예제 #1
0
 def __init__(self):
     super().__init__()
     self.m = nn.ConvTranspose2d(3,
                                 3,
                                 3,
                                 stride=3,
                                 bias=False,
                                 padding=1,
                                 output_padding=2)
예제 #2
0
 def __init__(self):
     super(TraceModel, self).__init__()
     self.conv1 = nn.ConvTranspose1d(16, 33, 3, stride=2)
     self.conv2 = nn.ConvTranspose2d(16,
                                     33, (3, 5),
                                     stride=(2, 1),
                                     padding=(4, 2),
                                     dilation=(3, 1))
     self.conv3 = nn.ConvTranspose3d(16,
                                     33, (3, 5, 2),
                                     stride=(2, 1, 1),
                                     padding=(4, 2, 0))
예제 #3
0
 def __init__(self, nz, ngf, nc):
     super(DCGANGenerator, self).__init__()
     self.main = nn.Sequential(
         # input is Z, going into a convolution
         nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
         nn.BatchNorm2d(ngf * 8),
         nn.ReLU(True),
         # state size. (ngf*8) x 4 x 4
         nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
         nn.BatchNorm2d(ngf * 4),
         nn.ReLU(True),
         # state size. (ngf*4) x 8 x 8
         nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
         nn.BatchNorm2d(ngf * 2),
         nn.ReLU(True),
         # state size. (ngf*2) x 16 x 16
         nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
         nn.BatchNorm2d(ngf),
         nn.ReLU(True),
         # state size. (ngf) x 32 x 32
         nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
         nn.Tanh()
         # state size. (nc) x 64 x 64
     )