def test_mask_coordinates(): test_directory = os.path.split(os.path.abspath(__file__))[0] img = rgb2gray(rgba2rgb(imread(os.path.join(test_directory, "moon.png")))) img1, mask = dynamic_masking(img_as_float(img), method="intensity") mask_coords = mask_coordinates(mask, 1.5, 3) assert (np.allclose( mask_coords, np.array([[127., 17.], [101., 16.], [78., 22.], [69., 28.], [51., 48.], [43., 70.], [43., 90.], [48., 108.], [57., 127.]]))) # it has to fail so we remember to make a test
def test_multi_pass_circ(): """ test fot the multipass """ settings.windowsizes = (64, 64, 16) settings.overlap = (32, 32, 8) settings.num_iterations = 2 settings.interpolation_order = 3 settings.validation_first_pass = True settings.sig2noise_validate = False # ettings.show_all_plots = True x, y, u, v, s2n = windef.first_pass( frame_a, frame_b, settings, ) print("first pass\n") print("\n", x, y, u, v, s2n) assert np.allclose(u, shift_u, atol = threshold) assert np.allclose(v, shift_v, atol = threshold) if settings.image_mask: image_mask = np.logical_and(mask_a, mask_b) mask_coords = preprocess.mask_coordinates(image_mask) # mark those points on the grid of PIV inside the mask grid_mask = preprocess.prepare_mask_on_grid(x,y,mask_coords) # mask the velocity u = np.ma.masked_array(u, mask=grid_mask) v = np.ma.masked_array(v, mask=grid_mask) else: mask_coords = [] u = np.ma.masked_array(u, mask=np.ma.nomask) v = np.ma.masked_array(v, mask=np.ma.nomask) for i in range(1,settings.num_iterations): x, y, u, v, s2n, _ = windef.multipass_img_deform( frame_a, frame_b, i, x, y, u, v, settings ) print(f"Pass {i}\n") print(x) print(y) print(u) print(v) print(s2n) assert np.mean(np.abs(u - shift_u)) < threshold assert np.mean(np.abs(v - shift_v)) < threshold
def func(args): """A function to process each image pair.""" # this line is REQUIRED for multiprocessing to work # always use it in your custom function file_a, file_b, counter = args # counter2=str(counter2) ##################### # Here goes you code ##################### " read images into numpy arrays" frame_a = imread(os.path.join(settings.filepath_images, file_a)) frame_b = imread(os.path.join(settings.filepath_images, file_b)) # Miguel: I just had a quick look, and I do not understand the reason # for this step. # I propose to remove it. # frame_a = (frame_a*1024).astype(np.int32) # frame_b = (frame_b*1024).astype(np.int32) " crop to ROI" if settings.ROI == "full": frame_a = frame_a frame_b = frame_b else: frame_a = frame_a[settings.ROI[0]:settings.ROI[1], settings.ROI[2]:settings.ROI[3]] frame_b = frame_b[settings.ROI[0]:settings.ROI[1], settings.ROI[2]:settings.ROI[3]] if settings.invert is True: frame_a = invert(frame_a) frame_b = invert(frame_b) if settings.show_all_plots: fig, ax = plt.subplots(1, 1) ax.imshow(frame_a, cmap=plt.get_cmap('Reds')) ax.imshow(frame_b, cmap=plt.get_cmap('Blues'), alpha=.5) plt.show() if settings.dynamic_masking_method in ("edge", "intensity"): frame_a, mask_a = preprocess.dynamic_masking( frame_a, method=settings.dynamic_masking_method, filter_size=settings.dynamic_masking_filter_size, threshold=settings.dynamic_masking_threshold, ) frame_b, mask_b = preprocess.dynamic_masking( frame_b, method=settings.dynamic_masking_method, filter_size=settings.dynamic_masking_filter_size, threshold=settings.dynamic_masking_threshold, ) # "first pass" x, y, u, v, s2n = first_pass(frame_a, frame_b, settings) if settings.show_all_plots: plt.figure() plt.quiver(x, y, u, -v, color='b') # plt.gca().invert_yaxis() # plt.gca().set_aspect(1.) # plt.title('after first pass, invert') # plt.show() # " Image masking " if settings.image_mask: image_mask = np.logical_and(mask_a, mask_b) mask_coords = preprocess.mask_coordinates(image_mask) # mark those points on the grid of PIV inside the mask grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords) # mask the velocity u = np.ma.masked_array(u, mask=grid_mask) v = np.ma.masked_array(v, mask=grid_mask) else: mask_coords = [] u = np.ma.masked_array(u, mask=np.ma.nomask) v = np.ma.masked_array(v, mask=np.ma.nomask) if settings.validation_first_pass: u, v, mask = validation.typical_validation(u, v, s2n, settings) if settings.show_all_plots: # plt.figure() plt.quiver(x, y, u, -v, color='r') plt.gca().invert_yaxis() plt.gca().set_aspect(1.) plt.title('after first pass validation new, inverted') plt.show() # "filter to replace the values that where marked by the validation" if settings.num_iterations == 1 and settings.replace_vectors: # for multi-pass we cannot have holes in the data # after the first pass u, v = filters.replace_outliers( u, v, method=settings.filter_method, max_iter=settings.max_filter_iteration, kernel_size=settings.filter_kernel_size, ) # don't even check if it's true or false elif settings.num_iterations > 1: u, v = filters.replace_outliers( u, v, method=settings.filter_method, max_iter=settings.max_filter_iteration, kernel_size=settings.filter_kernel_size, ) # "adding masks to add the effect of all the validations" if settings.smoothn: u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn( u, s=settings.smoothn_p) v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn( v, s=settings.smoothn_p) if settings.image_mask: grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords) u = np.ma.masked_array(u, mask=grid_mask) v = np.ma.masked_array(v, mask=grid_mask) else: u = np.ma.masked_array(u, np.ma.nomask) v = np.ma.masked_array(v, np.ma.nomask) if settings.show_all_plots: plt.figure() plt.quiver(x, y, u, -v) plt.gca().invert_yaxis() plt.gca().set_aspect(1.) plt.title('before multi pass, inverted') plt.show() if not isinstance(u, np.ma.MaskedArray): raise ValueError("Expected masked array") """ Multi pass """ for i in range(1, settings.num_iterations): if not isinstance(u, np.ma.MaskedArray): raise ValueError("Expected masked array") x, y, u, v, s2n, mask = multipass_img_deform( frame_a, frame_b, i, x, y, u, v, settings, mask_coords=mask_coords) # If the smoothing is active, we do it at each pass # but not the last one if settings.smoothn is True and i < settings.num_iterations - 1: u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn( u, s=settings.smoothn_p) v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn( v, s=settings.smoothn_p) if not isinstance(u, np.ma.MaskedArray): raise ValueError('not a masked array anymore') if hasattr(settings, 'image_mask') and settings.image_mask: grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords) u = np.ma.masked_array(u, mask=grid_mask) v = np.ma.masked_array(v, mask=grid_mask) else: u = np.ma.masked_array(u, np.ma.nomask) v = np.ma.masked_array(v, np.ma.nomask) if settings.show_all_plots: plt.figure() plt.quiver(x, y, u, -1 * v, color='r') plt.gca().set_aspect(1.) plt.gca().invert_yaxis() plt.title('end of the multipass, invert') plt.show() if settings.show_all_plots and settings.num_iterations > 1: plt.figure() plt.quiver(x, y, u, -v) plt.gca().invert_yaxis() plt.gca().set_aspect(1.) plt.title('after multi pass, before saving, inverted') plt.show() # we now use only 0s instead of the image # masked regions. # we could do Nan, not sure what is best u = u.filled(0.) v = v.filled(0.) # "scales the results pixel-> meter" x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor=settings.scaling_factor) if settings.image_mask: grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords) u = np.ma.masked_array(u, mask=grid_mask) v = np.ma.masked_array(v, mask=grid_mask) else: u = np.ma.masked_array(u, np.ma.nomask) v = np.ma.masked_array(v, np.ma.nomask) # before saving we conver to the "physically relevant" # right-hand coordinate system with 0,0 at the bottom left # x to the right, y upwards # and so u,v x, y, u, v = transform_coordinates(x, y, u, v) # import pdb; pdb.set_trace() # "save to a file" tools.save(x, y, u, v, mask, os.path.join(save_path, "field_A%03d.txt" % counter), delimiter="\t") # "some other stuff that one might want to use" if settings.show_plot or settings.save_plot: Name = os.path.join(save_path, "Image_A%03d.png" % counter) fig, _ = display_vector_field( os.path.join(save_path, "field_A%03d.txt" % counter), scale=settings.scale_plot, ) if settings.save_plot is True: fig.savefig(Name) if settings.show_plot is True: plt.show() print(f"Image Pair {counter + 1}") print(file_a.rsplit('/')[-1], file_b.rsplit('/')[-1])
# In[7]: # let's combine the two masks if the body is slightly moving image_mask = np.logical_and(image_mask_a, image_mask_b) plt.imshow(image_mask) # ## Exract coordinates of the mask as a list of coordinates of a polygon # In[8]: mask_coords = mask_coordinates(image_mask) # ## Run the first pass # # We use typically the most robust approach: linear correlation (with zero padding) # and normalized correlation function (0..1) # In[9]: # In order to convert the image mask to the data mask in x,y # coordinates, we have to either run first pass or # use get_coordinates # Since we do not know how to use the image_mask in the # first pass with the vectorized correlations, i.e. how to