예제 #1
0
    def test_calculation_addition_args(self):
        avg_periods = [0.05, 0.15, 1.0, 2.0, 4.0]
        gmm = GenericGmpeAvgSA(gmpe_name="KothaEtAl2020ESHM20",
                               avg_periods=avg_periods,
                               corr_func="akkar",
                               sigma_mu_epsilon=1.0)

        rctx = RuptureContext()
        rctx.mag = 6.
        rctx.hypo_depth = 15.
        dctx = DistancesContext()
        dctx.rjb = np.array([1., 10., 30., 70.])

        sctx = SitesContext()
        sctx.vs30 = 500.0 * np.ones(4)
        sctx.vs30measured = np.ones(4, dtype="bool")
        sctx.region = np.zeros(4, dtype=int)
        stdt = [const.StdDev.TOTAL]
        expected_mean = np.array(
            [-1.72305707, -2.2178751, -3.20100306, -4.19948242])
        expected_stddev = np.array(
            [0.5532021, 0.5532021, 0.5532021, 0.5532021])
        imtype = imt.AvgSA()
        mean, [stddev] = gmm.get_mean_and_stddevs(sctx, rctx, dctx, imtype,
                                                  stdt)
        np.testing.assert_almost_equal(mean, expected_mean)
        np.testing.assert_almost_equal(stddev, expected_stddev)
예제 #2
0
 def test_param(self):
     ctxs = [RuptureContext([('occurrence_rate', .001)]),
             RuptureContext([('occurrence_rate', .002)])]
     for poe in (.1, .5, .9):
         c1, pnes1 = compose(ctxs, poe)
         c2, pnes2 = compose(_collapse(ctxs), poe)
         aac(c1, c2)  # the same
예제 #3
0
    def test_calculation_addition_args(self):
        avg_periods = [0.05, 0.15, 1.0, 2.0, 4.0]
        gmm = GenericGmpeAvgSA(gmpe_name="KothaEtAl2019SERA",
                               avg_periods=avg_periods,
                               corr_func="akkar",
                               sigma_mu_epsilon=1.0)

        rctx = RuptureContext()
        rctx.mag = 6.
        rctx.hypo_depth = 15.
        dctx = DistancesContext()
        dctx.rjb = np.array([1., 10., 30., 70.])

        sctx = SitesContext()
        sctx.vs30 = 500.0 * np.ones(4)
        sctx.vs30measured = np.ones(4, dtype="bool")
        stdt = [const.StdDev.TOTAL]
        expected_mean = np.array(
            [-1.45586338, -1.94419233, -2.91884965, -3.91919928])
        expected_stddev = np.array(
            [0.58317566, 0.58317566, 0.58317566, 0.58317566])
        imtype = imt.AvgSA()
        mean, [stddev] = gmm.get_mean_and_stddevs(sctx, rctx, dctx, imtype,
                                                  stdt)
        np.testing.assert_almost_equal(mean, expected_mean)
        np.testing.assert_almost_equal(stddev, expected_stddev)
 def ctx(self, nsites, vs30):
     sites = Dummy.get_site_collection(nsites, vs30=vs30)
     rup = Dummy.get_rupture(mag=6.0)
     ctx = RuptureContext()
     ctx.sid = np.arange(nsites)
     vars(ctx).update(vars(rup))
     for name in sites.array.dtype.names:
         setattr(ctx, name, sites[name])
     return ctx
예제 #5
0
 def test_mixed(self):
     ctxs = [RuptureContext([('occurrence_rate', .001)]),
             RuptureContext([('occurrence_rate', .002)]),
             RuptureContext([('occurrence_rate', numpy.nan),
                             ('probs_occur', [.999, .001])]),
             RuptureContext([('occurrence_rate', numpy.nan),
                             ('probs_occur', [.998, .002])])]
     for poe in (.1, .5, .9):
         c1, pnes1 = compose(ctxs, poe)
         c2, pnes2 = compose(_collapse(ctxs), poe)
         aac(c1, c2)  # the same
예제 #6
0
def _prepare_ctxs(rupdata, cmaker, sitecol):
    ctxs = []
    for u in range(len(rupdata['mag'])):
        ctx = RuptureContext()
        for par in rupdata:
            if not par.endswith('_'):
                setattr(ctx, par, rupdata[par][u])
            else:  # site-dependent parameter
                setattr(ctx, par[:-1], rupdata[par][u])
        for par in cmaker.REQUIRES_SITES_PARAMETERS:
            setattr(ctx, par, sitecol[par])
        ctx.sids = sitecol.sids
        ctxs.append(ctx)
    return ctxs
    def test_calculation_Baker_Jayaram(self):

        DATA_FILE = data / 'GENERIC_GMPE_AVGSA_MEAN_STD_TOTAL_BAKER_JAYARAM.csv'

        # Initialise meta-GMPE
        mgmpe = gsim.mgmpe.generic_gmpe_avgsa.GenericGmpeAvgSA(
            gmpe_name='BooreAtkinson2008',
            avg_periods=[0.05, 0.15, 1.0, 2.0, 4.0],
            corr_func='baker_jayaram')

        ctx = RuptureContext()
        ctx.sids = [0]
        P = imt.AvgSA
        S = [const.StdDev.TOTAL]

        with open(DATA_FILE, 'r') as f:

            # Skip header
            for i in [1, 2, 3]:
                f.readline()

            for line in f:
                arr = np.float_(line.strip().split(','))

                # Setting ground motion attributes
                ctx.mag = arr[0]
                ctx.rjb = np.array([arr[1]])
                ctx.rake = arr[2]
                ctx.hypo_depth = arr[3]
                ctx.vs30 = np.array([arr[4]])

                # Compute ground motion
                mean, stdv = mgmpe.get_mean_and_stddevs(ctx, ctx, ctx, P, S)
                np.testing.assert_almost_equal(mean, arr[6])
                np.testing.assert_almost_equal(stdv, arr[7])
예제 #8
0
    def create_context(self, evt_id, imts=None):
        """Create a new Context `dict`. Objects of this type will be yielded
        by `get_context`.

        :param evt_id: the earthquake id (e.g. int, or str)
        :param imts: a list of strings denoting the IMTs to be included in the
            context. If missing or None, the returned dict **will NOT** have
            the keys "Observations" and "Num. Sites"

        :return: the dict with keys:
            ```
            {
            'EventID': evt_id,
            'Ctx: a new :class:`openquake.hazardlib.contexts.RuptureContext`
            'Observations": dict[str, list] # (each imt in imts mapped to `[]`)
            'Num. Sites': 0
            }
            ```
            NOTE: Remember 'Observations' and 'Num. Sites' are missing if `imts`
            is missing, None or an emtpy sequence.
        """
        dic = {'EventID': evt_id, 'Ctx': RuptureContext()}
        if imts is not None and len(imts):
            dic["Observations"] = OrderedDict([(imt, []) for imt in imts])
            dic["Num. Sites"] = 0
        return dic
예제 #9
0
def stuff_context(sites, rup, dists):
    """
    Function to fill a rupture context with the contents of all of the
    other contexts.

    Args:
        sites (SiteCollection): A SiteCollection object.

        rup (RuptureContext): A RuptureContext object.

        dists (DistanceContext): A DistanceContext object.

    Returns:
        RuptureContext: A new RuptureContext whose attributes are all of
        the elements of the three inputs.
    """
    ctx = RuptureContext()

    for name in [name for name in vars(sites) if not name.startswith("__")]:
        setattr(ctx, name, getattr(sites, name))
    for name in [name for name in vars(rup) if not name.startswith("__")]:
        setattr(ctx, name, getattr(rup, name))
    for name in [name for name in vars(dists) if not name.startswith("__")]:
        setattr(ctx, name, getattr(dists, name))

    return ctx
예제 #10
0
    def setUp(self):

        fname = gettemp(ampl_func)
        df = read_csv(fname, {
            'ampcode': ampcode_dt,
            None: numpy.float64
        },
                      index='ampcode')
        self.df = AmplFunction(df)

        # Set GMMs
        gmmA = BooreAtkinson2008()
        gmmB = BooreEtAl2014()

        # Set parameters
        dsts = [10., 15., 20., 30., 40.]
        dsts = [10.]
        imts = [PGA(), SA(1.0)]
        sites = Dummy.get_site_collection(len(dsts), vs30=760.0)
        self.mag = 5.5
        rup = Dummy.get_rupture(mag=self.mag)
        ctx = RuptureContext.full(rup, sites)
        ctx.rjb = numpy.array(dsts)
        ctx.rrup = numpy.array(dsts)
        self.rrup = ctx.rrup

        # Compute GM on rock
        self.meastd = gmmA.get_mean_std([ctx], imts)  # shape (2, N=1, M=2)
예제 #11
0
 def setUp(self):
     self.ctx = ctx = RuptureContext()
     ctx.mag = 6.
     ctx.rake = 0.
     ctx.hypo_depth = 10.
     sites = Dummy.get_site_collection(4, vs30=760.)
     for name in sites.array.dtype.names:
         setattr(ctx, name, sites[name])
     ctx.rrup = np.array([1., 10., 30., 70.])
     ctx.rjb = np.array([1., 10., 30., 70.])
     self.imt = PGA()
예제 #12
0
파일: rcrs.py 프로젝트: jotru/gmpe-smtk
    def create_rupture_context(self, evt_id):
        '''Creates, initializes and returns a rupture context by setting the
        default values of the attributes defined in `self.rupture_context_attrs`.
        The returned context is intended to be used in `self.get_contexts`.

        :return:  a :class:`openquake.hazardlib.contexts.RuptureContext`
        '''
        ctx = RuptureContext()
        for _ in self.rupture_context_attrs:
            setattr(ctx, _, np.nan)
        return ctx
예제 #13
0
 def setUp(self):
     self.ctx = ctx = RuptureContext()
     ctx.mag = 6.0
     ctx.hypo_depth = 10.
     sites = Dummy.get_site_collection(4,
                                       amplfactor=[-1.0, 1.5, 0.00, -1.99])
     for name in sites.array.dtype.names:
         setattr(ctx, name, sites[name])
     ctx.rhypo = np.array([1., 10., 30., 70.])
     ctx.repi = np.array([1., 10., 30., 70.])
     self.imt = MMI()
예제 #14
0
 def test_make_pmap(self):
     trunclevel = 3
     imtls = DictArray({'PGA': [0.01]})
     gsims = [valid.gsim('AkkarBommer2010')]
     ctxs = []
     for occ_rate in (.001, .002):
         ctx = RuptureContext()
         ctx.mag = 5.5
         ctx.rake = 90
         ctx.occurrence_rate = occ_rate
         ctx.sids = numpy.array([0.])
         ctx.vs30 = numpy.array([760.])
         ctx.rrup = numpy.array([100.])
         ctx.rjb = numpy.array([99.])
         ctxs.append(ctx)
     pmap = make_pmap(ctxs, gsims, imtls, trunclevel, 50.)
     numpy.testing.assert_almost_equal(pmap[0].array, 0.066381)
예제 #15
0
파일: calc.py 프로젝트: guyomd/vengine
    def pt_src_are(self, pt_src, gsim, weight, lnSA, monitor):
        """
        Returns the vector-valued Annual Rate of Exceedance for one single point-source

        :param pt_src: single instance of class "openquake.hazardlib.source.area.PointSource"
        :param gsim: tuple, containing (only one?) instance of Openquake GSIM class
        :param: weight, weight to be multiplied to ARE estimate
        :param lnSA: list, natural logarithm of acceleration values for each spectral period.
            Note : Values should be ordered in the same order than self.periods
        """
        annual_rate = 0

        # Loop over ruptures:
        # i.e. one rupture for each combination of (mag, nodal plane, hypocentral depth):
        for r in pt_src.iter_ruptures():
        # NOTE: IF ACCOUNTING FOR "pointsource_distance" IN THE INI FILE, ONE SHOULD USE THE
        # "point_ruptures()" METHOD BELOW:
        # Loop over ruptures, one rupture for each magnitude ( neglect floating and combination on
        # nodal plane and hypocentral depth):
        ## for r in pt_src.point_ruptures():
            # Note: Seismicity rate evenly distributed over all point sources
            #       Seismicity rate also accounts for FMD (i.e. decreasing for
            #         increasing magnitude value)

            # Filter the site collection with respect to the rupture and prepare context objects:
            context_maker = ContextMaker(r.tectonic_region_type, gsim)
            site_ctx, dist_ctx = context_maker.make_contexts(self.sites, r)
            rup_ctx = RuptureContext()
            rup_ctx.mag = r.mag
            rup_ctx.rake = r.rake
            assert len(gsim)==1

            annual_rate += r.occurrence_rate * weight * self.gm_poe(gsim[0],
                                                                    dist_ctx,
                                                                    rup_ctx,
                                                                    site_ctx,
                                                                    lnSA)
        return annual_rate
예제 #16
0
 def test_get_pmap(self):
     truncation_level = 3
     imtls = DictArray({'PGA': [0.01]})
     gsims = [valid.gsim('AkkarBommer2010')]
     ctxs = []
     for occ_rate in (.001, .002):
         ctx = RuptureContext()
         ctx.mag = 5.5
         ctx.rake = 90
         ctx.occurrence_rate = occ_rate
         ctx.sids = numpy.array([0.])
         ctx.vs30 = numpy.array([760.])
         ctx.rrup = numpy.array([100.])
         ctx.rjb = numpy.array([99.])
         ctxs.append(ctx)
     cmaker = ContextMaker(
         'TRT', gsims, dict(imtls=imtls, truncation_level=truncation_level))
     cmaker.tom = PoissonTOM(time_span=50)
     pmap = cmaker.get_pmap(ctxs)
     numpy.testing.assert_almost_equal(pmap[0].array, 0.066381)
예제 #17
0
 def _get_stds(self, within_absolute=None, between_absolute=None):
     if within_absolute is not None:
         gmm = SplitSigmaGMPE(gmpe_name='Campbell2003',
                              within_absolute=within_absolute)
     elif between_absolute is not None:
         gmm = SplitSigmaGMPE(gmpe_name='Campbell2003',
                              between_absolute=between_absolute)
     else:
         raise ValueError('Unknown option')
     # Set parameters
     ctx = RuptureContext()
     ctx.mag = 6.0
     ctx.sids = [0, 1, 2, 3]
     ctx.vs30 = [760.] * 4
     ctx.rrup = np.array([1., 10., 30., 70.])
     ctx.occurrence_rate = .0001
     imt = PGA()
     stds_types = [const.StdDev.TOTAL, const.StdDev.INTER_EVENT,
                   const.StdDev.INTRA_EVENT]
     # Compute results
     mean, stds = gmm.get_mean_and_stddevs(ctx, ctx, ctx, imt, stds_types)
     return stds, stds_types
예제 #18
0
def _parse_csv_line(headers, values, req_site_params):
    """
    Parse a single line from data file.

    :param headers:
        A list of header names, the strings from the first line of csv file.
    :param values:
        A list of values of a single row to parse.
    :returns:
        A tuple of the following values (in specified order):

        sctx
            An instance of :class:`openquake.hazardlib.gsim.base.SitesContext`
            with attributes populated by the information from in row in a form
            of single-element numpy arrays.
        rctx
            An instance of
            :class:`openquake.hazardlib.gsim.base.RuptureContext`.
        dctx
            An instance of
            :class:`openquake.hazardlib.gsim.base.DistancesContext`.
        stddev_types
            An empty list, if the ``result_type`` column says "MEAN"
            for that row, otherwise it is a list with one item --
            a requested standard deviation type.
        expected_results
            A dictionary mapping IMT-objects to one-element arrays of expected
            result values. Those results represent either standard deviation
            or mean value of corresponding IMT depending on ``result_type``.
        result_type
            A string literal, one of ``'STDDEV'`` or ``'MEAN'``. Value
            is taken from column ``result_type``.
    """
    rctx = RuptureContext()
    sctx = SitesContext(slots=req_site_params)
    dctx = DistancesContext()
    expected_results = {}
    stddev_types = result_type = damping = None

    for param, value in zip(headers, values):

        if param == 'result_type':
            value = value.upper()
            if value.endswith('_STDDEV'):
                # the row defines expected stddev results
                result_type = 'STDDEV'
                stddev_types = [getattr(const.StdDev, value[:-len('_STDDEV')])]
            else:
                # the row defines expected exponents of mean values
                assert value == 'MEAN'
                stddev_types = []
                result_type = 'MEAN'
        elif param == 'damping':
            damping = float(value)
        elif param.startswith('site_'):
            # value is sites context object attribute
            if param == 'site_vs30measured' or param == 'site_backarc':
                value = float(value) != 0
            elif param in ('site_siteclass', 'site_ec8', 'site_ec8_p18',
                           'site_geology'):
                value = numpy.string_(value)
            else:
                value = float(value)
            # site_lons, site_lats, site_depths -> lon, lat, depth
            if param.endswith(('lons', 'lats', 'depths')):
                attr = param[len('site_'):-1]
            else:  # vs30s etc
                attr = param[len('site_'):]
            setattr(sctx, attr, numpy.array([value]))
        elif param.startswith('dist_'):
            # value is a distance measure
            value = float(value)
            setattr(dctx, param[len('dist_'):], numpy.array([value]))
        elif param.startswith('rup_'):
            # value is a rupture context attribute
            try:
                value = float(value)
            except ValueError:
                if value != 'undefined':
                    raise

            setattr(rctx, param[len('rup_'):], value)
        elif param == 'component_type':
            pass
        else:
            # value is the expected result (of result_type type)
            value = float(value)

            if param == 'arias':  # ugly legacy corner case
                param = 'ia'
            if param == 'avgsa':
                imt = from_string('AvgSA')
            else:
                try:  # The title of the column should be IMT(args)
                    imt = from_string(param.upper())
                except KeyError:  # Then it is just a period for SA
                    imt = registry['SA'](float(param), damping)

            expected_results[imt] = numpy.array([value])

    assert result_type is not None
    return sctx, rctx, dctx, stddev_types, expected_results, result_type
예제 #19
0
def compute_disagg(dstore, idxs, cmaker, iml3, trti, bin_edges, oq, monitor):
    # see https://bugs.launchpad.net/oq-engine/+bug/1279247 for an explanation
    # of the algorithm used
    """
    :param dstore
        a DataStore instance
    :param idxs:
        an array of indices to ruptures
    :param cmaker:
        a :class:`openquake.hazardlib.gsim.base.ContextMaker` instance
    :param iml3:
        an ArrayWrapper of shape (N, P, Z) with an attribute imt
    :param trti:
        tectonic region type index
    :param bin_egdes:
        a quintet (mag_edges, dist_edges, lon_edges, lat_edges, eps_edges)
    :param monitor:
        monitor of the currently running job
    :returns:
        a dictionary sid -> 8D-array
    """
    with monitor('reading rupdata', measuremem=True):
        dstore.open('r')
        sitecol = dstore['sitecol']
        rupdata = {k: dstore['rup/' + k][idxs] for k in dstore['rup']}
    RuptureContext.temporal_occurrence_model = PoissonTOM(
        oq.investigation_time)
    pne_mon = monitor('disaggregate_pne', measuremem=False)
    mat_mon = monitor('build_disagg_matrix', measuremem=True)
    gmf_mon = monitor('disagg mean_std', measuremem=False)
    for sid, iml2 in zip(sitecol.sids, iml3):
        singlesite = sitecol.filtered([sid])
        bins = disagg.get_bins(bin_edges, sid)
        gsim_by_z = {}
        for z in range(iml3.shape[-1]):
            try:
                gsim = cmaker.gsim_by_rlzi[iml3.rlzs[sid, z]]
            except KeyError:
                pass
            else:
                gsim_by_z[z] = gsim
        ctxs = []
        ok, = numpy.where(
            rupdata['rrup_'][:, sid] <= cmaker.maximum_distance(cmaker.trt))
        for ridx in ok:  # consider only the ruptures close to the site
            ctx = RuptureContext((par, rupdata[par][ridx])
                                 for par in rupdata if not par.endswith('_'))
            for par in rupdata:
                if par.endswith('_'):
                    setattr(ctx, par[:-1], rupdata[par][ridx, [sid]])
            ctxs.append(ctx)
        if not ctxs:
            continue
        eps3 = disagg._eps3(cmaker.trunclevel, oq.num_epsilon_bins)
        matrix = numpy.zeros([len(b) - 1 for b in bins] + list(iml2.shape))
        for z, gsim in gsim_by_z.items():
            with gmf_mon:
                ms = disagg.get_mean_stdv(singlesite, ctxs, iml3.imt, gsim)
            bdata = disagg.disaggregate(
                ms, ctxs, iml3.imt, iml2[:, z], eps3, pne_mon)
            if bdata.pnes.sum():
                with mat_mon:
                    matrix[..., z] = disagg.build_disagg_matrix(bdata, bins)
        if matrix.any():
            yield {'trti': trti, 'imti': iml3.imti, sid: matrix}
예제 #20
0
def _parse_csv_line(headers, values):
    """
    Parse a single line from data file.

    :param headers:
        A list of header names, the strings from the first line of csv file.
    :param values:
        A list of values of a single row to parse.
    :returns:
        A tuple of the following values (in specified order):

        sctx
            An instance of :class:`openquake.hazardlib.gsim.base.SitesContext`
            with attributes populated by the information from in row in a form
            of single-element numpy arrays.
        rctx
            An instance of
            :class:`openquake.hazardlib.gsim.base.RuptureContext`.
        dctx
            An instance of
            :class:`openquake.hazardlib.gsim.base.DistancesContext`.
        stddev_types
            An empty list, if the ``result_type`` column says "MEAN"
            for that row, otherwise it is a list with one item --
            a requested standard deviation type.
        expected_results
            A dictionary mapping IMT-objects to one-element arrays of expected
            result values. Those results represent either standard deviation
            or mean value of corresponding IMT depending on ``result_type``.
        result_type
            A string literal, one of ``'STDDEV'`` or ``'MEAN'``. Value
            is taken from column ``result_type``.
    """
    rctx = RuptureContext()
    sctx = SitesContext()
    dctx = DistancesContext()
    expected_results = {}
    stddev_types = result_type = damping = None

    for param, value in zip(headers, values):
        if param == 'result_type':
            value = value.upper()
            if value.endswith('_STDDEV'):
                # the row defines expected stddev results
                result_type = 'STDDEV'
                stddev_types = [getattr(const.StdDev, value[:-len('_STDDEV')])]
            else:
                # the row defines expected exponents of mean values
                assert value == 'MEAN'
                stddev_types = []
                result_type = 'MEAN'
        elif param == 'damping':
            damping = float(value)
        elif param.startswith('site_'):
            # value is sites context object attribute
            if (param == 'site_vs30measured') or (param == 'site_backarc'):
                value = float(value) != 0
            else:
                value = float(value)
            setattr(sctx, param[len('site_'):], numpy.array([value]))
        elif param.startswith('dist_'):
            # value is a distance measure
            value = float(value)
            setattr(dctx, param[len('dist_'):], numpy.array([value]))
        elif param.startswith('rup_'):
            # value is a rupture context attribute
            value = float(value)
            setattr(rctx, param[len('rup_'):], value)
        elif param == 'component_type':
            pass
        else:
            # value is the expected result (of result_type type)
            value = float(value)
            if param == 'pga':
                imt = PGA()
            elif param == 'pgv':
                imt = PGV()
            elif param == 'pgd':
                imt = PGD()
            elif param == 'cav':
                imt = CAV()
            elif param == 'mmi':
                imt = MMI()
            elif param == "arias":
                imt = IA()
            elif param == "rsd595":
                imt = RSD595()
            elif param == "rsd575":
                imt = RSD575()
            elif param == "rsd2080":
                imt = RSD2080()
            else:
                period = float(param)
                assert damping is not None
                imt = SA(period, damping)

            expected_results[imt] = numpy.array([value])

    assert result_type is not None
    return sctx, rctx, dctx, stddev_types, expected_results, result_type