def get_vulnerability_functions(fname): """ :param fname: path of the vulnerability filter :returns: a dictionary imt, taxonomy -> vulnerability function """ # NB: the vulnerabilitySetID is not an unique ID! # it is right to have several vulnerability sets with the same ID # the IMTs can also be duplicated and with different levels, each # vulnerability function in a set will get its own levels imts = set() taxonomies = set() vf_dict = {} # imt, taxonomy -> vulnerability function node = nrml.read(fname) if node['xmlns'] == 'http://openquake.org/xmlns/nrml/0.5': vmodel = node[0] for vfun in vmodel[1:]: # the first node is the description imt = vfun.imls['imt'] imls = numpy.array(~vfun.imls) taxonomy = vfun['id'] loss_ratios, probs = [], [] for probabilities in vfun[1:]: loss_ratios.append(probabilities['lr']) probs.append(valid.probabilities(~probabilities)) probs = numpy.array(probs) assert probs.shape == (len(loss_ratios), len(imls)) vf_dict[imt, taxonomy] = scientific.VulnerabilityFunctionWithPMF( taxonomy, imt, imls, numpy.array(loss_ratios), probs) return vf_dict # otherwise, read the old format (NRML 0.4) for vset in read_nodes(fname, filter_vset, nodefactory['vulnerabilityModel']): imt_str, imls, min_iml, max_iml, imlUnit = ~vset.IML imts.add(imt_str) for vfun in vset.getnodes('discreteVulnerability'): taxonomy = vfun['vulnerabilityFunctionID'] if taxonomy in taxonomies: raise InvalidFile( 'Duplicated vulnerabilityFunctionID: %s: %s, line %d' % (taxonomy, fname, vfun.lineno)) taxonomies.add(taxonomy) with context(fname, vfun): loss_ratios = ~vfun.lossRatio coefficients = ~vfun.coefficientsVariation if len(loss_ratios) != len(imls): raise InvalidFile( 'There are %d loss ratios, but %d imls: %s, line %d' % (len(loss_ratios), len(imls), fname, vfun.lossRatio.lineno)) if len(coefficients) != len(imls): raise InvalidFile( 'There are %d coefficients, but %d imls: %s, line %d' % (len(coefficients), len(imls), fname, vfun.coefficientsVariation.lineno)) with context(fname, vfun): vf_dict[imt_str, taxonomy] = scientific.VulnerabilityFunction( taxonomy, imt_str, imls, loss_ratios, coefficients, vfun['probabilisticDistribution']) return vf_dict
def ffconvert(fname, limit_states, ff): """ Convert a fragility function into a numpy array plus a bunch of attributes. :param fname: path to the fragility model file :param limit_states: expected limit states :param ff: fragility function node :returns: a pair (array, dictionary) """ with context(fname, ff): ffs = ff[1:] imls = ff.imls with context(fname, imls): attrs = dict(format=ff['format'], imt=imls['imt'], nodamage=imls.attrib.get('noDamageLimit')) LS = len(limit_states) if LS != len(ffs): with context(fname, ff): raise InvalidFile('expected %d limit states, found %d' % (LS, len(ffs))) if ff['format'] == 'continuous': attrs['minIML'] = float(imls['minIML']) attrs['maxIML'] = float(imls['maxIML']) array = numpy.zeros(LS, [('mean', F64), ('stddev', F64)]) for i, ls, node in zip(range(LS), limit_states, ff[1:]): if ls != node['ls']: with context(fname, node): raise InvalidFile('expected %s, found' % (ls, node['ls'])) array['mean'][i] = node['mean'] array['stddev'][i] = node['stddev'] elif ff['format'] == 'discrete': attrs['imls'] = valid.positivefloats(~imls) valid.check_levels(attrs['imls'], attrs['imt']) num_poes = len(attrs['imls']) array = numpy.zeros((LS, num_poes)) for i, ls, node in zip(range(LS), limit_states, ff[1:]): with context(fname, node): if ls != node['ls']: raise InvalidFile('expected %s, found' % (ls, node['ls'])) poes = (~node if isinstance(~node, list) else valid.probabilities(~node)) if len(poes) != num_poes: raise InvalidFile('expected %s, found' % (num_poes, len(poes))) array[i, :] = poes # NB: the format is constrained in nrml.FragilityNode to be either # discrete or continuous, there is no third option return array, attrs
def get_vulnerability_functions_05(node, fname): """ :param node: a vulnerabilityModel node :param fname: path of the vulnerability filter :returns: a dictionary imt, taxonomy -> vulnerability function """ # NB: the IMTs can be duplicated and with different levels, each # vulnerability function in a set will get its own levels taxonomies = set() vmodel = scientific.VulnerabilityModel(**node.attrib) # imt, taxonomy -> vulnerability function for vfun in node.getnodes('vulnerabilityFunction'): with context(fname, vfun): imt = vfun.imls['imt'] imls = numpy.array(~vfun.imls) taxonomy = vfun['id'] if taxonomy in taxonomies: raise InvalidFile( 'Duplicated vulnerabilityFunctionID: %s: %s, line %d' % (taxonomy, fname, vfun.lineno)) if vfun['dist'] == 'PM': loss_ratios, probs = [], [] for probabilities in vfun[1:]: loss_ratios.append(probabilities['lr']) probs.append(valid.probabilities(~probabilities)) probs = numpy.array(probs) assert probs.shape == (len(loss_ratios), len(imls)) vmodel[imt, taxonomy] = ( scientific.VulnerabilityFunctionWithPMF( taxonomy, imt, imls, numpy.array(loss_ratios), probs)) # the seed will be set by readinput.get_risk_model else: with context(fname, vfun): loss_ratios = ~vfun.meanLRs coefficients = ~vfun.covLRs if len(loss_ratios) != len(imls): raise InvalidFile( 'There are %d loss ratios, but %d imls: %s, line %d' % (len(loss_ratios), len(imls), fname, vfun.meanLRs.lineno)) if len(coefficients) != len(imls): raise InvalidFile( 'There are %d coefficients, but %d imls: %s, ' 'line %d' % (len(coefficients), len(imls), fname, vfun.covLRs.lineno)) with context(fname, vfun): vmodel[imt, taxonomy] = scientific.VulnerabilityFunction( taxonomy, imt, imls, loss_ratios, coefficients, vfun['dist']) return vmodel
def get_vulnerability_functions(fname): """ :param fname: path of the vulnerability filter :returns: a dictionary imt, taxonomy -> vulnerability function """ # NB: the IMTs can be duplicated and with different levels, each # vulnerability function in a set will get its own levels imts = set() taxonomies = set() vf_dict = {} # imt, taxonomy -> vulnerability function node = nrml.read(fname) if node['xmlns'] == nrml.NRML05: vmodel = node[0] for vfun in vmodel.getnodes('vulnerabilityFunction'): with context(fname, vfun): imt = vfun.imls['imt'] imls = numpy.array(~vfun.imls) taxonomy = vfun['id'] if taxonomy in taxonomies: raise InvalidFile( 'Duplicated vulnerabilityFunctionID: %s: %s, line %d' % (taxonomy, fname, vfun.lineno)) if vfun['dist'] == 'PM': loss_ratios, probs = [], [] for probabilities in vfun[1:]: loss_ratios.append(probabilities['lr']) probs.append(valid.probabilities(~probabilities)) probs = numpy.array(probs) assert probs.shape == (len(loss_ratios), len(imls)) vf_dict[imt, taxonomy] = (scientific.VulnerabilityFunctionWithPMF( taxonomy, imt, imls, numpy.array(loss_ratios), probs)) else: with context(fname, vfun): loss_ratios = ~vfun.meanLRs coefficients = ~vfun.covLRs if len(loss_ratios) != len(imls): raise InvalidFile( 'There are %d loss ratios, but %d imls: %s, line %d' % (len(loss_ratios), len(imls), fname, vfun.meanLRs.lineno)) if len(coefficients) != len(imls): raise InvalidFile( 'There are %d coefficients, but %d imls: %s, ' 'line %d' % (len(coefficients), len(imls), fname, vfun.covLRs.lineno)) with context(fname, vfun): vf_dict[imt, taxonomy] = scientific.VulnerabilityFunction( taxonomy, imt, imls, loss_ratios, coefficients, vfun['dist']) return vf_dict # otherwise, read the old format (NRML 0.4) for vset in read_nodes(fname, filter_vset, nodefactory['vulnerabilityModel']): imt_str, imls, min_iml, max_iml, imlUnit = ~vset.IML imts.add(imt_str) for vfun in vset.getnodes('discreteVulnerability'): taxonomy = vfun['vulnerabilityFunctionID'] if taxonomy in taxonomies: raise InvalidFile( 'Duplicated vulnerabilityFunctionID: %s: %s, line %d' % (taxonomy, fname, vfun.lineno)) taxonomies.add(taxonomy) with context(fname, vfun): loss_ratios = ~vfun.lossRatio coefficients = ~vfun.coefficientsVariation if len(loss_ratios) != len(imls): raise InvalidFile( 'There are %d loss ratios, but %d imls: %s, line %d' % (len(loss_ratios), len(imls), fname, vfun.lossRatio.lineno)) if len(coefficients) != len(imls): raise InvalidFile( 'There are %d coefficients, but %d imls: %s, line %d' % (len(coefficients), len(imls), fname, vfun.coefficientsVariation.lineno)) with context(fname, vfun): vf_dict[imt_str, taxonomy] = scientific.VulnerabilityFunction( taxonomy, imt_str, imls, loss_ratios, coefficients, vfun['probabilisticDistribution']) return vf_dict