def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") args = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() processors = { "aus" : OOCLAUSProcessor, "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor, } num_labels_task = { "aus": 33, "cola": 2, "mnli": 3, "mrpc": 2, } if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True.") if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train: raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) task_name = args.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() num_labels = num_labels_task[task_name] label_list = processor.get_labels() tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) train_examples = None num_train_optimization_steps = None if args.do_train: train_examples = processor.get_train_examples(args.data_dir) num_train_optimization_steps = int( len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size() # Prepare model cache_dir = args.cache_dir if args.cache_dir else os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank)) model = BertForDocMultiClassification.from_pretrained(args.bert_model, cache_dir=cache_dir, num_labels = num_labels) if args.fp16: model.half() model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) global_step = 0 nb_tr_steps = 0 tr_loss = 0 if args.do_train: train_features = convert_examples_to_features( train_examples, label_list, args.max_seq_length, tokenizer) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch loss = model(input_ids, segment_ids, input_mask, label_ids) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: optimizer.backward(loss) else: loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: # modify learning rate with special warm up BERT uses # if args.fp16 is False, BertAdam is used that handles this automatically lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 if args.do_train: # Save a trained model and the associated configuration model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) torch.save(model_to_save.state_dict(), output_model_file) output_config_file = os.path.join(args.output_dir, CONFIG_NAME) with open(output_config_file, 'w') as f: f.write(model_to_save.config.to_json_string()) # Load a trained model and config that you have fine-tuned config = BertConfig(output_config_file) model = BertForDocMultiClassification(config, num_labels=num_labels) model.load_state_dict(torch.load(output_model_file)) else: model = BertForDocMultiClassification.from_pretrained(args.bert_model, num_labels=num_labels) model.to(device) if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = processor.get_dev_examples(args.data_dir) eval_features = convert_examples_to_features( eval_examples, label_list, args.max_seq_length, tokenizer) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() output_file_path = os.path.join(args.output_dir, "results_epoch_{0}.txt".format(10)) output_file_writer = open(output_file_path, 'w', encoding='utf-8') eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): logits = model(input_ids, segment_ids, input_mask) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() #tmp_eval_accuracy = accuracy(logits, label_ids) for logit, label_id in zip(logits, label_ids): output_file_writer.write(str(logit).replace('\n', ' ')) output_file_writer.write('\t') output_file_writer.write(str(label_id).replace('\n', ' ')) output_file_writer.write('\n') # eval_loss += tmp_eval_loss.mean().item() #eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps eval_accuracy = eval_accuracy / nb_eval_examples result = {'eval_loss': eval_loss, #'eval_accuracy': eval_accuracy, 'global_step': global_step, # 'loss': tr_loss / nb_tr_steps } output_eval_file = os.path.join(args.output_dir, "eval_results_epoch_{0}.txt".format(10)) with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) # Save pytorch-model output_model_file = os.path.join(args.output_dir, "fine_tune_model_epoch_{0}.bin".format(10)) torch.save(model.state_dict(), output_model_file) aus_label_path = args.data_dir + r"/aus_dev.label.csv" ukd_label_path = args.data_dir + r"/ukd_dev.label.csv" if task_name == 'aus': label_path = aus_label_path else: label_path = ukd_label_path output_file_writer.close() convert(output_file_path, task_name) evaluation_report(label_path, output_file_path + '.label', task_name.upper(), output_file_path + '.eval')
def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help= "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture.") parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train.") parser.add_argument( "--vocab_file", default=None, type=str, required=True, help="The vocabulary file that the BERT model was trained on.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints will be written." ) ## Other parameters parser.add_argument( "--init_checkpoint", default=None, type=str, help="Initial checkpoint (usually from a pre-trained BERT model).") parser.add_argument( "--do_lower_case", default=False, action='store_true', help= "Whether to lower case the input text. True for uncased models, False for cased models." ) parser.add_argument( "--max_seq_length", default=1024, type=int, help= "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", default=False, action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--save_checkpoints_steps", default=1000, type=int, help="How often to save the model checkpoint.") parser.add_argument("--no_cuda", default=False, action='store_true', help="Whether not to use CUDA when available") parser.add_argument( "--accumulate_gradients", type=int, default=1, help= "Number of steps to accumulate gradient on (divide the batch_size and accumulate)" ) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=666, help="random seed for initialization") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumualte before performing a backward/update pass." ) args = parser.parse_args() processors = {"aus": OOCLAUSProcessor, "ukd": OOCLUKDProcessor} if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1)) if args.accumulate_gradients < 1: raise ValueError( "Invalid accumulate_gradients parameter: {}, should be >= 1". format(args.accumulate_gradients)) args.train_batch_size = int(args.train_batch_size / args.accumulate_gradients) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_eval: raise ValueError( "At least one of `do_train` or `do_eval` must be True.") bert_config = BertConfig.from_json_file(args.bert_config_file) # if args.max_seq_length > bert_config.max_position_embeddings: # raise ValueError( # "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format( # args.max_seq_length, bert_config.max_position_embeddings)) if os.path.exists(args.output_dir) and os.listdir(args.output_dir): raise ValueError( "Output directory ({}) already exists and is not empty.".format( args.output_dir)) os.makedirs(args.output_dir, exist_ok=True) task_name = args.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels() tokenizer = BertTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) train_examples = None num_train_steps = None if args.do_train: train_examples = processor.get_train_examples(args.data_dir) num_train_steps = int( len(train_examples) / args.train_batch_size * args.num_train_epochs) model = BertForDocMultiClassification(bert_config, len(label_list)) if args.init_checkpoint is not None: # model_dict = model.bert.state_dict() # parameters = torch.load(args.init_checkpoint, map_location='cpu') # pretrained_dict = {} # for k in parameters: # pretrained_dict[k.replace('bert.', '')] = parameters[k] # # 2. overwrite entries in the existing state dict # model_dict.update(pretrained_dict) # # 3. load the new state dict # model.bert.load_state_dict(pretrained_dict) model.bert.load_state_dict( torch.load(args.init_checkpoint, map_location='cpu')) model.to(device) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank) elif n_gpu > 1: model = torch.nn.DataParallel(model) no_decay = ['bias', 'gamma', 'beta'] optimizer_parameters = [{ 'params': [p for n, p in model.named_parameters() if n not in no_decay], 'weight_decay_rate': 0.01 }, { 'params': [p for n, p in model.named_parameters() if n in no_decay], 'weight_decay_rate': 0.0 }] optimizer = BertAdam(optimizer_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_steps) global_step = 0 if args.do_train: train_features = convert_examples_to_features(train_examples, label_list, args.max_seq_length, tokenizer) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_steps) global long_doc_num logger.info(" Num examples of Long document= %d", long_doc_num) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) model.train() for epoch_num in trange(int(args.num_train_epochs), desc="Epoch"): model.train() tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch loss, _ = model(input_ids, segment_ids, input_mask, label_ids) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() # We have accumulated enought gradients model.zero_grad() global_step += 1 logger.info("Current loss: %f", float(loss)) if args.do_eval: eval_examples = processor.get_dev_examples(args.data_dir) eval_features = convert_examples_to_features( eval_examples, label_list, args.max_seq_length, tokenizer) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_input_ids = torch.tensor( [f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor( [f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor( [f.segment_ids for f in eval_features], dtype=torch.long) all_label_ids = torch.tensor( [f.label_id for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) if args.local_rank == -1: eval_sampler = SequentialSampler(eval_data) else: eval_sampler = DistributedSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() output_file_path = os.path.join( args.output_dir, "results_epoch_{0}.txt".format(epoch_num)) output_file_writer = open(output_file_path, 'w', encoding='utf-8') eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() tmp_eval_accuracy = accuracy(logits, label_ids) for logit, label_id in zip(logits, label_ids): output_file_writer.write(str(logit).replace('\n', ' ')) output_file_writer.write('\t') output_file_writer.write( str(label_id).replace('\n', ' ')) output_file_writer.write('\n') eval_loss += tmp_eval_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps eval_accuracy = eval_accuracy / nb_eval_examples result = { 'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'global_step': global_step, 'loss': tr_loss / nb_tr_steps } output_eval_file = os.path.join( args.output_dir, "eval_results_epoch_{0}.txt".format(epoch_num)) with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) # Save pytorch-model output_model_file = os.path.join( args.output_dir, "fine_tune_model_epoch_{0}.bin".format(epoch_num)) torch.save(model.state_dict(), output_model_file) aus_label_path = args.data_dir + r"\aus_dev.label.csv" ukd_label_path = args.data_dir + r"\ukd_dev.label.csv" if task_name == 'aus': label_path = aus_label_path else: label_path = ukd_label_path output_file_writer.close() convert(output_file_path, task_name) evaluation_report(label_path, output_file_path + '.label', task_name.upper(), output_file_path + '.eval')
def evaluate(model, args, processor, device, global_step, task_name, label_list, tokenizer, report_path): #global global_step eval_examples = processor.get_dev_examples(args.data_dir) eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() output_file_path = os.path.join(args.output_dir, "results_epoch_{0}.txt".format(10)) output_file_writer = open(output_file_path, 'w', encoding='utf-8') eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): logits = model(input_ids, segment_ids, input_mask) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() #tmp_eval_accuracy = accuracy(logits, label_ids) #print(logits) for logit, label_id in zip(logits, label_ids): output_file_writer.write(str(logit).replace('\n', ' ')) output_file_writer.write('\t') output_file_writer.write(str(label_id).replace('\n', ' ')) output_file_writer.write('\n') # eval_loss += tmp_eval_loss.mean().item() #eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps #eval_accuracy = eval_accuracy / nb_eval_examples result = { 'eval_loss': eval_loss, 'global_step': global_step, # 'loss': tr_loss / nb_tr_steps } output_eval_file = os.path.join(args.output_dir, "eval_results_epoch_{0}.txt".format(10)) with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) # Save pytorch-model output_model_file = os.path.join( args.output_dir, "fine_tune_model_epoch_{0}.bin".format(10)) torch.save(model.state_dict(), output_model_file) aus_label_path = args.data_dir + r"/aus_dev.label.csv" ukd_label_path = args.data_dir + r"/ukd_dev.label.csv" if task_name == 'aus': label_path = aus_label_path else: label_path = ukd_label_path output_file_writer.close() convert(output_file_path, task_name) evaluation_report(label_path, output_file_path + '.label', task_name.upper(), output_file_path + '.eval', report_path) true_file = label_path pred_file = output_file_path + ".label" true_labels = open(true_file, 'r', encoding='utf-8').readlines() true_labels = [true_label.strip() for true_label in true_labels] pred_labels = open(pred_file, 'r', encoding='utf-8').readlines() pred_labels = [pred_label.strip() for pred_label in pred_labels] print("true labels", true_labels) print("pred labels", pred_labels)
def eval(model, args, processor, device, global_step, task_name,label_list,tokenizer,report_path): #global global_step eval_examples = processor.get_dev_examples(args.data_dir) # data debug -statrt dev_path = os.path.join(args.data_dir, "dev.csv") quotechar = None with open(dev_path, "r", encoding='utf-8') as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) set_type="dev" examples = [] label_to_ids = {k: v for v, k in enumerate(get_labels())} for (i, line) in enumerate(lines): if len(line) != 2: # print(line) continue # if i == 0: # continue guid = "%s-%s" % (set_type, i) text_a = line[0].strip() text_b = None # text_b = tokenization.convert_to_unicode(' '.join(self.labels).lower()) label = label_to_idx(line[1].strip(), label_to_ids) print(label) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) eval_features = convert_examples_to_features( eval_examples, label_list, args.max_seq_length, tokenizer) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() output_file_path = os.path.join(args.output_dir, "results_epoch_{0}.txt".format(10)) output_file_writer = open(output_file_path, 'w', encoding='utf-8') eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): logits = model(input_ids, segment_ids, input_mask) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() #tmp_eval_accuracy = accuracy(logits, label_ids) print(logits) for logit, label_id in zip(logits, label_ids): output_file_writer.write(str(logit).replace('\n', ' ')) output_file_writer.write('\t') output_file_writer.write(str(label_id).replace('\n', ' ')) output_file_writer.write('\n') # eval_loss += tmp_eval_loss.mean().item() #eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps #eval_accuracy = eval_accuracy / nb_eval_examples result = {'eval_loss': eval_loss, 'global_step': global_step, # 'loss': tr_loss / nb_tr_steps } output_eval_file = os.path.join(args.output_dir, "eval_results_epoch_{0}.txt".format(10)) with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) # Save pytorch-model output_model_file = os.path.join(args.output_dir, "fine_tune_model_epoch_{0}.bin".format(10)) torch.save(model.state_dict(), output_model_file) aus_label_path = args.data_dir + r"/aus_dev.label.csv" ukd_label_path = args.data_dir + r"/ukd_dev.label.csv" if task_name == 'aus': label_path = aus_label_path else: label_path = ukd_label_path output_file_writer.close() convert(output_file_path, task_name) evaluation_report(label_path, output_file_path + '.label', task_name.upper(), output_file_path + '.eval', report_path) true_file = label_path pred_file = output_file_path + ".label" true_labels = open(true_file, 'r', encoding='utf-8').readlines() true_labels = [true_label.strip() for true_label in true_labels] pred_labels = open(pred_file, 'r', encoding='utf-8').readlines() pred_labels = [pred_label.strip() for pred_label in pred_labels] print("true labels", true_labels) print("pred labels", pred_labels)