def __init__(self): super().__init__() self.m = nn.ConvTranspose2d(3, 3, 3, stride=3, bias=False, padding=1, output_padding=2)
def __init__(self): super(TraceModel, self).__init__() self.conv1 = nn.ConvTranspose1d(16, 33, 3, stride=2) self.conv2 = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) self.conv3 = nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0))
def __init__(self, nz, ngf, nc): super(DCGANGenerator, self).__init__() self.main = nn.Sequential( # input is Z, going into a convolution nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), # state size. (ngf*8) x 4 x 4 nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), # state size. (ngf*4) x 8 x 8 nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), # state size. (ngf*2) x 16 x 16 nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), # state size. (ngf) x 32 x 32 nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh() # state size. (nc) x 64 x 64 )