def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--cache_dir",
                        default="",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "aus" : OOCLAUSProcessor,
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
    }

    num_labels_task = {
        "aus": 33,
        "cola": 2,
        "mnli": 3,
        "mrpc": 2,
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    num_labels = num_labels_task[task_name]
    label_list = processor.get_labels()

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank))
    model = BertForDocMultiClassification.from_pretrained(args.bert_model,
              cache_dir=cache_dir,
              num_labels = num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train:
        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        model = BertForDocMultiClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
    else:
        model = BertForDocMultiClassification.from_pretrained(args.bert_model, num_labels=num_labels)
    model.to(device)

    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        output_file_path = os.path.join(args.output_dir, "results_epoch_{0}.txt".format(10))
        output_file_writer = open(output_file_path, 'w', encoding='utf-8')
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            #tmp_eval_accuracy = accuracy(logits, label_ids)

            for logit, label_id in zip(logits, label_ids):
                output_file_writer.write(str(logit).replace('\n', ' '))
                output_file_writer.write('\t')
                output_file_writer.write(str(label_id).replace('\n', ' '))
                output_file_writer.write('\n')

            # eval_loss += tmp_eval_loss.mean().item()
            #eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        result = {'eval_loss': eval_loss,
                  #'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
                  # 'loss': tr_loss / nb_tr_steps
                  }

        output_eval_file = os.path.join(args.output_dir, "eval_results_epoch_{0}.txt".format(10))
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        # Save pytorch-model
        output_model_file = os.path.join(args.output_dir, "fine_tune_model_epoch_{0}.bin".format(10))
        torch.save(model.state_dict(), output_model_file)

        aus_label_path = args.data_dir + r"/aus_dev.label.csv"
        ukd_label_path = args.data_dir + r"/ukd_dev.label.csv"
        if task_name == 'aus':
            label_path = aus_label_path
        else:
            label_path = ukd_label_path
        output_file_writer.close()

        convert(output_file_path, task_name)
        evaluation_report(label_path, output_file_path + '.label', task_name.upper(), output_file_path + '.eval')
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_config_file",
        default=None,
        type=str,
        required=True,
        help=
        "The config json file corresponding to the pre-trained BERT model. \n"
        "This specifies the model architecture.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--vocab_file",
        default=None,
        type=str,
        required=True,
        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--init_checkpoint",
        default=None,
        type=str,
        help="Initial checkpoint (usually from a pre-trained BERT model).")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument(
        "--max_seq_length",
        default=1024,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--save_checkpoints_steps",
                        default=1000,
                        type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--accumulate_gradients",
        type=int,
        default=1,
        help=
        "Number of steps to accumulate gradient on (divide the batch_size and accumulate)"
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=666,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    args = parser.parse_args()

    processors = {"aus": OOCLAUSProcessor, "ukd": OOCLUKDProcessor}

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu,
                bool(args.local_rank != -1))

    if args.accumulate_gradients < 1:
        raise ValueError(
            "Invalid accumulate_gradients parameter: {}, should be >= 1".
            format(args.accumulate_gradients))

    args.train_batch_size = int(args.train_batch_size /
                                args.accumulate_gradients)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    bert_config = BertConfig.from_json_file(args.bert_config_file)

    # if args.max_seq_length > bert_config.max_position_embeddings:
    #     raise ValueError(
    #         "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
    #         args.max_seq_length, bert_config.max_position_embeddings))

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    label_list = processor.get_labels()

    tokenizer = BertTokenizer(vocab_file=args.vocab_file,
                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size *
            args.num_train_epochs)

    model = BertForDocMultiClassification(bert_config, len(label_list))
    if args.init_checkpoint is not None:
        # model_dict = model.bert.state_dict()
        # parameters = torch.load(args.init_checkpoint, map_location='cpu')
        # pretrained_dict = {}
        # for k in parameters:
        #     pretrained_dict[k.replace('bert.', '')] = parameters[k]
        # # 2. overwrite entries in the existing state dict
        # model_dict.update(pretrained_dict)
        # # 3. load the new state dict
        # model.bert.load_state_dict(pretrained_dict)

        model.bert.load_state_dict(
            torch.load(args.init_checkpoint, map_location='cpu'))
    model.to(device)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    no_decay = ['bias', 'gamma', 'beta']
    optimizer_parameters = [{
        'params':
        [p for n, p in model.named_parameters() if n not in no_decay],
        'weight_decay_rate':
        0.01
    }, {
        'params': [p for n, p in model.named_parameters() if n in no_decay],
        'weight_decay_rate':
        0.0
    }]

    optimizer = BertAdam(optimizer_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=num_train_steps)

    global_step = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        global long_doc_num
        logger.info("  Num examples of Long document= %d", long_doc_num)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for epoch_num in trange(int(args.num_train_epochs), desc="Epoch"):
            model.train()
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss, _ = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()  # We have accumulated enought gradients
                    model.zero_grad()
                    global_step += 1
                    logger.info("Current loss: %f", float(loss))

            if args.do_eval:
                eval_examples = processor.get_dev_examples(args.data_dir)
                eval_features = convert_examples_to_features(
                    eval_examples, label_list, args.max_seq_length, tokenizer)

                logger.info("***** Running evaluation *****")
                logger.info("  Num examples = %d", len(eval_examples))
                logger.info("  Batch size = %d", args.eval_batch_size)

                all_input_ids = torch.tensor(
                    [f.input_ids for f in eval_features], dtype=torch.long)
                all_input_mask = torch.tensor(
                    [f.input_mask for f in eval_features], dtype=torch.long)
                all_segment_ids = torch.tensor(
                    [f.segment_ids for f in eval_features], dtype=torch.long)
                all_label_ids = torch.tensor(
                    [f.label_id for f in eval_features], dtype=torch.long)

                eval_data = TensorDataset(all_input_ids, all_input_mask,
                                          all_segment_ids, all_label_ids)
                if args.local_rank == -1:
                    eval_sampler = SequentialSampler(eval_data)
                else:
                    eval_sampler = DistributedSampler(eval_data)
                eval_dataloader = DataLoader(eval_data,
                                             sampler=eval_sampler,
                                             batch_size=args.eval_batch_size)

                model.eval()
                output_file_path = os.path.join(
                    args.output_dir, "results_epoch_{0}.txt".format(epoch_num))
                output_file_writer = open(output_file_path,
                                          'w',
                                          encoding='utf-8')
                eval_loss, eval_accuracy = 0, 0
                nb_eval_steps, nb_eval_examples = 0, 0
                for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    label_ids = label_ids.to(device)

                    with torch.no_grad():
                        tmp_eval_loss, logits = model(input_ids, segment_ids,
                                                      input_mask, label_ids)

                    logits = logits.detach().cpu().numpy()
                    label_ids = label_ids.to('cpu').numpy()
                    tmp_eval_accuracy = accuracy(logits, label_ids)

                    for logit, label_id in zip(logits, label_ids):
                        output_file_writer.write(str(logit).replace('\n', ' '))
                        output_file_writer.write('\t')
                        output_file_writer.write(
                            str(label_id).replace('\n', ' '))
                        output_file_writer.write('\n')

                    eval_loss += tmp_eval_loss.mean().item()
                    eval_accuracy += tmp_eval_accuracy

                    nb_eval_examples += input_ids.size(0)
                    nb_eval_steps += 1

                eval_loss = eval_loss / nb_eval_steps
                eval_accuracy = eval_accuracy / nb_eval_examples

                result = {
                    'eval_loss': eval_loss,
                    'eval_accuracy': eval_accuracy,
                    'global_step': global_step,
                    'loss': tr_loss / nb_tr_steps
                }

                output_eval_file = os.path.join(
                    args.output_dir,
                    "eval_results_epoch_{0}.txt".format(epoch_num))
                with open(output_eval_file, "w") as writer:
                    logger.info("***** Eval results *****")
                    for key in sorted(result.keys()):
                        logger.info("  %s = %s", key, str(result[key]))
                        writer.write("%s = %s\n" % (key, str(result[key])))

                # Save pytorch-model
                output_model_file = os.path.join(
                    args.output_dir,
                    "fine_tune_model_epoch_{0}.bin".format(epoch_num))
                torch.save(model.state_dict(), output_model_file)

                aus_label_path = args.data_dir + r"\aus_dev.label.csv"
                ukd_label_path = args.data_dir + r"\ukd_dev.label.csv"
                if task_name == 'aus':
                    label_path = aus_label_path
                else:
                    label_path = ukd_label_path
                output_file_writer.close()

                convert(output_file_path, task_name)
                evaluation_report(label_path, output_file_path + '.label',
                                  task_name.upper(),
                                  output_file_path + '.eval')
예제 #3
0
def evaluate(model, args, processor, device, global_step, task_name,
             label_list, tokenizer, report_path):

    #global global_step
    eval_examples = processor.get_dev_examples(args.data_dir)

    eval_features = convert_examples_to_features(eval_examples, label_list,
                                                 args.max_seq_length,
                                                 tokenizer)
    all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                 dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                  dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                   dtype=torch.long)
    all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                 dtype=torch.long)
    eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                              all_label_ids)

    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size)

    model.eval()
    output_file_path = os.path.join(args.output_dir,
                                    "results_epoch_{0}.txt".format(10))
    output_file_writer = open(output_file_path, 'w', encoding='utf-8')
    eval_loss, eval_accuracy = 0, 0
    nb_eval_steps, nb_eval_examples = 0, 0
    for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
        input_ids = input_ids.to(device)
        input_mask = input_mask.to(device)
        segment_ids = segment_ids.to(device)
        label_ids = label_ids.to(device)

        with torch.no_grad():
            logits = model(input_ids, segment_ids, input_mask)

        logits = logits.detach().cpu().numpy()
        label_ids = label_ids.to('cpu').numpy()
        #tmp_eval_accuracy = accuracy(logits, label_ids)
        #print(logits)

        for logit, label_id in zip(logits, label_ids):
            output_file_writer.write(str(logit).replace('\n', ' '))
            output_file_writer.write('\t')
            output_file_writer.write(str(label_id).replace('\n', ' '))
            output_file_writer.write('\n')

        # eval_loss += tmp_eval_loss.mean().item()
        #eval_accuracy += tmp_eval_accuracy

        nb_eval_examples += input_ids.size(0)
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    #eval_accuracy = eval_accuracy / nb_eval_examples

    result = {
        'eval_loss': eval_loss,
        'global_step': global_step,
        # 'loss': tr_loss / nb_tr_steps
    }

    output_eval_file = os.path.join(args.output_dir,
                                    "eval_results_epoch_{0}.txt".format(10))
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results *****")
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

    # Save pytorch-model
    output_model_file = os.path.join(
        args.output_dir, "fine_tune_model_epoch_{0}.bin".format(10))
    torch.save(model.state_dict(), output_model_file)

    aus_label_path = args.data_dir + r"/aus_dev.label.csv"
    ukd_label_path = args.data_dir + r"/ukd_dev.label.csv"
    if task_name == 'aus':
        label_path = aus_label_path
    else:
        label_path = ukd_label_path
    output_file_writer.close()

    convert(output_file_path, task_name)
    evaluation_report(label_path, output_file_path + '.label',
                      task_name.upper(), output_file_path + '.eval',
                      report_path)

    true_file = label_path
    pred_file = output_file_path + ".label"

    true_labels = open(true_file, 'r', encoding='utf-8').readlines()
    true_labels = [true_label.strip() for true_label in true_labels]
    pred_labels = open(pred_file, 'r', encoding='utf-8').readlines()
    pred_labels = [pred_label.strip() for pred_label in pred_labels]
    print("true labels", true_labels)
    print("pred labels", pred_labels)
예제 #4
0
def eval(model, args, processor, device, global_step, task_name,label_list,tokenizer,report_path):

    #global global_step
    eval_examples = processor.get_dev_examples(args.data_dir)

    # data debug -statrt
    dev_path = os.path.join(args.data_dir, "dev.csv")
    quotechar = None
    with open(dev_path, "r", encoding='utf-8') as f:
        reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
        lines = []
        for line in reader:
            lines.append(line)
    
    set_type="dev"
    examples = []
    label_to_ids = {k: v for v, k in enumerate(get_labels())}
    for (i, line) in enumerate(lines):
        if len(line) != 2:
            # print(line)
            continue
        # if i == 0:
        #     continue
        guid = "%s-%s" % (set_type, i)
        text_a = line[0].strip()
        text_b = None
        # text_b = tokenization.convert_to_unicode(' '.join(self.labels).lower())
        label = label_to_idx(line[1].strip(), label_to_ids)
        print(label)
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))



    eval_features = convert_examples_to_features(
        eval_examples, label_list, args.max_seq_length, tokenizer)
    all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
    all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
    eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    # Run prediction for full data
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
    


    model.eval()
    output_file_path = os.path.join(args.output_dir, "results_epoch_{0}.txt".format(10))
    output_file_writer = open(output_file_path, 'w', encoding='utf-8')
    eval_loss, eval_accuracy = 0, 0
    nb_eval_steps, nb_eval_examples = 0, 0
    for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
        input_ids = input_ids.to(device)
        input_mask = input_mask.to(device)
        segment_ids = segment_ids.to(device)
        label_ids = label_ids.to(device)

        with torch.no_grad():
            logits = model(input_ids, segment_ids, input_mask)

        logits = logits.detach().cpu().numpy()
        label_ids = label_ids.to('cpu').numpy()
        #tmp_eval_accuracy = accuracy(logits, label_ids)
        print(logits)

        for logit, label_id in zip(logits, label_ids):
            output_file_writer.write(str(logit).replace('\n', ' '))
            output_file_writer.write('\t')
            output_file_writer.write(str(label_id).replace('\n', ' '))
            output_file_writer.write('\n')

        # eval_loss += tmp_eval_loss.mean().item()
        #eval_accuracy += tmp_eval_accuracy

        nb_eval_examples += input_ids.size(0)
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    #eval_accuracy = eval_accuracy / nb_eval_examples

    result = {'eval_loss': eval_loss,
                'global_step': global_step,
                # 'loss': tr_loss / nb_tr_steps
                }

    output_eval_file = os.path.join(args.output_dir, "eval_results_epoch_{0}.txt".format(10))
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results *****")
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

    # Save pytorch-model
    output_model_file = os.path.join(args.output_dir, "fine_tune_model_epoch_{0}.bin".format(10))
    torch.save(model.state_dict(), output_model_file)

    aus_label_path = args.data_dir + r"/aus_dev.label.csv"
    ukd_label_path = args.data_dir + r"/ukd_dev.label.csv"
    if task_name == 'aus':
        label_path = aus_label_path
    else:
        label_path = ukd_label_path
    output_file_writer.close()

    convert(output_file_path, task_name)
    evaluation_report(label_path, output_file_path + '.label', task_name.upper(), output_file_path + '.eval', report_path)
    
    true_file = label_path
    pred_file = output_file_path + ".label"

    true_labels = open(true_file, 'r', encoding='utf-8').readlines()
    true_labels = [true_label.strip() for true_label in true_labels]
    pred_labels = open(pred_file, 'r', encoding='utf-8').readlines()
    pred_labels = [pred_label.strip() for pred_label in pred_labels]
    print("true labels", true_labels)
    print("pred labels", pred_labels)