示例#1
0
def test_mask_coordinates():
    test_directory = os.path.split(os.path.abspath(__file__))[0]
    img = rgb2gray(rgba2rgb(imread(os.path.join(test_directory, "moon.png"))))
    img1, mask = dynamic_masking(img_as_float(img), method="intensity")
    mask_coords = mask_coordinates(mask, 1.5, 3)
    assert (np.allclose(
        mask_coords,
        np.array([[127., 17.], [101., 16.], [78., 22.], [69., 28.], [51., 48.],
                  [43., 70.], [43., 90.], [48., 108.],
                  [57.,
                   127.]])))  # it has to fail so we remember to make a test
示例#2
0
def test_multi_pass_circ():
    """ test fot the multipass """
    settings.windowsizes = (64, 64, 16)
    settings.overlap = (32, 32, 8)
    settings.num_iterations = 2
    settings.interpolation_order = 3
    settings.validation_first_pass = True
    settings.sig2noise_validate = False
    # ettings.show_all_plots = True

    x, y, u, v, s2n = windef.first_pass(
        frame_a,
        frame_b,
        settings,
    )
    print("first pass\n")
    print("\n", x, y, u, v, s2n)
    assert np.allclose(u, shift_u, atol = threshold)
    assert np.allclose(v, shift_v, atol = threshold)

    if settings.image_mask:
        image_mask = np.logical_and(mask_a, mask_b)
        mask_coords = preprocess.mask_coordinates(image_mask)
        # mark those points on the grid of PIV inside the mask
        grid_mask = preprocess.prepare_mask_on_grid(x,y,mask_coords)

        # mask the velocity
        u = np.ma.masked_array(u, mask=grid_mask)
        v = np.ma.masked_array(v, mask=grid_mask)
    else:
        mask_coords = []
        u = np.ma.masked_array(u, mask=np.ma.nomask)
        v = np.ma.masked_array(v, mask=np.ma.nomask)

    for i in range(1,settings.num_iterations):
        x, y, u, v, s2n, _ = windef.multipass_img_deform(
            frame_a,
            frame_b,
            i,
            x,
            y,
            u,
            v,
            settings
        )

    print(f"Pass {i}\n")
    print(x)
    print(y)
    print(u) 
    print(v)
    print(s2n)
    assert np.mean(np.abs(u - shift_u)) < threshold
    assert np.mean(np.abs(v - shift_v)) < threshold
示例#3
0
    def func(args):
        """A function to process each image pair."""

        # this line is REQUIRED for multiprocessing to work
        # always use it in your custom function

        file_a, file_b, counter = args

        # counter2=str(counter2)
        #####################
        # Here goes you code
        #####################

        " read images into numpy arrays"
        frame_a = imread(os.path.join(settings.filepath_images, file_a))
        frame_b = imread(os.path.join(settings.filepath_images, file_b))

        # Miguel: I just had a quick look, and I do not understand the reason
        # for this step.
        #  I propose to remove it.
        # frame_a = (frame_a*1024).astype(np.int32)
        # frame_b = (frame_b*1024).astype(np.int32)

        " crop to ROI"
        if settings.ROI == "full":
            frame_a = frame_a
            frame_b = frame_b
        else:
            frame_a = frame_a[settings.ROI[0]:settings.ROI[1],
                              settings.ROI[2]:settings.ROI[3]]
            frame_b = frame_b[settings.ROI[0]:settings.ROI[1],
                              settings.ROI[2]:settings.ROI[3]]

        if settings.invert is True:
            frame_a = invert(frame_a)
            frame_b = invert(frame_b)

        if settings.show_all_plots:
            fig, ax = plt.subplots(1, 1)
            ax.imshow(frame_a, cmap=plt.get_cmap('Reds'))
            ax.imshow(frame_b, cmap=plt.get_cmap('Blues'), alpha=.5)
            plt.show()

        if settings.dynamic_masking_method in ("edge", "intensity"):
            frame_a, mask_a = preprocess.dynamic_masking(
                frame_a,
                method=settings.dynamic_masking_method,
                filter_size=settings.dynamic_masking_filter_size,
                threshold=settings.dynamic_masking_threshold,
            )
            frame_b, mask_b = preprocess.dynamic_masking(
                frame_b,
                method=settings.dynamic_masking_method,
                filter_size=settings.dynamic_masking_filter_size,
                threshold=settings.dynamic_masking_threshold,
            )

        # "first pass"
        x, y, u, v, s2n = first_pass(frame_a, frame_b, settings)

        if settings.show_all_plots:
            plt.figure()
            plt.quiver(x, y, u, -v, color='b')
            # plt.gca().invert_yaxis()
            # plt.gca().set_aspect(1.)
            # plt.title('after first pass, invert')
            # plt.show()

        # " Image masking "
        if settings.image_mask:
            image_mask = np.logical_and(mask_a, mask_b)
            mask_coords = preprocess.mask_coordinates(image_mask)
            # mark those points on the grid of PIV inside the mask
            grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords)

            # mask the velocity
            u = np.ma.masked_array(u, mask=grid_mask)
            v = np.ma.masked_array(v, mask=grid_mask)
        else:
            mask_coords = []
            u = np.ma.masked_array(u, mask=np.ma.nomask)
            v = np.ma.masked_array(v, mask=np.ma.nomask)

        if settings.validation_first_pass:
            u, v, mask = validation.typical_validation(u, v, s2n, settings)

        if settings.show_all_plots:
            # plt.figure()
            plt.quiver(x, y, u, -v, color='r')
            plt.gca().invert_yaxis()
            plt.gca().set_aspect(1.)
            plt.title('after first pass validation new, inverted')
            plt.show()

        # "filter to replace the values that where marked by the validation"
        if settings.num_iterations == 1 and settings.replace_vectors:
            # for multi-pass we cannot have holes in the data
            # after the first pass
            u, v = filters.replace_outliers(
                u,
                v,
                method=settings.filter_method,
                max_iter=settings.max_filter_iteration,
                kernel_size=settings.filter_kernel_size,
            )
        # don't even check if it's true or false
        elif settings.num_iterations > 1:
            u, v = filters.replace_outliers(
                u,
                v,
                method=settings.filter_method,
                max_iter=settings.max_filter_iteration,
                kernel_size=settings.filter_kernel_size,
            )

            # "adding masks to add the effect of all the validations"
        if settings.smoothn:
            u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn(
                u, s=settings.smoothn_p)
            v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn(
                v, s=settings.smoothn_p)

        if settings.image_mask:
            grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords)
            u = np.ma.masked_array(u, mask=grid_mask)
            v = np.ma.masked_array(v, mask=grid_mask)
        else:
            u = np.ma.masked_array(u, np.ma.nomask)
            v = np.ma.masked_array(v, np.ma.nomask)

        if settings.show_all_plots:
            plt.figure()
            plt.quiver(x, y, u, -v)
            plt.gca().invert_yaxis()
            plt.gca().set_aspect(1.)
            plt.title('before multi pass, inverted')
            plt.show()

        if not isinstance(u, np.ma.MaskedArray):
            raise ValueError("Expected masked array")
        """ Multi pass """

        for i in range(1, settings.num_iterations):

            if not isinstance(u, np.ma.MaskedArray):
                raise ValueError("Expected masked array")

            x, y, u, v, s2n, mask = multipass_img_deform(
                frame_a,
                frame_b,
                i,
                x,
                y,
                u,
                v,
                settings,
                mask_coords=mask_coords)

            # If the smoothing is active, we do it at each pass
            # but not the last one
            if settings.smoothn is True and i < settings.num_iterations - 1:
                u, dummy_u1, dummy_u2, dummy_u3 = smoothn.smoothn(
                    u, s=settings.smoothn_p)
                v, dummy_v1, dummy_v2, dummy_v3 = smoothn.smoothn(
                    v, s=settings.smoothn_p)
            if not isinstance(u, np.ma.MaskedArray):
                raise ValueError('not a masked array anymore')

            if hasattr(settings, 'image_mask') and settings.image_mask:
                grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords)
                u = np.ma.masked_array(u, mask=grid_mask)
                v = np.ma.masked_array(v, mask=grid_mask)
            else:
                u = np.ma.masked_array(u, np.ma.nomask)
                v = np.ma.masked_array(v, np.ma.nomask)

            if settings.show_all_plots:
                plt.figure()
                plt.quiver(x, y, u, -1 * v, color='r')
                plt.gca().set_aspect(1.)
                plt.gca().invert_yaxis()
                plt.title('end of the multipass, invert')
                plt.show()

        if settings.show_all_plots and settings.num_iterations > 1:
            plt.figure()
            plt.quiver(x, y, u, -v)
            plt.gca().invert_yaxis()
            plt.gca().set_aspect(1.)
            plt.title('after multi pass, before saving, inverted')
            plt.show()

        # we now use only 0s instead of the image
        # masked regions.
        # we could do Nan, not sure what is best
        u = u.filled(0.)
        v = v.filled(0.)

        # "scales the results pixel-> meter"
        x, y, u, v = scaling.uniform(x,
                                     y,
                                     u,
                                     v,
                                     scaling_factor=settings.scaling_factor)

        if settings.image_mask:
            grid_mask = preprocess.prepare_mask_on_grid(x, y, mask_coords)
            u = np.ma.masked_array(u, mask=grid_mask)
            v = np.ma.masked_array(v, mask=grid_mask)
        else:
            u = np.ma.masked_array(u, np.ma.nomask)
            v = np.ma.masked_array(v, np.ma.nomask)

        # before saving we conver to the "physically relevant"
        # right-hand coordinate system with 0,0 at the bottom left
        # x to the right, y upwards
        # and so u,v

        x, y, u, v = transform_coordinates(x, y, u, v)
        # import pdb; pdb.set_trace()
        # "save to a file"
        tools.save(x,
                   y,
                   u,
                   v,
                   mask,
                   os.path.join(save_path, "field_A%03d.txt" % counter),
                   delimiter="\t")
        # "some other stuff that one might want to use"
        if settings.show_plot or settings.save_plot:
            Name = os.path.join(save_path, "Image_A%03d.png" % counter)
            fig, _ = display_vector_field(
                os.path.join(save_path, "field_A%03d.txt" % counter),
                scale=settings.scale_plot,
            )
            if settings.save_plot is True:
                fig.savefig(Name)
            if settings.show_plot is True:
                plt.show()

        print(f"Image Pair {counter + 1}")
        print(file_a.rsplit('/')[-1], file_b.rsplit('/')[-1])

# In[7]:


# let's combine the two masks if the body is slightly moving
image_mask = np.logical_and(image_mask_a, image_mask_b)
plt.imshow(image_mask)


# ## Exract coordinates of the mask as a list of coordinates of a polygon

# In[8]:


mask_coords = mask_coordinates(image_mask)


# ## Run the first pass
# 
# We use typically the most robust approach: linear correlation (with zero padding)
#     and normalized correlation function (0..1)

# In[9]:


# In order to convert the image mask to the data mask in x,y 
# coordinates, we have to either run first pass or 
# use get_coordinates
# Since we do not know how to use the image_mask in the 
# first pass with the vectorized correlations, i.e. how to