0:
                raise RuntimeError("Bias field correction failed")
        elapsed_time_bias = ph.stop_timing(time_start_bias)
        filenames = [
            os.path.join(dir_output_preprocessing, os.path.basename(f))
            for f in args.filenames
        ]
    elif args.bias_field_correction and not args.run_bias_field_correction:
        elapsed_time_bias = ph.get_zero_time()
        filenames = [
            os.path.join(dir_output_preprocessing, os.path.basename(f))
            for f in args.filenames
        ]
    else:
        elapsed_time_bias = ph.get_zero_time()
        filenames = args.filenames

    # Specify target stack for intensity correction and reconstruction space
    if args.target_stack is None:
        target_stack = filenames[0]
    else:
        try:
            target_stack_index = args.filenames.index(args.target_stack)
        except ValueError as e:
            raise ValueError(
                "--target-stack must correspond to an image as provided by "
                "--filenames")
        target_stack = filenames[target_stack_index]

    # Add single quotes around individual filenames to account for whitespaces
    filenames = ["'" + f + "'" for f in filenames]
    filenames_masks = ["'" + f + "'" for f in args.filenames_masks]

    if args.run_recon_subject_space:

        cmd_args = ["niftymic_reconstruct_volume"]
        cmd_args.append("--filenames %s" % (" ").join(filenames))
        cmd_args.append("--filenames-masks %s" % (" ").join(filenames_masks))
        cmd_args.append("--multiresolution %d" % args.multiresolution)
        cmd_args.append("--target-stack '%s'" % target_stack)
        cmd_args.append("--output '%s'" % srr_subject)
        cmd_args.append("--suffix-mask '%s'" % args.suffix_mask)
        cmd_args.append("--intensity-correction %d" %
                        args.intensity_correction)
        cmd_args.append("--alpha %s" % args.alpha)
        cmd_args.append("--iter-max %d" % args.iter_max)
        cmd_args.append("--two-step-cycles %d" % args.two_step_cycles)
        cmd_args.append("--outlier-rejection %d" % args.outlier_rejection)
        cmd_args.append("--threshold-first %f" % args.threshold_first)
        cmd_args.append("--threshold %f" % args.threshold)
        if args.slice_thicknesses is not None:
            cmd_args.append("--slice-thicknesses %s" %
                            " ".join(map(str, args.slice_thicknesses)))
        cmd_args.append("--verbose %d" % args.verbose)
        cmd_args.append("--log-config %d" % args.log_config)
        if args.isotropic_resolution is not None:
            cmd_args.append("--isotropic-resolution %f" %
                            args.isotropic_resolution)
        if args.reference is not None:
            cmd_args.append("--reference %s" % args.reference)
        if args.reference_mask is not None:
            cmd_args.append("--reference-mask %s" % args.reference_mask)
        if args.sda:
            cmd_args.append("--sda")
        if args.v2v_robust:
            cmd_args.append("--v2v-robust")
        if args.s2v_hierarchical:
            cmd_args.append("--s2v-hierarchical")

        cmd = (" ").join(cmd_args)
        time_start_volrec = ph.start_timing()
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Reconstruction in subject space failed")

        # Compute SRR mask in subject space
        # (Approximated using SDA within reconstruct_volume)
        if 0:
            dir_motion_correction = os.path.join(
                dir_output_recon_subject_space, "motion_correction")
            cmd_args = ["niftymic_reconstruct_volume_from_slices"]
            cmd_args.append("--filenames %s" % " ".join(filenames_masks))
            cmd_args.append("--dir-input-mc '%s'" % dir_motion_correction)
            cmd_args.append("--output '%s'" % srr_subject_mask)
            cmd_args.append("--reconstruction-space '%s'" % srr_subject)
            cmd_args.append("--suffix-mask '%s'" % args.suffix_mask)
            cmd_args.append("--mask")
            cmd_args.append("--log-config %d" % args.log_config)
            if args.slice_thicknesses is not None:
                cmd_args.append("--slice-thicknesses %s" %
                                " ".join(map(str, args.slice_thicknesses)))
            if args.sda:
                cmd_args.append("--sda")
                cmd_args.append("--alpha 1")
            else:
                cmd_args.append("--alpha 0.1")
                cmd_args.append("--iter-max 5")
            cmd = (" ").join(cmd_args)
            ph.execute_command(cmd)

        elapsed_time_volrec = ph.stop_timing(time_start_volrec)
    else:
        elapsed_time_volrec = ph.get_zero_time()

    if args.run_recon_template_space:

        if args.gestational_age is None:
            template_stack_estimator = \
                tse.TemplateStackEstimator.from_mask(srr_subject_mask)
            gestational_age = template_stack_estimator.get_estimated_gw()
            ph.print_info("Estimated gestational age: %d" % gestational_age)
        else:
            gestational_age = args.gestational_age

        template = os.path.join(DIR_TEMPLATES,
                                "STA%d.nii.gz" % gestational_age)
        template_mask = os.path.join(DIR_TEMPLATES,
                                     "STA%d_mask.nii.gz" % gestational_age)

        # Register SRR to template space
        cmd_args = ["niftymic_register_image"]
        cmd_args.append("--fixed '%s'" % template)
        cmd_args.append("--moving '%s'" % srr_subject)
        cmd_args.append("--fixed-mask '%s'" % template_mask)
        cmd_args.append("--moving-mask '%s'" % srr_subject_mask)
        cmd_args.append(
            "--dir-input-mc '%s'" %
            os.path.join(dir_output_recon_subject_space, "motion_correction"))
        cmd_args.append("--output '%s'" % trafo_template)
        cmd_args.append("--verbose %s" % args.verbose)
        cmd_args.append("--log-config %d" % args.log_config)
        cmd_args.append("--refine-pca")
        if args.initial_transform is not None:
            cmd_args.append("--initial-transform '%s'" %
                            args.initial_transform)
        cmd = (" ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Registration to template space failed")

        # Compute SRR in template space
        dir_input_mc = os.path.join(dir_output_recon_template_space,
                                    "motion_correction")
        cmd_args = ["niftymic_reconstruct_volume_from_slices"]
        cmd_args.append("--filenames %s" % (" ").join(filenames))
        cmd_args.append("--filenames-masks %s" % (" ").join(filenames_masks))
        cmd_args.append("--dir-input-mc '%s'" % dir_input_mc)
        cmd_args.append("--output '%s'" % srr_template)
        cmd_args.append("--reconstruction-space '%s'" % template)
        cmd_args.append("--target-stack '%s'" % target_stack)
        cmd_args.append("--iter-max %d" % args.iter_max)
        cmd_args.append("--alpha %s" % args.alpha)
        cmd_args.append("--suffix-mask '%s'" % args.suffix_mask)
        cmd_args.append("--verbose %s" % args.verbose)
        cmd_args.append("--log-config %d" % args.log_config)
        if args.slice_thicknesses is not None:
            cmd_args.append("--slice-thicknesses %s" %
                            " ".join(map(str, args.slice_thicknesses)))
        if args.sda:
            cmd_args.append("--sda")

        cmd = (" ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Reconstruction in template space failed")

        # Compute SRR mask in template space
        if 1:
            dir_motion_correction = os.path.join(
                dir_output_recon_template_space, "motion_correction")
            cmd_args = ["niftymic_reconstruct_volume_from_slices"]
            cmd_args.append("--filenames %s" % " ".join(filenames_masks))
            cmd_args.append("--dir-input-mc '%s'" % dir_motion_correction)
            cmd_args.append("--output '%s'" % srr_template_mask)
            cmd_args.append("--reconstruction-space '%s'" % srr_template)
            cmd_args.append("--suffix-mask '%s'" % args.suffix_mask)
            cmd_args.append("--log-config %d" % args.log_config)
            cmd_args.append("--mask")
            if args.slice_thicknesses is not None:
                cmd_args.append("--slice-thicknesses %s" %
                                " ".join(map(str, args.slice_thicknesses)))
            if args.sda:
                cmd_args.append("--sda")
                cmd_args.append("--alpha 1")
            else:
                cmd_args.append("--alpha 0.1")
                cmd_args.append("--iter-max 5")
            cmd = (" ").join(cmd_args)
            ph.execute_command(cmd)

        # Copy SRR to output directory
        if 0:
            output = "%sSRR_Stacks%d.nii.gz" % (args.prefix_output,
                                                len(args.filenames))
            path_to_output = os.path.join(args.dir_output, output)
            cmd = "cp -p '%s' '%s'" % (srr_template, path_to_output)
            exit_code = ph.execute_command(cmd)
            if exit_code != 0:
                raise RuntimeError("Copy of SRR to output directory failed")

        # Multiply template mask with reconstruction
        if 0:
            cmd_args = ["niftymic_multiply"]
            fnames = [
                srr_template,
                srr_template_mask,
            ]
            output_masked = "Masked_%s" % output
            path_to_output_masked = os.path.join(args.dir_output,
                                                 output_masked)
            cmd_args.append("--filenames %s" % " ".join(fnames))
            cmd_args.append("--output '%s'" % path_to_output_masked)
            cmd = (" ").join(cmd_args)
            exit_code = ph.execute_command(cmd)
            if exit_code != 0:
                raise RuntimeError("SRR brain masking failed")

    else:
        elapsed_time_template = ph.get_zero_time()

    if args.run_diagnostics:

        dir_input_mc = os.path.join(dir_output_recon_template_space,
                                    "motion_correction")
        dir_output_orig_vs_proj = os.path.join(dir_output_diagnostics,
                                               "original_vs_projected")
        dir_output_selfsimilarity = os.path.join(dir_output_diagnostics,
                                                 "selfsimilarity")
        dir_output_orig_vs_proj_pdf = os.path.join(dir_output_orig_vs_proj,
                                                   "pdf")

        # Show slice coverage over reconstruction space
        exe = os.path.abspath(show_slice_coverage.__file__)
        cmd_args = ["python %s" % exe]
        cmd_args.append("--filenames %s" % (" ").join(filenames))
        cmd_args.append("--dir-input-mc '%s'" % dir_input_mc)
        cmd_args.append("--reconstruction-space '%s'" % srr_template)
        cmd_args.append("--output '%s'" % srr_slice_coverage)
        cmd = (" ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Slice coverage visualization failed")

        # Get simulated/projected slices
        exe = os.path.abspath(simulate_stacks_from_reconstruction.__file__)
        cmd_args = ["python %s" % exe]
        cmd_args.append("--filenames %s" % (" ").join(filenames))
        if args.filenames_masks is not None:
            cmd_args.append("--filenames-masks %s" %
                            (" ").join(filenames_masks))
        cmd_args.append("--dir-input-mc '%s'" % dir_input_mc)
        cmd_args.append("--dir-output '%s'" % dir_output_orig_vs_proj)
        cmd_args.append("--reconstruction '%s'" % srr_template)
        cmd_args.append("--copy-data 1")
        if args.slice_thicknesses is not None:
            cmd_args.append("--slice-thicknesses %s" %
                            " ".join(map(str, args.slice_thicknesses)))
        # cmd_args.append("--verbose %s" % args.verbose)
        cmd = (" ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("SRR slice projections failed")

        filenames_simulated = [
            "'%s" % os.path.join(dir_output_orig_vs_proj, os.path.basename(f))
            for f in filenames
        ]

        # Evaluate slice similarities to ground truth
        exe = os.path.abspath(evaluate_simulated_stack_similarity.__file__)
        cmd_args = ["python %s" % exe]
        cmd_args.append("--filenames %s" % (" ").join(filenames_simulated))
        if args.filenames_masks is not None:
            cmd_args.append("--filenames-masks %s" %
                            (" ").join(filenames_masks))
        cmd_args.append("--measures NCC SSIM")
        cmd_args.append("--dir-output '%s'" % dir_output_selfsimilarity)
        cmd = (" ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Evaluation of stack similarities failed")

        # Generate figures showing the quantitative comparison
        exe = os.path.abspath(
            show_evaluated_simulated_stack_similarity.__file__)
        cmd_args = ["python %s" % exe]
        cmd_args.append("--dir-input '%s'" % dir_output_selfsimilarity)
        cmd_args.append("--dir-output '%s'" % dir_output_selfsimilarity)
        cmd = (" ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            ph.print_warning("Visualization of stack similarities failed")

        # Generate pdfs showing all the side-by-side comparisons
        if 0:
            exe = os.path.abspath(
                export_side_by_side_simulated_vs_original_slice_comparison.
                __file__)
            cmd_args = ["python %s" % exe]
            cmd_args.append("--filenames %s" % (" ").join(filenames_simulated))
            cmd_args.append("--dir-output '%s'" % dir_output_orig_vs_proj_pdf)
            cmd = "python %s %s" % (exe, (" ").join(cmd_args))
            cmd = (" ").join(cmd_args)
            exit_code = ph.execute_command(cmd)
            if exit_code != 0:
                raise RuntimeError("Generation of PDF overview failed")

    ph.print_title("Summary")
    print("Computational Time for Bias Field Correction: %s" %
          elapsed_time_bias)
    print("Computational Time for Volumetric Reconstruction: %s" %
          elapsed_time_volrec)
    print("Computational Time for Pipeline: %s" % ph.stop_timing(time_start))

    return 0
예제 #7
0
def main():
    input_parser = InputArgparser(
        description="Create and write random motion transforms.",
    )
    input_parser.add_dir_output(required=True)
    input_parser.add_option(
        option_string="--simulations", type=int, required=True)
    input_parser.add_option(option_string="--angle-max", default=10)
    input_parser.add_option(option_string="--translation-max", default=10)
    input_parser.add_option(option_string="--seed", type=int, default=1)
    input_parser.add_option(option_string="--dimension", type=int, default=3)
    input_parser.add_option(
        option_string="--write-settings", type=int, default=1)
    input_parser.add_prefix_output(default="Euler3DTransform_")
    input_parser.add_verbose(default=0)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    motion_simulator = ms.RandomRigidMotionSimulator(
        dimension=args.dimension,
        angle_max_deg=args.angle_max,
        translation_max=args.translation_max,
        verbose=args.verbose)
    motion_simulator.simulate_motion(
        seed=args.seed, simulations=args.simulations)

    prefix = "%sAngle%gTranslation%gSeed%d_" % (
        args.prefix_output, args.angle_max, args.translation_max, args.seed)
    prefix = prefix.replace(".", "p")
    motion_simulator.write_transforms_sitk(
        directory=args.dir_output,
        prefix_filename=prefix)

    return 0
예제 #8
0
def main():

    time_start = ph.start_timing()

    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Perform Bias Field correction on images based on N4ITK.",
    )
    input_parser.add_filenames(required=True)
    input_parser.add_dir_output(required=True)
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_prefix_output(default="N4ITK_")
    input_parser.add_option(
        option_string="--convergence-threshold",
        type=float,
        help="Specify the convergence threshold.",
        default=1e-6,
    )
    input_parser.add_option(
        option_string="--spline-order",
        type=int,
        help="Specify the spline order defining the bias field estimate.",
        default=3,
    )
    input_parser.add_option(
        option_string="--wiener-filter-noise",
        type=float,
        help="Specify the noise estimate defining the Wiener filter.",
        default=0.11,
    )
    input_parser.add_option(
        option_string="--bias-field-fwhm",
        type=float,
        help="Specify the full width at half maximum parameter characterizing "
        "the width of the Gaussian deconvolution.",
        default=0.15,
    )
    input_parser.add_log_script_execution(default=1)
    input_parser.add_verbose(default=0)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    # Write script execution call
    if args.log_script_execution:
        input_parser.write_performed_script_execution(
            os.path.abspath(__file__))

    # Read data
    data_reader = dr.MultipleImagesReader(args.filenames,
                                          suffix_mask=args.suffix_mask)
    data_reader.read_data()
    stacks = data_reader.get_data()

    # Perform Bias Field Correction
    ph.print_title("Perform Bias Field Correction")
    bias_field_corrector = n4itk.N4BiasFieldCorrection(
        convergence_threshold=args.convergence_threshold,
        spline_order=args.spline_order,
        wiener_filter_noise=args.wiener_filter_noise,
        bias_field_fwhm=args.bias_field_fwhm,
        prefix_corrected=args.prefix_output,
    )
    stacks_corrected = [None] * len(stacks)
    for i, stack in enumerate(stacks):
        ph.print_info("Image %d/%d: N4ITK Bias Field Correction ... " %
                      (i + 1, len(stacks)),
                      newline=False)
        bias_field_corrector.set_stack(stack)
        bias_field_corrector.run_bias_field_correction()
        stacks_corrected[i] = \
            bias_field_corrector.get_bias_field_corrected_stack()
        print("done")
        ph.print_info("Image %d/%d: Computational time = %s" %
                      (i + 1, len(stacks),
                       bias_field_corrector.get_computational_time()))

        # Write Data
        stacks_corrected[i].write(args.dir_output,
                                  write_mask=True,
                                  suffix_mask=args.suffix_mask)

        if args.verbose:
            sitkh.show_stacks([stacks[i], stacks_corrected[i]],
                              segmentation=stacks[i])

    elapsed_time = ph.stop_timing(time_start)

    ph.print_title("Summary")
    print("Computational Time for Bias Field Correction(s): %s" %
          (elapsed_time))

    return 0
예제 #9
0
def main():

    time_start = ph.start_timing()

    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Perform Bias Field correction using N4ITK.", )
    input_parser.add_filename(required=True)
    input_parser.add_output(required=True)
    input_parser.add_filename_mask()
    input_parser.add_option(
        option_string="--convergence-threshold",
        type=float,
        help="Specify the convergence threshold.",
        default=1e-6,
    )
    input_parser.add_option(
        option_string="--spline-order",
        type=int,
        help="Specify the spline order defining the bias field estimate.",
        default=3,
    )
    input_parser.add_option(
        option_string="--wiener-filter-noise",
        type=float,
        help="Specify the noise estimate defining the Wiener filter.",
        default=0.11,
    )
    input_parser.add_option(
        option_string="--bias-field-fwhm",
        type=float,
        help="Specify the full width at half maximum parameter characterizing "
        "the width of the Gaussian deconvolution.",
        default=0.15,
    )
    input_parser.add_log_config(default=1)
    input_parser.add_verbose(default=0)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if np.alltrue([not args.output.endswith(t) for t in ALLOWED_EXTENSIONS]):
        raise ValueError(
            "output filename invalid; allowed extensions are: %s" %
            ", ".join(ALLOWED_EXTENSIONS))

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    # Read data
    stack = st.Stack.from_filename(
        file_path=args.filename,
        file_path_mask=args.filename_mask,
        extract_slices=False,
    )

    # Perform Bias Field Correction
    # ph.print_title("Perform Bias Field Correction")
    bias_field_corrector = n4itk.N4BiasFieldCorrection(
        stack=stack,
        use_mask=True if args.filename_mask is not None else False,
        convergence_threshold=args.convergence_threshold,
        spline_order=args.spline_order,
        wiener_filter_noise=args.wiener_filter_noise,
        bias_field_fwhm=args.bias_field_fwhm,
    )
    ph.print_info("N4ITK Bias Field Correction ... ", newline=False)
    bias_field_corrector.run_bias_field_correction()
    stack_corrected = bias_field_corrector.get_bias_field_corrected_stack()
    print("done")

    dw.DataWriter.write_image(stack_corrected.sitk, args.output)

    elapsed_time = ph.stop_timing(time_start)

    if args.verbose:
        ph.show_niftis([args.filename, args.output])

    ph.print_title("Summary")
    exe_file_info = os.path.basename(os.path.abspath(__file__)).split(".")[0]
    print("%s | Computational Time for Bias Field Correction: %s" %
          (exe_file_info, elapsed_time))

    return 0
예제 #10
0
def main():

    time_start = ph.start_timing()

    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Register an obtained reconstruction (moving) "
        "to a template image/space (fixed) using rigid registration. "
        "The resulting registration can optionally be applied to previously "
        "obtained motion correction slice transforms so that a volumetric "
        "reconstruction is possible in the (standard anatomical) space "
        "defined by the fixed.", )
    input_parser.add_fixed(required=True)
    input_parser.add_moving(
        required=True,
        nargs="+",
        help="Specify moving image to be warped to fixed space. "
        "If multiple images are provided, all images will be transformed "
        "uniformly according to the registration obtained for the first one.")
    input_parser.add_dir_output(required=True)
    input_parser.add_dir_input()
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_search_angle(default=180)
    input_parser.add_option(
        option_string="--transform-only",
        type=int,
        help="Turn on/off functionality to transform moving image(s) to fixed "
        "image only, i.e. no resampling to fixed image space",
        default=0)
    input_parser.add_option(
        option_string="--write-transform",
        type=int,
        help="Turn on/off functionality to write registration transform",
        default=0)
    input_parser.add_verbose(default=0)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    use_reg_aladin_for_refinement = True

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")
    data_reader = dr.MultipleImagesReader(args.moving, suffix_mask="_mask")
    data_reader.read_data()
    moving = data_reader.get_data()

    data_reader = dr.MultipleImagesReader([args.fixed], suffix_mask="_mask")
    data_reader.read_data()
    fixed = data_reader.get_data()[0]

    # -------------------Register Reconstruction to Template-------------------
    ph.print_title("Register Reconstruction to Template")

    # Define search angle ranges for FLIRT in all three dimensions
    search_angles = [
        "-searchr%s -%d %d" % (x, args.search_angle, args.search_angle)
        for x in ["x", "y", "z"]
    ]
    search_angles = (" ").join(search_angles)
    options_args = []
    options_args.append(search_angles)
    # cost = "mutualinfo"
    # options_args.append("-searchcost %s -cost %s" % (cost, cost))
    registration = regflirt.FLIRT(
        fixed=moving[0],
        moving=fixed,
        # use_fixed_mask=True,
        # use_moving_mask=True,  # moving mask only seems to work for SB cases
        registration_type="Rigid",
        use_verbose=False,
        options=(" ").join(options_args),
    )
    ph.print_info("Run Registration (FLIRT) ... ", newline=False)
    registration.run()
    print("done")
    transform_sitk = registration.get_registration_transform_sitk()

    if args.write_transform:
        path_to_transform = os.path.join(args.dir_output,
                                         "registration_transform_sitk.txt")
        sitk.WriteTransform(transform_sitk, path_to_transform)

    # Apply rigidly transform to align reconstruction (moving) with template
    # (fixed)
    for m in moving:
        m.update_motion_correction(transform_sitk)

        # Additionally, use RegAladin for more accurate alignment
        # Rationale: FLIRT has better capture range, but RegAladin seems to
        # find better alignment once it is within its capture range.
        if use_reg_aladin_for_refinement:
            registration = niftyreg.RegAladin(
                fixed=m,
                use_fixed_mask=True,
                moving=fixed,
                registration_type="Rigid",
                use_verbose=False,
            )
            ph.print_info("Run Registration (RegAladin) ... ", newline=False)
            registration.run()
            print("done")
            transform2_sitk = registration.get_registration_transform_sitk()
            m.update_motion_correction(transform2_sitk)
            transform_sitk = sitkh.get_composite_sitk_affine_transform(
                transform2_sitk, transform_sitk)

    if args.transform_only:
        for m in moving:
            m.write(args.dir_output, write_mask=False)
        ph.exit()

    # Resample reconstruction (moving) to template space (fixed)
    warped_moving = [
        m.get_resampled_stack(fixed.sitk, interpolator="Linear")
        for m in moving
    ]

    for wm in warped_moving:
        wm.set_filename(wm.get_filename() + "ResamplingToTemplateSpace")

        if args.verbose:
            sitkh.show_stacks([fixed, wm], segmentation=fixed)

        # Write resampled reconstruction (moving)
        wm.write(args.dir_output, write_mask=False)

    if args.dir_input is not None:
        data_reader = dr.ImageSlicesDirectoryReader(
            path_to_directory=args.dir_input, suffix_mask=args.suffix_mask)
        data_reader.read_data()
        stacks = data_reader.get_data()

        for i, stack in enumerate(stacks):
            stack.update_motion_correction(transform_sitk)
            ph.print_info("Stack %d/%d: All slice transforms updated" %
                          (i + 1, len(stacks)))

            # Write transformed slices
            stack.write(
                os.path.join(args.dir_output, "motion_correction"),
                write_mask=True,
                write_slices=True,
                write_transforms=True,
                suffix_mask=args.suffix_mask,
            )

    elapsed_time_total = ph.stop_timing(time_start)

    # Summary
    ph.print_title("Summary")
    print("Computational Time: %s" % (elapsed_time_total))

    return 0
def main():

    time_start = ph.start_timing()

    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Run reconstruction pipeline including "
        "(i) bias field correction, "
        "(ii) volumetric reconstruction in subject space, "
        "and (iii) volumetric reconstruction in template space.", )
    input_parser.add_filenames(required=True)
    input_parser.add_filenames_masks(required=True)
    input_parser.add_target_stack(required=False)
    input_parser.add_suffix_mask(default="''")
    input_parser.add_dir_output(required=True)
    input_parser.add_alpha(default=0.01)
    input_parser.add_verbose(default=0)
    input_parser.add_gestational_age(required=False)
    input_parser.add_prefix_output(default="")
    input_parser.add_search_angle(default=180)
    input_parser.add_multiresolution(default=0)
    input_parser.add_log_config(default=1)
    input_parser.add_isotropic_resolution()
    input_parser.add_reference()
    input_parser.add_reference_mask()
    input_parser.add_bias_field_correction(default=1)
    input_parser.add_intensity_correction(default=1)
    input_parser.add_iter_max(default=10)
    input_parser.add_two_step_cycles(default=3)
    input_parser.add_option(
        option_string="--run-bias-field-correction",
        type=int,
        help="Turn on/off bias field correction. "
        "If off, it is assumed that this step was already performed",
        default=1)
    input_parser.add_option(
        option_string="--run-recon-subject-space",
        type=int,
        help="Turn on/off reconstruction in subject space. "
        "If off, it is assumed that this step was already performed",
        default=1)
    input_parser.add_option(
        option_string="--run-recon-template-space",
        type=int,
        help="Turn on/off reconstruction in template space. "
        "If off, it is assumed that this step was already performed",
        default=1)
    input_parser.add_option(
        option_string="--run-data-vs-simulated-data",
        type=int,
        help="Turn on/off comparison of data vs data simulated from the "
        "obtained volumetric reconstruction. "
        "If off, it is assumed that this step was already performed",
        default=0)
    input_parser.add_option(
        option_string="--initial-transform",
        type=str,
        help="Set initial transform to be used for register_image.",
        default=None)
    input_parser.add_outlier_rejection(default=1)
    input_parser.add_argument(
        "--sda",
        "-sda",
        action='store_true',
        help="If given, the volume is reconstructed using "
        "Scattered Data Approximation (Vercauteren et al., 2006). "
        "--alpha is considered the value for the standard deviation then. "
        "Recommended value is, e.g., --alpha 0.8")

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    filename_srr = "srr"
    dir_output_preprocessing = os.path.join(args.dir_output,
                                            "preprocessing_n4itk")
    dir_output_recon_subject_space = os.path.join(args.dir_output,
                                                  "recon_subject_space")
    dir_output_recon_template_space = os.path.join(args.dir_output,
                                                   "recon_template_space")
    dir_output_data_vs_simulatd_data = os.path.join(args.dir_output,
                                                    "data_vs_simulated_data")

    srr_subject = os.path.join(dir_output_recon_subject_space,
                               "%s_subject.nii.gz" % filename_srr)
    srr_subject_mask = ph.append_to_filename(srr_subject, "_mask")
    srr_template = os.path.join(dir_output_recon_template_space,
                                "%s_template.nii.gz" % filename_srr)
    srr_template_mask = ph.append_to_filename(srr_template, "_mask")
    trafo_template = os.path.join(dir_output_recon_template_space,
                                  "registration_transform_sitk.txt")

    if args.target_stack is None:
        target_stack = args.filenames[0]
    else:
        target_stack = args.target_stack

    if args.bias_field_correction and args.run_bias_field_correction:
        for i, f in enumerate(args.filenames):
            output = os.path.join(dir_output_preprocessing,
                                  os.path.basename(f))
            cmd_args = []
            cmd_args.append("--filename %s" % f)
            cmd_args.append("--filename-mask %s" % args.filenames_masks[i])
            cmd_args.append("--output %s" % output)
            # cmd_args.append("--verbose %d" % args.verbose)
            cmd = "niftymic_correct_bias_field %s" % (" ").join(cmd_args)
            time_start_bias = ph.start_timing()
            exit_code = ph.execute_command(cmd)
            if exit_code != 0:
                raise RuntimeError("Bias field correction failed")
        elapsed_time_bias = ph.stop_timing(time_start_bias)
        filenames = [
            os.path.join(dir_output_preprocessing, os.path.basename(f))
            for f in args.filenames
        ]
    elif args.bias_field_correction and not args.run_bias_field_correction:
        elapsed_time_bias = ph.get_zero_time()
        filenames = [
            os.path.join(dir_output_preprocessing, os.path.basename(f))
            for f in args.filenames
        ]
    else:
        elapsed_time_bias = ph.get_zero_time()
        filenames = args.filenames

    if args.run_recon_subject_space:
        target_stack_index = args.filenames.index(target_stack)

        cmd_args = []
        cmd_args.append("--filenames %s" % (" ").join(filenames))
        if args.filenames_masks is not None:
            cmd_args.append("--filenames-masks %s" %
                            (" ").join(args.filenames_masks))
        cmd_args.append("--multiresolution %d" % args.multiresolution)
        cmd_args.append("--target-stack-index %d" % target_stack_index)
        cmd_args.append("--output %s" % srr_subject)
        cmd_args.append("--suffix-mask '%s'" % args.suffix_mask)
        cmd_args.append("--intensity-correction %d" %
                        args.intensity_correction)
        cmd_args.append("--alpha %s" % args.alpha)
        cmd_args.append("--iter-max %d" % args.iter_max)
        cmd_args.append("--two-step-cycles %d" % args.two_step_cycles)
        cmd_args.append("--outlier-rejection %d" % args.outlier_rejection)
        cmd_args.append("--verbose %d" % args.verbose)
        if args.isotropic_resolution is not None:
            cmd_args.append("--isotropic-resolution %f" %
                            args.isotropic_resolution)
        if args.reference is not None:
            cmd_args.append("--reference %s" % args.reference)
        if args.reference_mask is not None:
            cmd_args.append("--reference-mask %s" % args.reference_mask)
        if args.sda:
            cmd_args.append("--sda")
        cmd = "niftymic_reconstruct_volume %s" % (" ").join(cmd_args)
        time_start_volrec = ph.start_timing()
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Reconstruction in subject space failed")

        # Compute SRR mask in subject space
        # (Approximated using SDA within reconstruct_volume)
        if 0:
            dir_motion_correction = os.path.join(
                dir_output_recon_subject_space, "motion_correction")
            cmd_args = ["niftymic_reconstruct_volume_from_slices"]
            cmd_args.append("--filenames %s" % " ".join(args.filenames_masks))
            cmd_args.append("--dir-input-mc %s" % dir_motion_correction)
            cmd_args.append("--output %s" % srr_subject_mask)
            cmd_args.append("--reconstruction-space %s" % srr_subject)
            cmd_args.append("--suffix-mask '%s'" % args.suffix_mask)
            cmd_args.append("--mask")
            if args.sda:
                cmd_args.append("--sda")
                cmd_args.append("--alpha 1")
            else:
                cmd_args.append("--alpha 0.1")
                cmd_args.append("--iter-max 5")
            cmd = (" ").join(cmd_args)
            ph.execute_command(cmd)

        elapsed_time_volrec = ph.stop_timing(time_start_volrec)
    else:
        elapsed_time_volrec = ph.get_zero_time()

    if args.run_recon_template_space:

        if args.gestational_age is None:
            template_stack_estimator = \
                tse.TemplateStackEstimator.from_mask(srr_subject_mask)
            gestational_age = template_stack_estimator.get_estimated_gw()
            ph.print_info("Estimated gestational age: %d" % gestational_age)
        else:
            gestational_age = args.gestational_age

        template = os.path.join(DIR_TEMPLATES,
                                "STA%d.nii.gz" % gestational_age)
        template_mask = os.path.join(DIR_TEMPLATES,
                                     "STA%d_mask.nii.gz" % gestational_age)

        cmd_args = []
        cmd_args.append("--fixed %s" % template)
        cmd_args.append("--moving %s" % srr_subject)
        cmd_args.append("--fixed-mask %s" % template_mask)
        cmd_args.append("--moving-mask %s" % srr_subject_mask)
        cmd_args.append(
            "--dir-input-mc %s" %
            os.path.join(dir_output_recon_subject_space, "motion_correction"))
        cmd_args.append("--output %s" % trafo_template)
        cmd_args.append("--verbose %s" % args.verbose)
        if args.initial_transform is not None:
            cmd_args.append("--initial-transform %s" % args.initial_transform)
            cmd_args.append("--use-flirt 0")
            cmd_args.append("--test-ap-flip 0")
        cmd = "niftymic_register_image %s" % (" ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Registration to template space failed")

        # reconstruct volume in template space
        # pattern = "[a-zA-Z0-9_.]+(ResamplingToTemplateSpace.nii.gz)"
        # p = re.compile(pattern)
        # reconstruction_space = [
        #     os.path.join(dir_output_recon_template_space, p.match(f).group(0))
        #     for f in os.listdir(dir_output_recon_template_space)
        #     if p.match(f)][0]

        dir_input_mc = os.path.join(dir_output_recon_template_space,
                                    "motion_correction")
        cmd_args = ["niftymic_reconstruct_volume_from_slices"]
        cmd_args.append("--filenames %s" % (" ").join(filenames))
        cmd_args.append("--dir-input-mc %s" % dir_input_mc)
        cmd_args.append("--output %s" % srr_template)
        cmd_args.append("--reconstruction-space %s" % template)
        cmd_args.append("--iter-max %d" % args.iter_max)
        cmd_args.append("--alpha %s" % args.alpha)
        cmd_args.append("--suffix-mask '%s'" % args.suffix_mask)
        cmd_args.append("--verbose %s" % args.verbose)
        if args.sda:
            cmd_args.append("--sda")

        cmd = (" ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Reconstruction in template space failed")

        # Compute SRR mask in template space
        if 1:
            dir_motion_correction = os.path.join(
                dir_output_recon_template_space, "motion_correction")
            cmd_args = ["niftymic_reconstruct_volume_from_slices"]
            cmd_args.append("--filenames %s" % " ".join(args.filenames_masks))
            cmd_args.append("--dir-input-mc %s" % dir_motion_correction)
            cmd_args.append("--output %s" % srr_template_mask)
            cmd_args.append("--reconstruction-space %s" % srr_template)
            cmd_args.append("--suffix-mask '%s'" % args.suffix_mask)
            cmd_args.append("--mask")
            if args.sda:
                cmd_args.append("--sda")
                cmd_args.append("--alpha 1")
            else:
                cmd_args.append("--alpha 0.1")
                cmd_args.append("--iter-max 5")
            cmd = (" ").join(cmd_args)
            ph.execute_command(cmd)

        # Copy SRR to output directory
        output = "%sSRR_Stacks%d.nii.gz" % (args.prefix_output,
                                            len(args.filenames))
        path_to_output = os.path.join(args.dir_output, output)
        cmd = "cp -p %s %s" % (srr_template, path_to_output)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Copy of SRR to output directory failed")

        # Multiply template mask with reconstruction
        cmd_args = ["niftymic_multiply"]
        fnames = [
            srr_template,
            srr_template_mask,
        ]
        output_masked = "Masked_%s" % output
        path_to_output_masked = os.path.join(args.dir_output, output_masked)
        cmd_args.append("--filenames %s" % " ".join(fnames))
        cmd_args.append("--output %s" % path_to_output_masked)
        cmd = (" ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("SRR brain masking failed")

    else:
        elapsed_time_template = ph.get_zero_time()

    if args.run_data_vs_simulated_data:

        dir_input_mc = os.path.join(dir_output_recon_template_space,
                                    "motion_correction")

        # Get simulated/projected slices
        cmd_args = []
        cmd_args.append("--filenames %s" % (" ").join(filenames))
        if args.filenames_masks is not None:
            cmd_args.append("--filenames-masks %s" %
                            (" ").join(args.filenames_masks))
        cmd_args.append("--dir-input-mc %s" % dir_input_mc)
        cmd_args.append("--dir-output %s" % dir_output_data_vs_simulatd_data)
        cmd_args.append("--reconstruction %s" % srr_template)
        cmd_args.append("--copy-data 1")
        cmd_args.append("--suffix-mask '%s'" % args.suffix_mask)
        # cmd_args.append("--verbose %s" % args.verbose)
        exe = os.path.abspath(simulate_stacks_from_reconstruction.__file__)
        cmd = "python %s %s" % (exe, (" ").join(cmd_args))
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("SRR slice projections failed")

        filenames_simulated = [
            os.path.join(dir_output_data_vs_simulatd_data, os.path.basename(f))
            for f in filenames
        ]

        dir_output_evaluation = os.path.join(dir_output_data_vs_simulatd_data,
                                             "evaluation")
        dir_output_figures = os.path.join(dir_output_data_vs_simulatd_data,
                                          "figures")
        dir_output_side_by_side = os.path.join(dir_output_figures,
                                               "side-by-side")

        # Evaluate slice similarities to ground truth
        cmd_args = []
        cmd_args.append("--filenames %s" % (" ").join(filenames_simulated))
        if args.filenames_masks is not None:
            cmd_args.append("--filenames-masks %s" %
                            (" ").join(args.filenames_masks))
        cmd_args.append("--suffix-mask '%s'" % args.suffix_mask)
        cmd_args.append("--measures NCC SSIM")
        cmd_args.append("--dir-output %s" % dir_output_evaluation)
        exe = os.path.abspath(evaluate_simulated_stack_similarity.__file__)
        cmd = "python %s %s" % (exe, (" ").join(cmd_args))
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Evaluation of slice similarities failed")

        # Generate figures showing the quantitative comparison
        cmd_args = []
        cmd_args.append("--dir-input %s" % dir_output_evaluation)
        cmd_args.append("--dir-output %s" % dir_output_figures)
        exe = os.path.abspath(
            show_evaluated_simulated_stack_similarity.__file__)
        cmd = "python %s %s" % (exe, (" ").join(cmd_args))
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            ph.print_warning("Visualization of slice similarities failed")

        # Generate pdfs showing all the side-by-side comparisons
        cmd_args = []
        cmd_args.append("--filenames %s" % (" ").join(filenames_simulated))
        cmd_args.append("--dir-output %s" % dir_output_side_by_side)
        exe = os.path.abspath(
            export_side_by_side_simulated_vs_original_slice_comparison.__file__
        )
        cmd = "python %s %s" % (exe, (" ").join(cmd_args))
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Generation of PDF overview failed")

    ph.print_title("Summary")
    print("Computational Time for Bias Field Correction: %s" %
          elapsed_time_bias)
    print("Computational Time for Volumetric Reconstruction: %s" %
          elapsed_time_volrec)
    print("Computational Time for Pipeline: %s" % ph.stop_timing(time_start))

    return 0
def main():

    # Read input
    input_parser = InputArgparser(
        description="Script to evaluate the similarity of simulated stack "
        "from obtained reconstruction against the original stack. "
        "This function takes the result of "
        "simulate_stacks_from_reconstruction.py as input.", )
    input_parser.add_filenames(required=True)
    input_parser.add_filenames_masks()
    input_parser.add_dir_output(required=True)
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_measures(default=["NCC", "SSIM"])
    input_parser.add_option(
        option_string="--prefix-simulated",
        type=str,
        help="Specify the prefix of the simulated stacks to distinguish them "
        "from the original data.",
        default="Simulated_",
    )
    input_parser.add_option(
        option_string="--dir-input-simulated",
        type=str,
        help="Specify the directory where the simulated stacks are. "
        "If not given, it is assumed that they are in the same directory "
        "as the original ones.",
        default=None)
    input_parser.add_slice_thicknesses(default=None)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")

    # Read original data
    filenames_original = args.filenames
    data_reader = dr.MultipleImagesReader(
        file_paths=filenames_original,
        file_paths_masks=args.filenames_masks,
        suffix_mask=args.suffix_mask,
        stacks_slice_thicknesses=args.slice_thicknesses,
    )
    data_reader.read_data()
    stacks_original = data_reader.get_data()

    # Read data simulated from obtained reconstruction
    if args.dir_input_simulated is None:
        dir_input_simulated = os.path.dirname(filenames_original[0])
    else:
        dir_input_simulated = args.dir_input_simulated
    filenames_simulated = [
        os.path.join("%s", "%s%s") %
        (dir_input_simulated, args.prefix_simulated, os.path.basename(f))
        for f in filenames_original
    ]
    data_reader = dr.MultipleImagesReader(filenames_simulated,
                                          suffix_mask=args.suffix_mask)
    data_reader.read_data()
    stacks_simulated = data_reader.get_data()

    for i in range(len(stacks_original)):
        try:
            stacks_original[i].sitk - stacks_simulated[i].sitk
        except:
            raise IOError(
                "Images '%s' and '%s' do not occupy the same space!" %
                (filenames_original[i], filenames_simulated[i]))

    similarity_measures = {
        m: SimilarityMeasures.similarity_measures[m]
        for m in args.measures
    }
    similarities = np.zeros(len(args.measures))

    for i in range(len(stacks_original)):
        nda_3D_original = sitk.GetArrayFromImage(stacks_original[i].sitk)
        nda_3D_simulated = sitk.GetArrayFromImage(stacks_simulated[i].sitk)
        nda_3D_mask = sitk.GetArrayFromImage(stacks_original[i].sitk_mask)

        path_to_file = os.path.join(
            args.dir_output,
            "Similarity_%s.txt" % stacks_original[i].get_filename())
        text = "# Similarity: %s vs %s (%s)." % (os.path.basename(
            filenames_original[i]), os.path.basename(
                filenames_simulated[i]), ph.get_time_stamp())
        text += "\n#\t" + ("\t").join(args.measures)
        text += "\n"
        ph.write_to_file(path_to_file, text, "w")
        for k in range(nda_3D_original.shape[0]):
            x_2D_original = nda_3D_original[k, :, :]
            x_2D_simulated = nda_3D_simulated[k, :, :]

            # zero slice, i.e. rejected during motion correction
            if np.abs(x_2D_simulated).sum() < 1e-6:
                x_2D_simulated[:] = np.nan
            x_2D_mask = nda_3D_mask[k, :, :]

            indices = np.where(x_2D_mask > 0)

            for m, measure in enumerate(args.measures):
                if len(indices[0]) > 0:
                    similarities[m] = similarity_measures[measure](
                        x_2D_original[indices], x_2D_simulated[indices])
                else:
                    similarities[m] = np.nan
            ph.write_array_to_file(path_to_file, similarities.reshape(1, -1))

    return 0
예제 #13
0
def main():

    time_start = ph.start_timing()

    # Set print options
    np.set_printoptions(precision=3)
    pd.set_option('display.width', 1000)

    input_parser = InputArgparser(description=".", )
    input_parser.add_filenames()
    input_parser.add_filenames_masks()
    input_parser.add_dir_input_mc()
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_reference(required=True)
    input_parser.add_reference_mask()
    input_parser.add_dir_output(required=False)
    input_parser.add_log_config(default=1)
    input_parser.add_measures(default=["PSNR", "RMSE", "SSIM", "NCC", "NMI"])
    input_parser.add_verbose(default=0)
    input_parser.add_slice_thicknesses(default=None)
    input_parser.add_option(option_string="--use-reference-mask",
                            type=int,
                            default=1)
    input_parser.add_option(option_string="--use-slice-masks",
                            type=int,
                            default=1)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")

    data_reader = dr.MultipleImagesReader(
        file_paths=args.filenames,
        file_paths_masks=args.filenames_masks,
        suffix_mask=args.suffix_mask,
        dir_motion_correction=args.dir_input_mc,
        stacks_slice_thicknesses=args.slice_thicknesses,
    )

    data_reader.read_data()
    stacks = data_reader.get_data()
    ph.print_info("%d input stacks read for further processing" % len(stacks))

    reference = st.Stack.from_filename(args.reference, args.reference_mask)

    ph.print_title("Slice Residual Similarity")
    residual_evaluator = res_ev.ResidualEvaluator(
        stacks=stacks,
        reference=reference,
        measures=args.measures,
        use_reference_mask=args.use_reference_mask,
        use_slice_masks=args.use_slice_masks,
    )
    residual_evaluator.compute_slice_projections()
    residual_evaluator.evaluate_slice_similarities()
    residual_evaluator.write_slice_similarities(args.dir_output)

    elapsed_time = ph.stop_timing(time_start)
    ph.print_title("Summary")
    print("Computational Time for Slice Residual Evaluation: %s" %
          (elapsed_time))

    return 0
def main():

    time_start = ph.start_timing()

    # Set print options
    np.set_printoptions(precision=3)
    pd.set_option('display.width', 1000)

    input_parser = InputArgparser(
        description=".",
    )
    input_parser.add_filenames()
    input_parser.add_filenames_masks()
    input_parser.add_dir_input_mc()
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_reference(required=True)
    input_parser.add_reference_mask()
    input_parser.add_dir_output(required=False)
    input_parser.add_log_config(default=1)
    input_parser.add_measures(
        default=["PSNR", "MAE", "RMSE", "SSIM", "NCC", "NMI"])
    input_parser.add_verbose(default=0)
    input_parser.add_target_stack(default=None)
    input_parser.add_intensity_correction(default=1)
    input_parser.add_slice_thicknesses(default=None)
    input_parser.add_option(
        option_string="--use-reference-mask", type=int, default=1)
    input_parser.add_option(
        option_string="--use-slice-masks", type=int, default=1)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")

    data_reader = dr.MultipleImagesReader(
        file_paths=args.filenames,
        file_paths_masks=args.filenames_masks,
        suffix_mask=args.suffix_mask,
        dir_motion_correction=args.dir_input_mc,
        stacks_slice_thicknesses=args.slice_thicknesses,
    )

    data_reader.read_data()
    stacks = data_reader.get_data()
    ph.print_info("%d input stacks read for further processing" % len(stacks))

    # Specify target stack for intensity correction and reconstruction space
    if args.target_stack is None:
        target_stack_index = 0
    else:
        filenames = ["%s.nii.gz" % s.get_filename() for s in stacks]
        filename_target_stack = os.path.basename(args.target_stack)
        try:
            target_stack_index = filenames.index(filename_target_stack)
        except ValueError as e:
            raise ValueError(
                "--target-stack must correspond to an image as provided by "
                "--filenames")

    # ---------------------------Intensity Correction--------------------------
    if args.intensity_correction:
        ph.print_title("Intensity Correction")
        intensity_corrector = ic.IntensityCorrection()
        intensity_corrector.use_individual_slice_correction(False)
        intensity_corrector.use_stack_mask(True)
        intensity_corrector.use_reference_mask(True)
        intensity_corrector.use_verbose(False)

        for i, stack in enumerate(stacks):
            if i == target_stack_index:
                ph.print_info("Stack %d (%s): Reference image. Skipped." % (
                    i + 1, stack.get_filename()))
                continue
            else:
                ph.print_info("Stack %d (%s): Intensity Correction ... " % (
                    i + 1, stack.get_filename()), newline=False)
            intensity_corrector.set_stack(stack)
            intensity_corrector.set_reference(
                stacks[target_stack_index].get_resampled_stack(
                    resampling_grid=stack.sitk,
                    interpolator="NearestNeighbor",
                ))
            intensity_corrector.run_linear_intensity_correction()
            stacks[i] = intensity_corrector.get_intensity_corrected_stack()
            print("done (c1 = %g) " %
                  intensity_corrector.get_intensity_correction_coefficients())

    # ----------------------- Slice Residual Similarity -----------------------
    reference = st.Stack.from_filename(args.reference, args.reference_mask)

    ph.print_title("Slice Residual Similarity")
    residual_evaluator = res_ev.ResidualEvaluator(
        stacks=stacks,
        reference=reference,
        measures=args.measures,
        use_reference_mask=args.use_reference_mask,
        use_slice_masks=args.use_slice_masks,
    )
    residual_evaluator.compute_slice_projections()
    residual_evaluator.evaluate_slice_similarities()
    residual_evaluator.write_slice_similarities(args.dir_output)

    elapsed_time = ph.stop_timing(time_start)
    ph.print_title("Summary")
    print("Computational Time for Slice Residual Evaluation: %s" %
          (elapsed_time))

    return 0
예제 #15
0
def main():
    time_start = ph.start_timing()

    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Perform automatic brain masking using "
        "fetal_brain_seg, part of the MONAIfbs package "
        "(https://github.com/gift-surg/MONAIfbs). ",
    )
    input_parser.add_filenames(required=True)
    input_parser.add_filenames_masks(required=False)
    input_parser.add_dir_output(required=False)
    input_parser.add_verbose(default=0)
    input_parser.add_log_config(default=0)
    input_parser.add_option(
        option_string="--neuroimage-legacy-seg",
        type=int,
        required=False,
        default=0,
        help="If set to 1, use the legacy method for fetal brain segmentation "
             "i.e. the two-step approach proposed in Ebner, Wang et al "
             "NeuroImage (2020)"
    )

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.neuroimage_legacy_seg:
        try:
            DIR_FETAL_BRAIN_SEG = os.environ["FETAL_BRAIN_SEG"]
        except KeyError as e:
            raise RuntimeError(
                "Environment variable FETAL_BRAIN_SEG is not specified. "
                "Specify the root directory of fetal_brain_seg "
                "(https://github.com/gift-surg/fetal_brain_seg) "
                "using "
                "'export FETAL_BRAIN_SEG=path_to_fetal_brain_seg_dir' "
                "(in bashrc).")
    else:
        try:
            import monaifbs
            DIR_FETAL_BRAIN_SEG = os.path.dirname(monaifbs.__file__)
        except ImportError as e:
            raise RuntimeError(
                "monaifbs not correctly installed. "
                "Please check its installation running "
                "pip install -e MONAIfbs/ "
            )

    print("Using executable from {}".format(DIR_FETAL_BRAIN_SEG))

    if args.filenames_masks is None and args.dir_output is None:
        raise IOError("Either --filenames-masks or --dir-output must be set")

    if args.dir_output is not None:
        args.filenames_masks = [
            os.path.join(args.dir_output, os.path.basename(f))
            for f in args.filenames
        ]

    if len(args.filenames) != len(args.filenames_masks):
        raise IOError("Number of filenames and filenames-masks must match")

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    cd_fetal_brain_seg = "cd %s" % DIR_FETAL_BRAIN_SEG

    for f, m in zip(args.filenames, args.filenames_masks):

        if not ph.file_exists(f):
            raise IOError("File '%s' does not exist" % f)

        # use absolute path for input image
        f = os.path.abspath(f)

        # use absolute path for output image
        dir_output = os.path.dirname(m)
        if not os.path.isabs(dir_output):
            dir_output = os.path.realpath(
                os.path.join(os.getcwd(), dir_output))
            m = os.path.join(dir_output, os.path.basename(m))

        ph.create_directory(dir_output)

        # Change to root directory of fetal_brain_seg
        cmds = [cd_fetal_brain_seg]

        # Run masking independently (Takes longer but ensures that it does
        # not terminate because of provided 'non-brain images')
        cmd_args = ["python fetal_brain_seg.py"]
        cmd_args.append("--input_names '%s'" % f)
        cmd_args.append("--segment_output_names '%s'" % m)
        cmds.append(" ".join(cmd_args))

        # Execute both steps
        cmd = " && ".join(cmds)
        flag = ph.execute_command(cmd)

        if flag != 0:
            ph.print_warning(
                "Error using fetal_brain_seg. \n"
                "Execute '%s' for further investigation" %
                cmd)

        ph.print_info("Fetal brain segmentation written to '%s'" % m)

        if args.verbose:
            ph.show_nifti(f, segmentation=m)

    elapsed_time_total = ph.stop_timing(time_start)

    ph.print_title("Summary")
    exe_file_info = os.path.basename(os.path.abspath(__file__)).split(".")[0]
    print("%s | Computational Time: %s" % (exe_file_info, elapsed_time_total))

    return 0
예제 #16
0
def main():

    time_start = ph.start_timing()

    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Register an obtained reconstruction (moving) "
        "to a template image/space (fixed) using rigid registration. "
        "The resulting registration can optionally be applied to previously "
        "obtained motion correction slice transforms so that a volumetric "
        "reconstruction is possible in the (standard anatomical) space "
        "defined by the fixed.", )
    input_parser.add_fixed(required=True)
    input_parser.add_moving(required=True)
    input_parser.add_output(help="Path to registration transform (.txt)",
                            required=True)
    input_parser.add_fixed_mask()
    input_parser.add_moving_mask()
    input_parser.add_dir_input_mc()
    input_parser.add_search_angle(default=180)
    input_parser.add_option(option_string="--initial-transform",
                            type=str,
                            help="Path to initial transform.",
                            default=None)
    input_parser.add_option(
        option_string="--test-ap-flip",
        type=int,
        help="Turn on/off functionality to run an additional registration "
        "after an AP-flip. Seems to be more robust to find a better "
        "registration outcome in general.",
        default=1)
    input_parser.add_option(
        option_string="--use-flirt",
        type=int,
        help="Turn on/off functionality to use FLIRT for the registration.",
        default=1)
    input_parser.add_option(
        option_string="--use-regaladin",
        type=int,
        help="Turn on/off functionality to use RegAladin for the "
        "registration.",
        default=1)
    input_parser.add_verbose(default=0)
    input_parser.add_log_config(default=1)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    debug = 0

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    if not args.use_regaladin and not args.use_flirt:
        raise IOError("Either RegAladin or FLIRT must be activated.")

    if not args.output.endswith(".txt"):
        raise IOError("output transformation path must end in '.txt'")

    dir_output = os.path.dirname(args.output)

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")
    fixed = st.Stack.from_filename(file_path=args.fixed,
                                   file_path_mask=args.fixed_mask,
                                   extract_slices=False)
    moving = st.Stack.from_filename(file_path=args.moving,
                                    file_path_mask=args.moving_mask,
                                    extract_slices=False)

    if args.initial_transform is not None:
        transform_sitk = sitkh.read_transform_sitk(args.initial_transform)
    else:
        transform_sitk = sitk.AffineTransform(fixed.sitk.GetDimension())
    sitk.WriteTransform(transform_sitk, args.output)

    path_to_tmp_output = os.path.join(
        DIR_TMP, ph.append_to_filename(os.path.basename(args.moving),
                                       "_warped"))

    # -------------------Register Reconstruction to Template-------------------
    ph.print_title("Register Reconstruction to Template")

    if args.use_flirt:
        path_to_transform_flirt = os.path.join(DIR_TMP, "transform_flirt.txt")

        # Convert SimpleITK into FLIRT transform
        cmd = "simplereg_transform -sitk2flirt %s %s %s %s" % (
            args.output, args.fixed, args.moving, path_to_transform_flirt)
        ph.execute_command(cmd, verbose=False)

        # Define search angle ranges for FLIRT in all three dimensions
        search_angles = [
            "-searchr%s -%d %d" % (x, args.search_angle, args.search_angle)
            for x in ["x", "y", "z"]
        ]

        # flt = nipype.interfaces.fsl.FLIRT()
        # flt.inputs.in_file = args.moving
        # flt.inputs.reference = args.fixed
        # if args.initial_transform is not None:
        #     flt.inputs.in_matrix_file = path_to_transform_flirt
        # flt.inputs.out_matrix_file = path_to_transform_flirt
        # # flt.inputs.output_type = "NIFTI_GZ"
        # flt.inputs.out_file = path_to_tmp_output
        # flt.inputs.args = "-dof 6"
        # flt.inputs.args += " %s" % " ".join(search_angles)
        # if args.moving_mask is not None:
        #     flt.inputs.in_weight = args.moving_mask
        # if args.fixed_mask is not None:
        #     flt.inputs.ref_weight = args.fixed_mask
        # ph.print_info("Run Registration (FLIRT) ... ", newline=False)
        # flt.run()
        # print("done")

        cmd_args = ["flirt"]
        cmd_args.append("-in %s" % args.moving)
        cmd_args.append("-ref %s" % args.fixed)
        if args.initial_transform is not None:
            cmd_args.append("-init %s" % path_to_transform_flirt)
        cmd_args.append("-omat %s" % path_to_transform_flirt)
        cmd_args.append("-out %s" % path_to_tmp_output)
        cmd_args.append("-dof 6")
        cmd_args.append((" ").join(search_angles))
        if args.moving_mask is not None:
            cmd_args.append("-inweight %s" % args.moving_mask)
        if args.fixed_mask is not None:
            cmd_args.append("-refweight %s" % args.fixed_mask)
        ph.print_info("Run Registration (FLIRT) ... ", newline=False)
        ph.execute_command(" ".join(cmd_args), verbose=False)
        print("done")

        # Convert FLIRT to SimpleITK transform
        cmd = "simplereg_transform -flirt2sitk %s %s %s %s" % (
            path_to_transform_flirt, args.fixed, args.moving, args.output)
        ph.execute_command(cmd, verbose=False)

        if debug:
            ph.show_niftis([args.fixed, path_to_tmp_output])

    # Additionally, use RegAladin for more accurate alignment
    # Rationale: FLIRT has better capture range, but RegAladin seems to
    # find better alignment once it is within its capture range.
    if args.use_regaladin:
        path_to_transform_regaladin = os.path.join(DIR_TMP,
                                                   "transform_regaladin.txt")

        # Convert SimpleITK to RegAladin transform
        cmd = "simplereg_transform -sitk2nreg %s %s" % (
            args.output, path_to_transform_regaladin)
        ph.execute_command(cmd, verbose=False)

        # nreg = nipype.interfaces.niftyreg.RegAladin()
        # nreg.inputs.ref_file = args.fixed
        # nreg.inputs.flo_file = args.moving
        # nreg.inputs.res_file = path_to_tmp_output
        # nreg.inputs.in_aff_file = path_to_transform_regaladin
        # nreg.inputs.aff_file = path_to_transform_regaladin
        # nreg.inputs.args = "-rigOnly -voff"
        # if args.moving_mask is not None:
        #     nreg.inputs.fmask_file = args.moving_mask
        # if args.fixed_mask is not None:
        #     nreg.inputs.rmask_file = args.fixed_mask
        # ph.print_info("Run Registration (RegAladin) ... ", newline=False)
        # nreg.run()
        # print("done")

        cmd_args = ["reg_aladin"]
        cmd_args.append("-ref %s" % args.fixed)
        cmd_args.append("-flo %s" % args.moving)
        cmd_args.append("-res %s" % path_to_tmp_output)
        if args.initial_transform is not None or args.use_flirt == 1:
            cmd_args.append("-inaff %s" % path_to_transform_regaladin)
        cmd_args.append("-aff %s" % path_to_transform_regaladin)
        # cmd_args.append("-cog")
        # cmd_args.append("-ln 2")
        cmd_args.append("-rigOnly")
        cmd_args.append("-voff")
        if args.moving_mask is not None:
            cmd_args.append("-fmask %s" % args.moving_mask)
        if args.fixed_mask is not None:
            cmd_args.append("-rmask %s" % args.fixed_mask)
        ph.print_info("Run Registration (RegAladin) ... ", newline=False)
        ph.execute_command(" ".join(cmd_args), verbose=False)
        print("done")

        # Convert RegAladin to SimpleITK transform
        cmd = "simplereg_transform -nreg2sitk %s %s" % (
            path_to_transform_regaladin, args.output)
        ph.execute_command(cmd, verbose=False)

        if debug:
            ph.show_niftis([args.fixed, path_to_tmp_output])

    if args.test_ap_flip:
        path_to_transform_flip = os.path.join(DIR_TMP, "transform_flip.txt")
        path_to_tmp_output_flip = os.path.join(DIR_TMP, "output_flip.nii.gz")

        # Get AP-flip transform
        transform_ap_flip_sitk = get_ap_flip_transform(args.fixed)
        path_to_transform_flip_regaladin = os.path.join(
            DIR_TMP, "transform_flip_regaladin.txt")
        sitk.WriteTransform(transform_ap_flip_sitk, path_to_transform_flip)

        # Compose current transform with AP flip transform
        cmd = "simplereg_transform -c %s %s %s" % (
            args.output, path_to_transform_flip, path_to_transform_flip)
        ph.execute_command(cmd, verbose=False)

        # Convert SimpleITK to RegAladin transform
        cmd = "simplereg_transform -sitk2nreg %s %s" % (
            path_to_transform_flip, path_to_transform_flip_regaladin)
        ph.execute_command(cmd, verbose=False)

        # nreg = nipype.interfaces.niftyreg.RegAladin()
        # nreg.inputs.ref_file = args.fixed
        # nreg.inputs.flo_file = args.moving
        # nreg.inputs.res_file = path_to_tmp_output_flip
        # nreg.inputs.in_aff_file = path_to_transform_flip_regaladin
        # nreg.inputs.aff_file = path_to_transform_flip_regaladin
        # nreg.inputs.args = "-rigOnly -voff"
        # if args.moving_mask is not None:
        #     nreg.inputs.fmask_file = args.moving_mask
        # if args.fixed_mask is not None:
        #     nreg.inputs.rmask_file = args.fixed_mask
        # ph.print_info("Run Registration AP-flipped (RegAladin) ... ",
        #               newline=False)
        # nreg.run()
        # print("done")

        cmd_args = ["reg_aladin"]
        cmd_args.append("-ref %s" % args.fixed)
        cmd_args.append("-flo %s" % args.moving)
        cmd_args.append("-res %s" % path_to_tmp_output_flip)
        cmd_args.append("-inaff %s" % path_to_transform_flip_regaladin)
        cmd_args.append("-aff %s" % path_to_transform_flip_regaladin)
        cmd_args.append("-rigOnly")
        # cmd_args.append("-ln 2")
        cmd_args.append("-voff")
        if args.moving_mask is not None:
            cmd_args.append("-fmask %s" % args.moving_mask)
        if args.fixed_mask is not None:
            cmd_args.append("-rmask %s" % args.fixed_mask)
        ph.print_info("Run Registration AP-flipped (RegAladin) ... ",
                      newline=False)
        ph.execute_command(" ".join(cmd_args), verbose=False)
        print("done")

        if debug:
            ph.show_niftis(
                [args.fixed, path_to_tmp_output, path_to_tmp_output_flip])

        warped_moving = st.Stack.from_filename(path_to_tmp_output,
                                               extract_slices=False)
        warped_moving_flip = st.Stack.from_filename(path_to_tmp_output_flip,
                                                    extract_slices=False)
        fixed = st.Stack.from_filename(args.fixed, args.fixed_mask)

        stacks = [warped_moving, warped_moving_flip]
        image_similarity_evaluator = ise.ImageSimilarityEvaluator(
            stacks=stacks, reference=fixed)
        image_similarity_evaluator.compute_similarities()
        similarities = image_similarity_evaluator.get_similarities()

        if similarities["NMI"][1] > similarities["NMI"][0]:
            ph.print_info("AP-flipped outcome better")

            # Convert RegAladin to SimpleITK transform
            cmd = "simplereg_transform -nreg2sitk %s %s" % (
                path_to_transform_flip_regaladin, args.output)
            ph.execute_command(cmd, verbose=False)

            # Copy better outcome
            cmd = "cp -p %s %s" % (path_to_tmp_output_flip, path_to_tmp_output)
            ph.execute_command(cmd, verbose=False)

        else:
            ph.print_info("AP-flip does not improve outcome")

    if args.dir_input_mc is not None:
        transform_sitk = sitkh.read_transform_sitk(args.output, inverse=1)

        if args.dir_input_mc.endswith("/"):
            subdir_mc = args.dir_input_mc.split("/")[-2]
        else:
            subdir_mc = args.dir_input_mc.split("/")[-1]
        dir_output_mc = os.path.join(dir_output, subdir_mc)

        ph.create_directory(dir_output_mc, delete_files=True)
        pattern = REGEX_FILENAMES + "[.]tfm"
        p = re.compile(pattern)
        trafos = [t for t in os.listdir(args.dir_input_mc) if p.match(t)]
        for t in trafos:
            path_to_input_transform = os.path.join(args.dir_input_mc, t)
            path_to_output_transform = os.path.join(dir_output_mc, t)
            t_sitk = sitkh.read_transform_sitk(path_to_input_transform)
            t_sitk = sitkh.get_composite_sitk_affine_transform(
                transform_sitk, t_sitk)
            sitk.WriteTransform(t_sitk, path_to_output_transform)

    if args.verbose:
        ph.show_niftis([args.fixed, path_to_tmp_output])

    elapsed_time_total = ph.stop_timing(time_start)

    # Summary
    ph.print_title("Summary")
    print("Computational Time: %s" % (elapsed_time_total))

    return 0
예제 #17
0
def main():

    input_parser = InputArgparser(
        description="Script to export a side-by-side comparison of originally "
        "acquired and simulated/projected slice given the estimated "
        "volumetric reconstruction."
        "This function takes the result of "
        "simulate_stacks_from_reconstruction.py as input.", )
    input_parser.add_filenames(required=True)
    input_parser.add_dir_output(required=True)
    input_parser.add_option(
        option_string="--prefix-simulated",
        type=str,
        help="Specify the prefix of the simulated stacks to distinguish them "
        "from the original data.",
        default="Simulated_",
    )
    input_parser.add_option(
        option_string="--dir-input-simulated",
        type=str,
        help="Specify the directory where the simulated stacks are. "
        "If not given, it is assumed that they are in the same directory "
        "as the original ones.",
        default=None)
    input_parser.add_option(
        option_string="--resize",
        type=float,
        help="Factor to resize images (otherwise they might be very small "
        "depending on the FOV)",
        default=3)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")

    # Read original data
    filenames_original = args.filenames
    data_reader = dr.MultipleImagesReader(filenames_original)
    data_reader.read_data()
    stacks_original = data_reader.get_data()

    # Read data simulated from obtained reconstruction
    if args.dir_input_simulated is None:
        dir_input_simulated = os.path.dirname(filenames_original[0])
    else:
        dir_input_simulated = args.dir_input_simulated
    filenames_simulated = [
        os.path.join("%s", "%s%s") %
        (dir_input_simulated, args.prefix_simulated, os.path.basename(f))
        for f in filenames_original
    ]
    data_reader = dr.MultipleImagesReader(filenames_simulated)
    data_reader.read_data()
    stacks_simulated = data_reader.get_data()

    ph.create_directory(args.dir_output)

    for i in range(len(stacks_original)):
        try:
            stacks_original[i].sitk - stacks_simulated[i].sitk
        except:
            raise IOError(
                "Images '%s' and '%s' do not occupy the same space!" %
                (filenames_original[i], filenames_simulated[i]))

    # ---------------------Create side-by-side comparisons---------------------
    ph.print_title("Create side-by-side comparisons")
    intensity_max = 255
    intensity_min = 0
    for i in range(len(stacks_original)):
        ph.print_subtitle("Stack %d/%d" % (i + 1, len(stacks_original)))
        nda_3D_original = sitk.GetArrayFromImage(stacks_original[i].sitk)
        nda_3D_simulated = sitk.GetArrayFromImage(stacks_simulated[i].sitk)

        # Scale uniformly between 0 and 255 according to the simulated stack
        # for export to png
        scale = np.max(nda_3D_simulated)
        nda_3D_original = intensity_max * nda_3D_original / scale
        nda_3D_simulated = intensity_max * nda_3D_simulated / scale

        nda_3D_simulated = np.clip(nda_3D_simulated, intensity_min,
                                   intensity_max)
        nda_3D_original = np.clip(nda_3D_original, intensity_min,
                                  intensity_max)

        filename = stacks_original[i].get_filename()
        path_to_file = os.path.join(args.dir_output, "%s.pdf" % filename)

        # Export side-by-side comparison of each stack to a pdf file
        export_comparison_to_file(nda_3D_original,
                                  nda_3D_simulated,
                                  path_to_file,
                                  resize=args.resize)
예제 #18
0
def main():

    time_start = ph.start_timing()

    # Set print options for numpy
    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Propagate image mask using rigid registration.", )
    input_parser.add_moving(required=True)
    input_parser.add_moving_mask(required=True)
    input_parser.add_fixed(required=True)
    input_parser.add_output(required=True)
    input_parser.add_v2v_method(
        option_string="--method",
        help="Registration method used for the registration (%s)." %
        (", or ".join(V2V_METHOD_OPTIONS)),
        default="RegAladin",
    )
    input_parser.add_option(
        option_string="--use-moving-mask",
        type=int,
        help="Turn on/off use of moving mask to constrain the registration.",
        default=0,
    )
    input_parser.add_dilation_radius(default=1)
    input_parser.add_verbose(default=0)
    input_parser.add_log_config(default=0)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if np.alltrue([not args.output.endswith(t) for t in ALLOWED_EXTENSIONS]):
        raise ValueError(
            "output filename invalid; allowed extensions are: %s" %
            ", ".join(ALLOWED_EXTENSIONS))

    if args.method not in V2V_METHOD_OPTIONS:
        raise ValueError("method must be in {%s}" %
                         (", ".join(V2V_METHOD_OPTIONS)))

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    stack = st.Stack.from_filename(
        file_path=args.fixed,
        extract_slices=False,
    )
    template = st.Stack.from_filename(
        file_path=args.moving,
        file_path_mask=args.moving_mask,
        extract_slices=False,
    )

    if args.method == "FLIRT":
        # Define search angle ranges for FLIRT in all three dimensions
        # search_angles = ["-searchr%s -%d %d" %
        #                  (x, args.search_angle, args.search_angle)
        #                  for x in ["x", "y", "z"]]
        # options = (" ").join(search_angles)
        # options += " -noresample"

        registration = regflirt.FLIRT(
            registration_type="Rigid",
            fixed=stack,
            moving=template,
            use_fixed_mask=False,
            use_moving_mask=args.use_moving_mask,
            # options=options,
            use_verbose=False,
        )
    else:
        registration = niftyreg.RegAladin(
            registration_type="Rigid",
            fixed=stack,
            moving=template,
            use_fixed_mask=False,
            use_moving_mask=args.use_moving_mask,
            # options="-ln 2",
            use_verbose=False,
        )

    try:
        registration.run()
    except RuntimeError as e:
        raise RuntimeError(
            "%s\n\n"
            "Have you tried running the script with '--use-moving-mask 0'?" %
            e)

    transform_sitk = registration.get_registration_transform_sitk()
    stack.sitk_mask = sitk.Resample(template.sitk_mask, stack.sitk_mask,
                                    transform_sitk, sitk.sitkNearestNeighbor,
                                    0, template.sitk_mask.GetPixelIDValue())
    if args.dilation_radius > 0:
        stack_mask_morpher = stmorph.StackMaskMorphologicalOperations.from_sitk_mask(
            mask_sitk=stack.sitk_mask,
            dilation_radius=args.dilation_radius,
            dilation_kernel="Ball",
            use_dilation_in_plane_only=True,
        )
        stack_mask_morpher.run_dilation()
        stack.sitk_mask = stack_mask_morpher.get_processed_mask_sitk()

    dw.DataWriter.write_mask(stack.sitk_mask, args.output)

    elapsed_time = ph.stop_timing(time_start)

    if args.verbose:
        ph.show_nifti(args.fixed, segmentation=args.output)

    ph.print_title("Summary")
    exe_file_info = os.path.basename(os.path.abspath(__file__)).split(".")[0]
    print("%s | Computational Time for Segmentation Propagation: %s" %
          (exe_file_info, elapsed_time))

    return 0
예제 #19
0
def main():

    input_parser = InputArgparser(description="Convert NIfTI to DICOM image", )
    input_parser.add_filename(required=True)
    input_parser.add_option(
        option_string="--template",
        type=str,
        required=True,
        help="Template DICOM to extract relevant DICOM tags.",
    )
    input_parser.add_dir_output(required=True)
    input_parser.add_label(
        help="Label used for series description of DICOM output.",
        default="SRR_NiftyMIC")
    input_parser.add_argument(
        "--volume",
        "-volume",
        action='store_true',
        help="If given, the output DICOM file is combined as 3D volume")
    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    # Prepare for final DICOM output
    ph.create_directory(args.dir_output)

    if args.volume:
        dir_output_2d_slices = os.path.join(DIR_TMP, "dicom_slices")
    else:
        dir_output_2d_slices = os.path.join(args.dir_output, args.label)
    ph.create_directory(dir_output_2d_slices, delete_files=True)

    # read NiftyMIC version (if available)
    data_reader = dr.ImageHeaderReader(args.filename)
    data_reader.read_data()
    niftymic_version = data_reader.get_niftymic_version()
    if niftymic_version is None:
        niftymic_version = "NiftyMIC"
    else:
        niftymic_version = "NiftyMIC-v%s" % niftymic_version

    # Create set of 2D DICOM slices from 3D NIfTI image
    # (correct image orientation!)
    ph.print_title("Create set of 2D DICOM slices from 3D NIfTI image")
    cmd_args = ["nifti2dicom"]
    cmd_args.append("-i '%s'" % args.filename)
    cmd_args.append("-o '%s'" % dir_output_2d_slices)
    cmd_args.append("-d '%s'" % args.template)
    cmd_args.append("--prefix ''")
    cmd_args.append("--seriesdescription '%s'" % args.label)
    cmd_args.append("--accessionnumber '%s'" % ACCESSION_NUMBER)
    cmd_args.append("--seriesnumber '%s'" % SERIES_NUMBER)
    cmd_args.append("--institutionname '%s'" % IMAGE_COMMENTS)

    # Overwrite default "nifti2dicom" tags which would be added otherwise
    # (no deletion/update with empty '' sufficient to overwrite them)
    cmd_args.append("--manufacturersmodelname '%s'" % "NiftyMIC")
    cmd_args.append("--protocolname '%s'" % niftymic_version)

    cmd_args.append("-y")
    ph.execute_command(" ".join(cmd_args))

    if args.volume:
        path_to_output = os.path.join(args.dir_output, "%s.dcm" % args.label)
        # Combine set of 2D DICOM slices to form 3D DICOM image
        # (image orientation stays correct)
        ph.print_title("Combine set of 2D DICOM slices to form 3D DICOM image")
        cmd_args = ["medcon"]
        cmd_args.append("-f '%s'/*.dcm" % dir_output_2d_slices)
        cmd_args.append("-o '%s'" % path_to_output)
        cmd_args.append("-c dicom")
        cmd_args.append("-stack3d")
        cmd_args.append("-n")
        cmd_args.append("-qc")
        cmd_args.append("-w")
        ph.execute_command(" ".join(cmd_args))

        # Update all relevant DICOM tags accordingly
        ph.print_title("Update all relevant DICOM tags accordingly")
        print("")
        dataset_template = pydicom.dcmread(args.template)
        dataset = pydicom.dcmread(path_to_output)

        # Copy tags from template (to guarantee grouping with original data)
        update_dicom_tags = {}
        for tag in COPY_DICOM_TAGS:
            try:
                update_dicom_tags[tag] = getattr(dataset_template, tag)
            except:
                update_dicom_tags[tag] = ""

        # Additional tags
        update_dicom_tags["SeriesDescription"] = args.label
        update_dicom_tags["InstitutionName"] = institution_name
        update_dicom_tags["ImageComments"] = IMAGE_COMMENTS
        update_dicom_tags["AccessionNumber"] = ACCESSION_NUMBER
        update_dicom_tags["SeriesNumber"] = SERIES_NUMBER

        for tag in sorted(update_dicom_tags.keys()):
            value = update_dicom_tags[tag]
            setattr(dataset, tag, value)
            ph.print_info("%s: '%s'" % (tag, value))

        dataset.save_as(path_to_output)
        print("")
        ph.print_info("3D DICOM image written to '%s'" % path_to_output)

    else:
        ph.print_info("DICOM images written to '%s'" % dir_output_2d_slices)

    return 0
def main():

    time_start = ph.start_timing()

    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Run reconstruction pipeline including "
        "(i) preprocessing (bias field correction + intensity correction), "
        "(ii) volumetric reconstruction in subject space, "
        "and (iii) volumetric reconstruction in template space.",
    )
    input_parser.add_dir_input(required=True)
    input_parser.add_dir_mask(required=True)
    input_parser.add_dir_output(required=True)
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_target_stack(required=False)
    input_parser.add_alpha(default=0.01)
    input_parser.add_verbose(default=0)
    input_parser.add_gestational_age(required=False)
    input_parser.add_prefix_output(default="")
    input_parser.add_search_angle(default=180)
    input_parser.add_multiresolution(default=0)
    input_parser.add_log_script_execution(default=1)
    input_parser.add_dir_input_templates(default=DIR_TEMPLATES)
    input_parser.add_isotropic_resolution()
    input_parser.add_reference()
    input_parser.add_reference_mask()
    input_parser.add_bias_field_correction(default=1)
    input_parser.add_intensity_correction(default=1)
    input_parser.add_iter_max(default=10)
    input_parser.add_two_step_cycles(default=3)
    input_parser.add_option(
        option_string="--run-recon-subject-space",
        type=int,
        help="Turn on/off reconstruction in subject space",
        default=1)
    input_parser.add_option(
        option_string="--run-recon-template-space",
        type=int,
        help="Turn on/off reconstruction in template space",
        default=1)
    input_parser.add_option(
        option_string="--run-data-vs-simulated-data",
        type=int,
        help="Turn on/off comparison of data vs data simulated from the "
        "obtained volumetric reconstruction",
        default=1)
    input_parser.add_outlier_rejection(default=0)
    input_parser.add_use_robust_registration(default=0)

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    # Write script execution call
    if args.log_script_execution:
        input_parser.write_performed_script_execution(
            os.path.abspath(__file__))

    dir_output_recon_subject_space = os.path.join(
        args.dir_output, "recon_subject_space")
    dir_output_recon_template_space = os.path.join(
        args.dir_output, "recon_template_space")
    dir_output_data_vs_simulatd_data = os.path.join(
        args.dir_output, "data_vs_simulated_data")

#    if args.run_recon_template_space and args.gestational_age is None:
#        raise IOError("Gestational age must be set in order to pick the "
#                      "right template")

    # get input stack names
    files = os.listdir(args.dir_input)
    input_files = []
    mask_files  = []
    for file in files:
        if (".nii" in file):
            input_files.append("{0:}/{1:}".format(args.dir_input, file))
            file_prefix = file[:-7] if (".nii.gz" in file) else file[:-4]
            mask_name = "{0:}/{1:}.nii.gz".format(args.dir_mask, file_prefix)
            if(not os.path.isfile(mask_name)):
                mask_name = "{0:}/{1:}.nii".format(args.dir_mask, file_prefix)
            assert(os.path.isfile(mask_name))
            mask_files.append(mask_name)


    if args.target_stack is None:
        target_stack = input_files[0]
    else:
        target_stack = input_files

    if args.run_recon_subject_space:

        target_stack_index = input_files.index(target_stack)

        cmd_args = []
        cmd_args.append("--filenames %s" % (" ").join(input_files))
        cmd_args.append("--filenames-masks %s" % (" ").join(mask_files))
        cmd_args.append("--multiresolution %d" % args.multiresolution)
        cmd_args.append("--target-stack-index %d" % target_stack_index)
        cmd_args.append("--dir-output %s" % dir_output_recon_subject_space)
#        cmd_args.append("--suffix-mask %s" % args.suffix_mask)
        cmd_args.append("--intensity-correction %d" %
                        args.intensity_correction)
        cmd_args.append("--alpha %s" % args.alpha)
        cmd_args.append("--iter-max %d" % args.iter_max)
        cmd_args.append("--two-step-cycles %d" % args.two_step_cycles)
        cmd_args.append("--outlier-rejection %d" %
                        args.outlier_rejection)
        cmd_args.append("--use-robust-registration %d" %
                        args.use_robust_registration)
        cmd_args.append("--verbose %d" % args.verbose)
        if args.isotropic_resolution is not None:
            cmd_args.append("--isotropic-resolution %f" %
                            args.isotropic_resolution)
        if args.reference is not None:
            cmd_args.append("--reference %s" % args.reference)
        if args.reference_mask is not None:
            cmd_args.append("--reference-mask %s" % args.reference_mask)
        cmd = "niftymic_reconstruct_volume %s" % (" ").join(cmd_args)
        time_start_volrec = ph.start_timing()
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Reconstruction in subject space failed")
        elapsed_time_volrec = ph.stop_timing(time_start_volrec)
    else:
        elapsed_time_volrec = ph.get_zero_time()

    if args.run_recon_template_space:
        # register recon to template space
        pattern = "[a-zA-Z0-9_]+(stacks)[a-zA-Z0-9_]+(.nii.gz)"
        p = re.compile(pattern)
        reconstruction = [
            os.path.join(
                dir_output_recon_subject_space, p.match(f).group(0))
            for f in os.listdir(dir_output_recon_subject_space)
            if p.match(f)][0]
            
        if('mask_manual' in args.dir_output):
            # find the corresponding template by volume matching
            reconstruction_mask = reconstruction
            if(not ("_mask" in reconstruction)):
                reconstruction_mask = ph.append_to_filename(reconstruction, "_mask")
            template_stack_estimator = \
                        tse.TemplateStackEstimator.from_mask(
                            reconstruction_mask,
                            args.dir_input_templates)
            template_mask = template_stack_estimator.get_path_to_template()
            template = template_mask.replace('_mask_dil.nii.gz', '.nii.gz')
            print('template name', template)
#            template = os.path.join(
#                        args.dir_input_templates,
#                        "STA%d.nii.gz" % args.gestational_age)
#            template_mask = os.path.join(
#                        args.dir_input_templates,
#                        "STA%d_mask.nii.gz" % args.gestational_age)
        else:
            template_folder = args.dir_output + "/../../mask_manual/reconstruct_outlier_gpr/"
            file_names = os.listdir(template_folder)
            template_names = [item for item in file_names if ("nii.gz" in item) and ("Masked" not in item)]
            mask_names = [item for item in file_names if ("nii.gz" in item) and ("Masked" in item)]
            template = os.path.join(template_folder, template_names[0])
            template_mask = os.path.join(template_folder, mask_names[0])

        cmd_args = []
        cmd_args.append("--moving %s" % reconstruction)
        cmd_args.append("--fixed %s" % template)
#        if(use_spatiotemporal_template is False):
#        cmd_args.append("--use-fixed-mask 1")  # added by Guotai
#        cmd_args.append("--template-mask %s" % template_mask) # micheal's code
        cmd_args.append("--dir-input %s" % os.path.join(
            dir_output_recon_subject_space,
            "motion_correction"))
        cmd_args.append("--dir-output %s" % dir_output_recon_template_space)
        cmd_args.append("--suffix-mask %s" % args.suffix_mask)
        cmd_args.append("--verbose %s" % args.verbose)
        cmd = "niftymic_register_image %s" % (" ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Registration to template space failed")

        # reconstruct volume in template space
        # pattern = "[a-zA-Z0-9_.]+(ResamplingToTemplateSpace.nii.gz)"
        # p = re.compile(pattern)
        # reconstruction_space = [
        #     os.path.join(dir_output_recon_template_space, p.match(f).group(0))
        #     for f in os.listdir(dir_output_recon_template_space)
        #     if p.match(f)][0]

        dir_input = os.path.join(
            dir_output_recon_template_space, "motion_correction")
        cmd_args = []
        cmd_args.append("--dir-input %s" % dir_input)
        cmd_args.append("--dir-output %s" % dir_output_recon_template_space)
        cmd_args.append("--reconstruction-space %s" % template)
        cmd_args.append("--iter-max %d" % args.iter_max)
        cmd_args.append("--alpha %s" % args.alpha)
        cmd_args.append("--suffix-mask %s" % args.suffix_mask)

        cmd = "niftymic_reconstruct_volume_from_slices %s" % \
            (" ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Reconstruction in template space failed")

        pattern = "[a-zA-Z0-9_.]+(stacks[0-9]+).*(.nii.gz)"
        p = re.compile(pattern)
        reconstruction = {
            p.match(f).group(1):
            os.path.join(
                dir_output_recon_template_space, p.match(f).group(0))
            for f in os.listdir(dir_output_recon_template_space)
            if p.match(f) and not p.match(f).group(0).endswith(
                "ResamplingToTemplateSpace.nii.gz")}
        key = reconstruction.keys()[0]
        path_to_recon = reconstruction[key]

        # Copy SRR to output directory
        output = "%sSRR_%s_GW%d.nii.gz" % (
            args.prefix_output, key, args.gestational_age)
        path_to_output = os.path.join(args.dir_output, output)
        cmd = "cp -p %s %s" % (path_to_recon, path_to_output)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Copy of SRR to output directory failed")

        # Multiply template mask with reconstruction
        cmd_args = []
        cmd_args.append("--filename %s" % path_to_output)
        cmd_args.append("--gestational-age %s" % args.gestational_age)
        cmd_args.append("--verbose %s" % args.verbose)
        cmd_args.append("--dir-input-templates %s " % args.dir_input_templates)
        cmd = "niftymic_multiply_stack_with_mask %s" % (
            " ").join(cmd_args)
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("SRR brain masking failed")

    else:
        elapsed_time_template = ph.get_zero_time()

    if args.run_data_vs_simulated_data:

        dir_input = os.path.join(
            dir_output_recon_template_space, "motion_correction")

        pattern = "[a-zA-Z0-9_.]+(stacks[0-9]+).*(.nii.gz)"
        # pattern = "Masked_[a-zA-Z0-9_.]+(stacks[0-9]+).*(.nii.gz)"
        p = re.compile(pattern)
        reconstruction = {
            p.match(f).group(1):
            os.path.join(
                dir_output_recon_template_space, p.match(f).group(0))
            for f in os.listdir(dir_output_recon_template_space)
            if p.match(f) and not p.match(f).group(0).endswith(
                "ResamplingToTemplateSpace.nii.gz")}
        key = reconstruction.keys()[0]
        path_to_recon = reconstruction[key]

        # Get simulated/projected slices
        cmd_args = []
        cmd_args.append("--dir-input %s" % dir_input)
        cmd_args.append("--dir-output %s" % dir_output_data_vs_simulatd_data)
        cmd_args.append("--reconstruction %s" % path_to_recon)
        cmd_args.append("--copy-data 1")
        cmd_args.append("--suffix-mask %s" % args.suffix_mask)
        # cmd_args.append("--verbose %s" % args.verbose)
        exe = os.path.abspath(simulate_stacks_from_reconstruction.__file__)
        cmd = "python %s %s" % (exe, (" ").join(cmd_args))
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("SRR slice projections failed")

        filenames_simulated = [
            os.path.join(dir_output_data_vs_simulatd_data, os.path.basename(f))
            for f in input_files]

        dir_output_evaluation = os.path.join(
            dir_output_data_vs_simulatd_data, "evaluation")
        dir_output_figures = os.path.join(
            dir_output_data_vs_simulatd_data, "figures")
        dir_output_side_by_side = os.path.join(
            dir_output_figures, "side-by-side")

        # Evaluate slice similarities to ground truth
        cmd_args = []
        cmd_args.append("--filenames %s" % (" ").join(filenames_simulated))
        cmd_args.append("--suffix-mask %s" % args.suffix_mask)
        cmd_args.append("--measures NCC SSIM")
        cmd_args.append("--dir-output %s" % dir_output_evaluation)
        exe = os.path.abspath(evaluate_simulated_stack_similarity.__file__)
        cmd = "python %s %s" % (exe, (" ").join(cmd_args))
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Evaluation of slice similarities failed")

        # Generate figures showing the quantitative comparison
        cmd_args = []
        cmd_args.append("--dir-input %s" % dir_output_evaluation)
        cmd_args.append("--dir-output %s" % dir_output_figures)
        exe = os.path.abspath(
            show_evaluated_simulated_stack_similarity.__file__)
        cmd = "python %s %s" % (exe, (" ").join(cmd_args))
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            ph.print_warning("Visualization of slice similarities failed")

        # Generate pdfs showing all the side-by-side comparisons
        cmd_args = []
        cmd_args.append("--filenames %s" % (" ").join(filenames_simulated))
        cmd_args.append("--dir-output %s" % dir_output_side_by_side)
        exe = os.path.abspath(
            export_side_by_side_simulated_vs_original_slice_comparison.__file__)
        cmd = "python %s %s" % (exe, (" ").join(cmd_args))
        exit_code = ph.execute_command(cmd)
        if exit_code != 0:
            raise RuntimeError("Generation of PDF overview failed")

    ph.print_title("Summary")
    print("Computational Time for Volumetric Reconstruction: %s" %
          elapsed_time_volrec)
    print("Computational Time for Pipeline: %s" %
          ph.stop_timing(time_start))

    return 0