def test_calculation_addition_args(self): avg_periods = [0.05, 0.15, 1.0, 2.0, 4.0] gmm = GenericGmpeAvgSA(gmpe_name="KothaEtAl2019SERA", avg_periods=avg_periods, corr_func="akkar", sigma_mu_epsilon=1.0) rctx = RuptureContext() rctx.mag = 6. rctx.hypo_depth = 15. dctx = DistancesContext() dctx.rjb = np.array([1., 10., 30., 70.]) sctx = SitesContext() sctx.vs30 = 500.0 * np.ones(4) sctx.vs30measured = np.ones(4, dtype="bool") stdt = [const.StdDev.TOTAL] expected_mean = np.array( [-1.45586338, -1.94419233, -2.91884965, -3.91919928]) expected_stddev = np.array( [0.58317566, 0.58317566, 0.58317566, 0.58317566]) imtype = imt.AvgSA() mean, [stddev] = gmm.get_mean_and_stddevs(sctx, rctx, dctx, imtype, stdt) np.testing.assert_almost_equal(mean, expected_mean) np.testing.assert_almost_equal(stddev, expected_stddev)
def test_calculation_addition_args(self): avg_periods = [0.05, 0.15, 1.0, 2.0, 4.0] gmm = GenericGmpeAvgSA(gmpe_name="KothaEtAl2020ESHM20", avg_periods=avg_periods, corr_func="akkar", sigma_mu_epsilon=1.0) rctx = RuptureContext() rctx.mag = 6. rctx.hypo_depth = 15. dctx = DistancesContext() dctx.rjb = np.array([1., 10., 30., 70.]) sctx = SitesContext() sctx.vs30 = 500.0 * np.ones(4) sctx.vs30measured = np.ones(4, dtype="bool") sctx.region = np.zeros(4, dtype=int) stdt = [const.StdDev.TOTAL] expected_mean = np.array( [-1.72305707, -2.2178751, -3.20100306, -4.19948242]) expected_stddev = np.array( [0.5532021, 0.5532021, 0.5532021, 0.5532021]) imtype = imt.AvgSA() mean, [stddev] = gmm.get_mean_and_stddevs(sctx, rctx, dctx, imtype, stdt) np.testing.assert_almost_equal(mean, expected_mean) np.testing.assert_almost_equal(stddev, expected_stddev)
def test_calculation_Baker_Jayaram(self): DATA_FILE = data / 'GENERIC_GMPE_AVGSA_MEAN_STD_TOTAL_BAKER_JAYARAM.csv' # Initialise meta-GMPE mgmpe = gsim.mgmpe.generic_gmpe_avgsa.GenericGmpeAvgSA( gmpe_name='BooreAtkinson2008', avg_periods=[0.05, 0.15, 1.0, 2.0, 4.0], corr_func='baker_jayaram') ctx = RuptureContext() ctx.sids = [0] P = imt.AvgSA S = [const.StdDev.TOTAL] with open(DATA_FILE, 'r') as f: # Skip header for i in [1, 2, 3]: f.readline() for line in f: arr = np.float_(line.strip().split(',')) # Setting ground motion attributes ctx.mag = arr[0] ctx.rjb = np.array([arr[1]]) ctx.rake = arr[2] ctx.hypo_depth = arr[3] ctx.vs30 = np.array([arr[4]]) # Compute ground motion mean, stdv = mgmpe.get_mean_and_stddevs(ctx, ctx, ctx, P, S) np.testing.assert_almost_equal(mean, arr[6]) np.testing.assert_almost_equal(stdv, arr[7])