예제 #1
0
def validation_step(sess,
                    val_dict,
                    config,
                    log,
                    val_images=False,
                    val_labels=False,
                    val_batch_idx=False,
                    val_batches=False):
    it_val_acc = np.asarray([])
    it_val_loss = np.asarray([])
    start_time = time.time()
    if val_batch_idx:
        shuff_val_batch_idx = val_batch_idx[np.random.permutation(
            len(val_batch_idx))]
    for num_vals in range(config.num_validation_evals):
        # Validation accuracy as the average of n batches
        if val_images:
            it_idx = shuff_val_batch_idx == num_vals
            it_ims = val_images[it_idx]
            it_labs = val_labels[it_idx]
            if isinstance(it_labs[0], basestring):
                it_labs = np.asarray(
                    [data_to_tfrecords.load_image(im) for im in it_labs])
            feed_dict = {
                val_dict['val_images']: it_ims,
                val_dict['val_labels']: it_labs
            }
            it_val_dict = sess.run(val_dict, feed_dict=feed_dict)
        else:
            it_val_dict = sess.run(val_dict)
        it_val_acc = np.append(it_val_acc, it_val_dict['val_accuracy'])
        it_val_loss = np.append(it_val_loss, it_val_dict['val_loss'])
    val_acc = it_val_acc.mean()
    val_lo = it_val_loss.mean()
    duration = time.time() - start_time
    return val_acc, val_lo, it_val_dict, duration
예제 #2
0
def validation_step(sess,
                    val_dict,
                    config,
                    log,
                    sequential=False,
                    dict_image_key='val_images',
                    dict_label_key='val_labels',
                    eval_score_key='val_score',
                    eval_loss_key='val_loss',
                    map_im_key='val_images',
                    map_log_key='val_logits',
                    map_lab_key='val_labels',
                    debug_tilts=True,
                    val_images=False,
                    val_labels=False,
                    val_batch_idx=None,
                    val_batches=False):
    it_val_score = np.asarray([])
    it_val_loss = np.asarray([])
    start_time = time.time()
    if debug_tilts:
        jacs = []
        tilt_meta = np.load(
            '/media/data_cifs/tilt_illusion/test/metadata/filtered_te.npy')
    save_val_dicts = (hasattr(config, 'get_map') and config.get_map) or \
        (hasattr(config, 'all_results') and config.all_results)
    if save_val_dicts:
        it_val_dicts = []
    for idx in range(config.validation_steps):
        # Validation accuracy as the average of n batches
        file_paths = ''  # Init empty full path image info for tfrecords
        if val_batch_idx is not None:
            if not sequential:
                it_val_batch_idx = val_batch_idx[np.random.permutation(
                    len(val_batch_idx))]
                val_step = np.random.randint(low=0, high=val_batch_idx.max())
            else:
                it_val_batch_idx = val_batch_idx
                val_step = idx
            it_idx = it_val_batch_idx == val_step
            it_ims = val_images[it_idx]
            # if debug_tilts and it_ims[0].split(os.path.sep)[-1] in tilt_meta[:, 1]:
            #     jidx = np.where(it_ims[0].split(os.path.sep)[-1] == tilt_meta[:, 1])[0][0]
            #     pim = data_to_tfrecords.load_image(it_ims[0])
            #     rot = rotate(pim, float(tilt_meta[jidx][4]))
            #     fig = plt.figure()
            #     plt.subplot(121)
            #     plt.imshow(pim)
            #     plt.subplot(122)
            #     plt.imshow(rot)
            #     plt.show()
            #     plt.close(fig)
            it_labs = val_labels[it_idx]
            if isinstance(it_ims[0], basestring):
                file_paths = np.copy(it_ims)
                it_ims = np.asarray(
                    [data_to_tfrecords.load_image(im) for im in it_ims])
            if isinstance(it_labs[0], basestring):
                it_labs = np.asarray(
                    [data_to_tfrecords.load_image(im) for im in it_labs])
            # if debug_tilts and val_images[it_idx][0].split(os.path.sep)[-1] in tilt_meta[:, 1]:
            #     jidx = np.where(val_images[it_idx][0].split(os.path.sep)[-1] == tilt_meta[:, 1])[0][0]
            #     it_ims[0] = rotate(it_ims[0], float(tilt_meta[jidx][4]))

            feed_dict = {
                val_dict[dict_image_key]: it_ims,
                val_dict[dict_label_key]: it_labs
            }
            it_val_dict = sess.run(val_dict, feed_dict=feed_dict)
        else:
            it_val_dict = sess.run(val_dict)
        try:
            if debug_tilts and val_images[it_idx][0].split(
                    os.path.sep)[-1] in tilt_meta[:, 1]:
                jidx = np.where(val_images[it_idx][0].split(os.path.sep)[-1] ==
                                tilt_meta[:, 1])[0][0]
                # jacs.append(rotate(it_val_dict['test_jacobian'].squeeze(), float(tilt_meta[jidx][4])))
                jacs.append(it_val_dict['test_jacobian'].squeeze())
        except:
            import ipdb
            ipdb.set_trace()
        if hasattr(config, 'plot_recurrence') and config.plot_recurrence:
            norms = tf_fun.visualize_recurrence(
                idx=idx,
                image=it_ims,
                label=it_labs,
                logits=it_val_dict['test_logits'],
                h2s=it_val_dict['h2_list'],
                ff=it_val_dict['ff'],
                config=config,
                debug=False)
        else:
            norms = -1

        # Patch for accuracy... TODO: Fix the TF op
        # if config.score_function == 'accuracy':
        #     preds = np.argsort(it_val_dict['val_logits'], -1)[:, -1]
        #     it_val_score = np.mean(
        #         preds == it_val_dict['val_labels'].astype(float))
        it_val_score = np.append(it_val_score, it_val_dict[eval_score_key])
        it_val_loss = np.append(it_val_loss, it_val_dict[eval_loss_key])
        if save_val_dicts:
            if map_im_key not in it_val_dict:
                map_im_key = map_im_key.replace('proc_', '')
                map_log_key = map_log_key.replace('proc_', '')
                map_lab_key = map_lab_key.replace('proc_', '')
            trim_dict = {
                'images': it_val_dict[map_im_key],  # im_key='val_images'],
                'logits': it_val_dict[map_log_key],  # log_key='val_logits'],
                'labels': it_val_dict[map_lab_key],  # lab_key='val_labels']
                'image_paths': file_paths,
                'norms': norms
            }
            it_val_dicts += [trim_dict]
    val_score = it_val_score.mean()
    val_lo = it_val_loss.mean()
    duration = time.time() - start_time
    import ipdb
    ipdb.set_trace()
    jacs = np.array(jacs)
    if save_val_dicts:
        it_val_dict = it_val_dicts
    return val_score, val_lo, it_val_dict, duration
예제 #3
0
def training_loop(config,
                  coord,
                  sess,
                  summary_op,
                  summary_writer,
                  saver,
                  restore_saver,
                  threads,
                  directories,
                  train_dict,
                  val_dict,
                  exp_label,
                  num_params,
                  use_db,
                  log,
                  placeholders=False,
                  checkpoint=None,
                  save_weights=False,
                  save_checkpoints=False,
                  save_activities=False,
                  save_gradients=False):
    """Run the model training loop."""
    if checkpoint is not None:
        restore_saver.restore(sess, checkpoint)
        print 'Restored checkpoint %s' % checkpoint
    if not hasattr(config, 'early_stop'):
        config.early_stop = np.inf
    val_perf = np.asarray([np.inf])
    step = 0
    best_val_dict = None
    if save_weights:
        try:
            weight_dict = {v.name: v for v in tf.trainable_variables()}
            val_dict = dict(val_dict, **weight_dict)
        except Exception:
            raise RuntimeError('Failed to find weights to save.')
    else:
        weight_dict = None
    if hasattr(config, 'early_stop'):
        it_early_stop = config.early_stop
    else:
        it_early_stop = np.inf
    if placeholders:
        train_images = placeholders['train']['images']
        val_images = placeholders['val']['images']
        train_labels = placeholders['train']['labels']
        val_labels = placeholders['val']['labels']
        train_batches = len(train_images) / config.train_batch_size
        train_batch_idx = np.arange(train_batches).reshape(-1, 1).repeat(
            config.train_batch_size)
        train_images = train_images[:len(train_batch_idx)]
        train_labels = train_labels[:len(train_batch_idx)]
        val_batches = len(val_images) / config.val_batch_size
        val_batch_idx = np.arange(val_batches).reshape(-1, 1).repeat(
            config.val_batch_size)
        val_images = val_images[:len(val_batch_idx)]
        val_labels = val_labels[:len(val_batch_idx)]

        # Check that labels are appropriate shape
        tf_label_shape = train_dict['train_labels'].get_shape().as_list()
        np_label_shape = train_labels.shape
        if len(tf_label_shape) == 2 and len(np_label_shape) == 1:
            train_labels = train_labels[..., None]
            val_labels = val_labels[..., None]
        elif len(tf_label_shape) == len(np_label_shape):
            pass
        else:
            raise RuntimeError('Mismatch label shape np: %s vs. tf: %s' %
                               (np_label_shape, tf_label_shape))

        # Start training
        for epoch in tqdm(range(config.epochs),
                          desc='Epoch',
                          total=config.epochs):
            for train_batch in range(train_batches):
                data_idx = train_batch_idx == train_batch
                it_train_images = train_images[data_idx]
                it_train_labels = train_labels[data_idx]
                if isinstance(it_train_images[0], basestring):
                    it_train_images = np.asarray([
                        data_to_tfrecords.load_image(im)
                        for im in it_train_images
                    ])
                feed_dict = {
                    train_dict['train_images']: it_train_images,
                    train_dict['train_labels']: it_train_labels
                }
                (train_score, train_loss, it_train_dict,
                 timer) = training_step(sess=sess,
                                        train_dict=train_dict,
                                        feed_dict=feed_dict)
                if step % config.validation_period == 0:
                    val_score, val_lo, it_val_dict, duration = validation_step(
                        sess=sess,
                        val_dict=val_dict,
                        config=config,
                        log=log,
                        val_images=val_images,
                        val_labels=val_labels,
                        val_batch_idx=val_batch_idx,
                        val_batches=val_batches)

                    # Save progress and important data
                    try:
                        val_check = np.where(val_lo < val_perf)[0]
                        if not len(val_check):
                            it_early_stop -= 1
                            print 'Deducted from early stop count.'
                        else:
                            it_early_stop = config.early_stop
                            best_val_dict = it_val_dict
                            print 'Reset early stop count.'
                        if it_early_stop <= 0:
                            print 'Early stop triggered. Ending early.'
                            print 'Best validation loss: %s' % np.min(val_perf)
                            return
                        save_progress(config=config,
                                      val_check=val_check,
                                      weight_dict=weight_dict,
                                      it_val_dict=it_val_dict,
                                      exp_label=exp_label,
                                      step=step,
                                      directories=directories,
                                      sess=sess,
                                      saver=saver,
                                      val_score=val_score,
                                      val_loss=val_lo,
                                      train_score=train_score,
                                      train_loss=train_loss,
                                      timer=duration,
                                      num_params=num_params,
                                      log=log,
                                      summary_op=summary_op,
                                      summary_writer=summary_writer,
                                      save_activities=save_activities,
                                      save_gradients=save_gradients,
                                      save_checkpoints=save_checkpoints)
                    except Exception as e:
                        log.info('Failed to save checkpoint: %s' % e)

                    # Training status and validation accuracy
                    val_status(log=log,
                               dt=datetime.now(),
                               step=step,
                               train_loss=train_loss,
                               rate=config.val_batch_size / duration,
                               timer=float(duration),
                               score_function=config.score_function,
                               train_score=train_score,
                               val_score=val_score,
                               val_loss=val_lo,
                               best_val_loss=np.min(val_perf),
                               summary_dir=directories['summaries'])
                else:
                    # Training status
                    train_status(log=log,
                                 dt=datetime.now(),
                                 step=step,
                                 train_loss=train_loss,
                                 rate=config.val_batch_size / duration,
                                 timer=float(duration),
                                 lr=it_train_dict['lr'],
                                 score_function=config.score_function,
                                 train_score=train_score)

                # End iteration
                val_perf = np.concatenate([val_perf, [val_lo]])
                step += 1

    else:
        try:
            while not coord.should_stop():
                (train_score, train_loss, it_train_dict,
                 duration) = training_step(sess=sess,
                                           config=config,
                                           train_dict=train_dict)
                io_start_time = time.time()
                if step % config.validation_period == 0:
                    val_score, val_lo, it_val_dict, duration = validation_step(
                        sess=sess, val_dict=val_dict, config=config, log=log)

                    # Save progress and important data
                    try:
                        val_check = np.where(val_lo < val_perf)[0]
                        if not len(val_check):
                            it_early_stop -= 1
                            print('Deducted from early stop count (%s/ %s).' %
                                  (it_early_stop, config.early_stop))
                        else:
                            it_early_stop = config.early_stop
                            best_val_dict = it_val_dict
                            print('Reset early stop count (%s/ %s).' %
                                  (it_early_stop, config.early_stop))
                        if it_early_stop <= 0:
                            print 'Early stop triggered. Ending early.'
                            print 'Best validation loss: %s' % np.min(val_perf)
                            break
                        val_perf = save_progress(
                            config=config,
                            val_check=val_check,
                            weight_dict=weight_dict,
                            it_val_dict=it_val_dict,
                            exp_label=exp_label,
                            step=step,
                            directories=directories,
                            sess=sess,
                            saver=saver,
                            val_score=val_score,
                            val_loss=val_lo,
                            val_perf=val_perf,
                            train_score=train_score,
                            train_loss=train_loss,
                            timer=duration,
                            num_params=num_params,
                            log=log,
                            use_db=use_db,
                            summary_op=summary_op,
                            summary_writer=summary_writer,
                            save_activities=save_activities,
                            save_gradients=save_gradients,
                            save_checkpoints=save_checkpoints)
                    except Exception as e:
                        log.info('Failed to save checkpoint: %s' % e)

                    # Training status and validation accuracy
                    val_status(log=log,
                               dt=datetime.now(),
                               step=step,
                               train_loss=train_loss,
                               rate=config.val_batch_size / duration,
                               timer=float(duration),
                               score_function=config.score_function,
                               train_score=train_score,
                               val_score=val_score,
                               val_loss=val_lo,
                               best_val_loss=np.min(val_perf),
                               summary_dir=directories['summaries'])
                else:
                    # Training status
                    io_duration = time.time() - io_start_time
                    train_status(log=log,
                                 dt=datetime.now(),
                                 step=step,
                                 train_loss=train_loss,
                                 rate=config.val_batch_size / duration,
                                 timer=float(duration),
                                 io_timer=float(io_duration),
                                 lr=it_train_dict['lr'],
                                 score_function=config.score_function,
                                 train_score=train_score)

                # End iteration
                step += 1
        except tf.errors.OutOfRangeError:
            log.info('Done training for %d epochs, %d steps.' %
                     (config.epochs, step))
            log.info('Saved to: %s' % directories['checkpoints'])
        finally:
            coord.request_stop()
        coord.join(threads)
        sess.close()
    try:
        print 'Best %s loss: %s' % (config.val_loss_function, val_perf[0])
        if hasattr(config, 'get_map') and config.get_map:
            tf_fun.calculate_map(best_val_dict, exp_label, config)
    except:
        print 'Best %s loss: %s' % val_perf[0]
    return
예제 #4
0
def training_loop(
        config,
        coord,
        sess,
        summary_op,
        summary_writer,
        saver,
        restore_saver,
        threads,
        directories,
        train_dict,
        val_dict,
        exp_label,
        num_params,
        use_db,
        log,
        placeholders=False,
        checkpoint=None,
        save_weights=False,
        save_checkpoints=False,
        save_activities=False,
        save_gradients=False):
    """Run the model training loop."""
    if checkpoint is not None:
        restore_saver.restore(sess, checkpoint)
        print 'Restored checkpoint %s' % checkpoint
    if not hasattr(config, 'early_stop'):
        config.early_stop = np.inf
    val_perf = np.asarray([np.inf])
    step = 0
    best_val_dict = None
    if save_weights:
        try:
            weight_dict = {v.name: v for v in tf.trainable_variables()}
            val_dict = dict(
                val_dict,
                **weight_dict)
        except Exception:
            raise RuntimeError('Failed to find weights to save.')
    else:
        weight_dict = None
    if hasattr(config, 'early_stop'):
        it_early_stop = config.early_stop
    else:
        it_early_stop = np.inf

    if hasattr(config, "adaptive_train"):
        adaptive_train = config.adaptive_train
    else:
        adaptive_train = False
    if placeholders:
        train_images = placeholders['train']['images']
        val_images = placeholders['val']['images']
        train_labels = placeholders['train']['labels']
        val_labels = placeholders['val']['labels']
        train_batches = len(train_images) / config.train_batch_size
        train_batch_idx = np.arange(
            train_batches).reshape(-1, 1).repeat(
                config.train_batch_size)
        train_images = train_images[:len(train_batch_idx)]
        train_labels = train_labels[:len(train_batch_idx)]
        val_batches = len(val_images) / config.val_batch_size
        val_batch_idx = np.arange(
            val_batches).reshape(-1, 1).repeat(
                config.val_batch_size)
        val_images = val_images[:len(val_batch_idx)]
        val_labels = val_labels[:len(val_batch_idx)]

        # Check that labels are appropriate shape
        tf_label_shape = train_dict['train_labels'].get_shape().as_list()
        np_label_shape = train_labels.shape
        if len(tf_label_shape) == 2 and len(np_label_shape) == 1:
            train_labels = train_labels[..., None]
            val_labels = val_labels[..., None]
        elif len(tf_label_shape) == len(np_label_shape):
            pass
        else:
            raise RuntimeError(
                'Mismatch label shape np: %s vs. tf: %s' % (
                    np_label_shape,
                    tf_label_shape))

        # Start training
        train_losses = []
        train_logits = []
        for epoch in tqdm(
                range(config.epochs),
                desc='Epoch',
                total=config.epochs):
            for train_batch in range(train_batches):
                io_start_time = time.time()
                data_idx = train_batch_idx == train_batch
                it_train_images = train_images[data_idx]
                it_train_labels = train_labels[data_idx]
                if isinstance(it_train_images[0], basestring):
                    it_train_images = np.asarray(
                        [
                            data_to_tfrecords.load_image(im)
                            for im in it_train_images])
                feed_dict = {
                    train_dict['train_images']: it_train_images,
                    train_dict['train_labels']: it_train_labels
                }
                (
                    train_score,
                    train_loss,
                    it_train_dict,
                    timer) = training_step(
                    sess=sess,
                    train_dict=train_dict,
                    config=config,
                    feed_dict=feed_dict)
                train_losses.append(train_loss)
                if step % config.validation_period == 0:
                    val_score, val_lo, it_val_dict, duration = validation_step(
                        sess=sess,
                        val_dict=val_dict,
                        config=config,
                        log=log,
                        val_images=val_images,
                        val_labels=val_labels,
                        val_batch_idx=val_batch_idx,
                        val_batches=val_batches)

                    # Save progress and important data
                    try:
                        val_check = np.where(val_lo < val_perf)[0]
                        if not len(val_check):
                            it_early_stop -= 1
                            print 'Deducted from early stop count.'
                        else:
                            it_early_stop = config.early_stop
                            best_val_dict = it_val_dict
                            print 'Reset early stop count.'
                        if it_early_stop <= 0:
                            print 'Early stop triggered. Ending early.'
                            print 'Best validation loss: %s' % np.min(val_perf)
                            return
                        save_progress(
                            config=config,
                            val_check=val_check,
                            weight_dict=weight_dict,
                            it_val_dict=it_val_dict,
                            exp_label=exp_label,
                            step=step,
                            directories=directories,
                            sess=sess,
                            saver=saver,
                            val_score=val_score,
                            val_loss=val_lo,
                            train_score=train_score,
                            train_loss=train_loss,
                            timer=duration,
                            num_params=num_params,
                            log=log,
                            summary_op=summary_op,
                            summary_writer=summary_writer,
                            save_activities=save_activities,
                            save_gradients=save_gradients,
                            save_checkpoints=save_checkpoints)
                    except Exception as e:
                        log.info('Failed to save checkpoint: %s' % e)

                    # Hack to get the visulations... clean this up later
                    if "BSDS500_test_orientation_viz" in config.experiment:  # .model == "BSDS_inh_perturb" or config.model == "BSDS_exc_perturb":
                        # from matplotlib import pyplot as plt;plt.plot(it_train_dict['train_logits'].squeeze(), "r", label="Perturb");plt.plot(it_train_dict['train_labels'].squeeze()[-6:], 'b', label="GT");plt.legend();plt.show()
                        # from matplotlib import pyplot as plt;plt.imshow((it_train_dict['impatch'].squeeze() + np.asarray([123.68, 116.78, 103.94])[None, None]).astype(np.uint8));plt.show()
                        # from matplotlib import pyplot as plt;dd = it_train_dict["grad0"];plt.imshow(np.abs(dd.squeeze()).mean(-1) / (np.abs(dd.squeeze()).std(-1) + 1e-4));plt.show()
                        # from matplotlib import pyplot as plt;dd = it_train_dict['mask'];plt.imshow(dd.squeeze().mean(-1));plt.show()
                        train_logits.append([it_train_dict["train_logits"].ravel()])
                        out_dir = "circuits_{}".format(config.out_dir)
                        py_utils.make_dir(out_dir)
                        out_target = os.path.join(out_dir, "{}_{}".format(config.model, config.train_dataset))
                        np.save("{}_optim".format(out_target), [sess.run(tf.trainable_variables())])  # , it_train_dict["conv"]])
                        np.save("{}_perf".format(out_target), train_losses)
                        np.save("{}_curves".format(out_target), train_logits)
                        np.save("{}_label".format(out_target), it_train_dict["train_labels"])
                    """
                    if config.model == "BSDS_inh_perturb":
                        np.save("inh_perturbs/optim", sess.run(tf.trainable_variables()[0]))
                        np.save("inh_perturbs/perf", train_losses)
                        np.save("inh_perturbs/curves", train_logits)
                        np.save("inh_perturbs/label", it_train_dict["train_labels"])

                    if config.model == "BSDS_exc_perturb":
                        np.save("exc_perturbs/optim", sess.run(tf.trainable_variables()[0]))
                        np.save("exc_perturbs/perf", train_losses)
                        np.save("exc_perturbs/curves", train_logits)
                        np.save("exc_perturbs/label", it_train_dict["train_labels"])
                    """

                    # Training status and validation accuracy
                    val_status(
                        log=log,
                        dt=datetime.now(),
                        step=step,
                        train_loss=train_loss,
                        rate=config.val_batch_size / duration,
                        timer=float(duration),
                        score_function=config.score_function,
                        train_score=train_score,
                        val_score=val_score,
                        val_loss=val_lo,
                        best_val_loss=np.min(val_perf),
                        summary_dir=directories['summaries'])
                else:
                    # Training status
                    io_duration = time.time() - io_start_time
                    train_status(
                        log=log,
                        dt=datetime.now(),
                        step=step,
                        train_loss=train_loss,
                        rate=config.val_batch_size / duration,
                        timer=float(duration),
                        io_timer=float(io_duration),
                        lr=it_train_dict['lr'],
                        score_function=config.score_function,
                        train_score=train_score)

                # End iteration
                val_perf = np.concatenate([val_perf, [val_lo]])
                step += 1
                
                # Adaptive ending
                if adaptive_train and train_loss <= adaptive_train:
                    break
            if adaptive_train and train_loss <= adaptive_train:
                break


    else:
        try:
            while not coord.should_stop():
                (
                    train_score,
                    train_loss,
                    it_train_dict,
                    duration) = training_step(
                    sess=sess,
                    config=config,
                    train_dict=train_dict)
                io_start_time = time.time()
                if step % config.validation_period == 0:
                    val_score, val_lo, it_val_dict, duration = validation_step(
                        sess=sess,
                        val_dict=val_dict,
                        config=config,
                        log=log)

                    # Save progress and important data
                    try:
                        val_check = np.where(val_lo < val_perf)[0]
                        if not len(val_check):
                            it_early_stop -= 1
                            print 'Deducted from early stop count.'
                        else:
                            it_early_stop = config.early_stop
                            best_val_dict = it_val_dict
                            print 'Reset early stop count.'
                        if it_early_stop <= 0:
                            print 'Early stop triggered. Ending early.'
                            print 'Best validation loss: %s' % np.min(val_perf)
                            break
                        val_perf = save_progress(
                            config=config,
                            val_check=val_check,
                            weight_dict=weight_dict,
                            it_val_dict=it_val_dict,
                            exp_label=exp_label,
                            step=step,
                            directories=directories,
                            sess=sess,
                            saver=saver,
                            val_score=val_score,
                            val_loss=val_lo,
                            val_perf=val_perf,
                            train_score=train_score,
                            train_loss=train_loss,
                            timer=duration,
                            num_params=num_params,
                            log=log,
                            use_db=use_db,
                            summary_op=summary_op,
                            summary_writer=summary_writer,
                            save_activities=save_activities,
                            save_gradients=save_gradients,
                            save_checkpoints=save_checkpoints)
                    except Exception as e:
                        log.info('Failed to save checkpoint: %s' % e)

                    # Training status and validation accuracy
                    val_status(
                        log=log,
                        dt=datetime.now(),
                        step=step,
                        train_loss=train_loss,
                        rate=config.val_batch_size / duration,
                        timer=float(duration),
                        score_function=config.score_function,
                        train_score=train_score,
                        val_score=val_score,
                        val_loss=val_lo,
                        best_val_loss=np.min(val_perf),
                        summary_dir=directories['summaries'])
                else:
                    # Training status
                    io_duration = time.time() - io_start_time
                    train_status(
                        log=log,
                        dt=datetime.now(),
                        step=step,
                        train_loss=train_loss,
                        rate=config.val_batch_size / duration,
                        timer=float(duration),
                        io_timer=float(io_duration),
                        lr=it_train_dict['lr'],
                        score_function=config.score_function,
                        train_score=train_score)

                # End iteration
                step += 1
        except tf.errors.OutOfRangeError:
            log.info(
                'Done training for %d epochs, %d steps.' % (
                    config.epochs, step))
            log.info('Saved to: %s' % directories['checkpoints'])
        finally:
            coord.request_stop()
        coord.join(threads)
        sess.close()
    print 'Best %s loss: %s' % (config.val_loss_function, val_perf[0])
    if hasattr(config, 'get_map') and config.get_map:
        tf_fun.calculate_map(best_val_dict, exp_label, config)
    return
예제 #5
0
def validation_step(
        sess,
        val_dict,
        config,
        log,
        sequential=False,
        dict_image_key='val_images',
        dict_label_key='val_labels',
        eval_score_key='val_score',
        eval_loss_key='val_loss',
        map_im_key='val_images',
        map_log_key='val_logits',
        map_lab_key='val_labels',
        val_images=False,
        val_labels=False,
        val_batch_idx=None,
        val_batches=False):
    it_val_score = np.asarray([])
    it_val_loss = np.asarray([])
    start_time = time.time()
    save_val_dicts = (hasattr(config, 'get_map') and config.get_map) or \
        (hasattr(config, 'all_results') and config.all_results)
    # map_log_key="fgru"  # Hack to get activities for viz.
    if save_val_dicts:
        it_val_dicts = []
    for idx in range(config.validation_steps):
        # Validation accuracy as the average of n batches
        file_paths = ''  # Init empty full path image info for tfrecords
        if val_batch_idx is not None:
            if not sequential and len(val_batch_idx) > 1:
                it_val_batch_idx = val_batch_idx[
                    np.random.permutation(len(val_batch_idx))]
                val_step = np.random.randint(low=0, high=val_batch_idx.max())
            else:
                it_val_batch_idx = val_batch_idx
                val_step = idx
            if val_images.shape > 1:
                it_idx = it_val_batch_idx == val_step
                it_ims = val_images[it_idx]
                it_labs = val_labels[it_idx]
            # Correct for batch-size=1 cases
            if isinstance(it_ims[0], basestring):
                file_paths = np.copy(it_ims)
                it_ims = np.asarray(
                    [
                        data_to_tfrecords.load_image(im)
                        for im in it_ims])
            if isinstance(it_labs[0], basestring):
                it_labs = np.asarray(
                    [
                        data_to_tfrecords.load_image(im)
                        for im in it_labs])
            feed_dict = {
                val_dict[dict_image_key]: it_ims,
                val_dict[dict_label_key]: it_labs
            }
            it_val_dict = sess.run(val_dict, feed_dict=feed_dict)
        else:
            it_val_dict = sess.run(val_dict)

        if hasattr(config, 'plot_recurrence') and config.plot_recurrence:
            tf_fun.visualize_recurrence(
                idx=idx,
                image=it_ims,
                label=it_labs,
                logits=it_val_dict['test_logits'],
                h2s=it_val_dict['h2_list'],
                ff=it_val_dict['ff'],
                config=config,
                debug=False)

        # Patch for accuracy... TODO: Fix the TF op
        # if config.score_function == 'accuracy':
        #     preds = np.argsort(it_val_dict['val_logits'], -1)[:, -1]
        #     it_val_score = np.mean(
        #         preds == it_val_dict['val_labels'].astype(float))
        if config.score_function == 'fixed_accuracy':
            it_val_labels = it_val_dict[map_lab_key].astype(float)
            it_val_logits = np.round(sigmoid(it_val_dict[map_log_key])).astype(float)
            it_val_score = np.mean(it_val_labels == it_val_logits)
        it_val_score = np.append(
            it_val_score,
            it_val_dict[eval_score_key])
        it_val_loss = np.append(
            it_val_loss,
            it_val_dict[eval_loss_key])
        if save_val_dicts:
            trim_dict = {
                'images': it_val_dict[map_im_key],  # im_key='val_images'],
                'logits': it_val_dict[map_log_key],  # log_key='val_logits'],
                'labels': it_val_dict[map_lab_key],  # lab_key='val_labels']
                'image_paths': file_paths,
            }
            it_val_dicts += [trim_dict]
    val_score = it_val_score.mean()
    val_lo = it_val_loss.mean()
    duration = time.time() - start_time
    if save_val_dicts:
        it_val_dict = it_val_dicts
    return val_score, val_lo, it_val_dict, duration
예제 #6
0
def training_loop(config,
                  coord,
                  sess,
                  summary_op,
                  summary_writer,
                  saver,
                  threads,
                  directories,
                  train_dict,
                  val_dict,
                  exp_label,
                  data_structure,
                  placeholders=False,
                  save_checkpoints=False,
                  save_activities=True,
                  save_gradients=False):
    """Run the model training loop."""
    log = logger.get(os.path.join(config.log_dir, exp_label))
    step = 0
    if config.save_weights:
        try:
            weight_dict = {v.name: v for v in tf.trainable_variables()}
            val_dict = dict(val_dict, **weight_dict)
        except Exception:
            raise RuntimeError('Failed to find weights to save.')
    if placeholders:
        placeholder_images = placeholders[0]
        placeholder_labels = placeholders[1]
        train_images = placeholder_images['train']
        val_images = placeholder_images['val']
        train_labels = placeholder_labels['train']
        val_labels = placeholder_labels['val']
        train_batches = len(train_images) / config.batch_size
        train_batch_idx = np.arange(train_batches / config.batch_size).reshape(
            -1, 1).repeat(config.batch_size)
        train_images = train_images[:len(train_batch_idx)]
        train_labels = train_labels[:len(train_batch_idx)]
        val_batches = len(val_images) / config.batch_size
        val_batch_idx = np.arange(val_batches / config.batch_size).reshape(
            -1, 1).repeat(config.batch_size)
        val_images = val_images[:len(val_batch_idx)]
        val_labels = val_labels[:len(val_batch_idx)]
        for epoch in tqdm(range(config.epochs),
                          desc='Epoch',
                          total=config.epochs):
            for train_batch in range(train_batches):
                data_idx = train_batch_idx == train_batch
                it_train_images = train_images[data_idx]
                it_train_labels = train_labels[data_idx]
                if isinstance(it_train_images[0], basestring):
                    it_train_images = np.asarray([
                        data_to_tfrecords.load_image(im)
                        for im in it_train_images
                    ])
                feed_dict = {
                    train_dict['train_images']: it_train_images,
                    train_dict['train_labels']: it_train_labels
                }
                (train_acc, train_loss, it_train_dict,
                 timesteps) = training_step(sess=sess,
                                            train_dict=train_dict,
                                            feed_dict=feed_dict)
                if step % config.validation_iters == 0:
                    val_acc, val_lo, it_val_dict, duration = validation_step(
                        sess=sess,
                        val_dict=val_dict,
                        data_structure=data_structure,
                        config=config,
                        log=log,
                        val_images=val_images,
                        val_labels=val_labels,
                        val_batch_idx=val_batch_idx,
                        val_batches=val_batches)

                    # Save progress and important data
                    save_progress(config=config,
                                  weight_dict=weight_dict,
                                  it_val_dict=it_val_dict,
                                  exp_label=exp_label,
                                  step=step,
                                  directories=directories,
                                  sess=sess,
                                  saver=saver,
                                  data_structure=data_structure,
                                  val_acc=val_acc,
                                  val_lo=val_lo,
                                  train_acc=train_acc,
                                  train_loss=train_loss,
                                  timesteps=timesteps,
                                  log=log,
                                  summary_op=summary_op,
                                  summary_writer=summary_writer,
                                  save_activities=save_activities,
                                  save_checkpoints=save_checkpoints)
                    # Training status and validation accuracy
                    format_str = (
                        '%s: step %d, loss = %.2f (%.1f examples/sec; '
                        '%.3f sec/batch) | Training accuracy = %s | '
                        'Validation accuracy = %s | logdir = %s')
                    log.info(format_str %
                             (datetime.now(), step, train_acc,
                              config.batch_size / duration, float(duration),
                              train_loss, val_acc, directories['summaries']))
                else:
                    # Training status
                    format_str = (
                        '%s: step %d, loss = %.5f (%.1f examples/sec; '
                        '%.3f sec/batch) | Training accuracy = %s')
                    log.info(
                        format_str %
                        (datetime.now(), step, train_loss, config.batch_size /
                         duration, float(duration), train_acc))
                step += 1

    else:
        try:
            while not coord.should_stop():
                (train_acc, train_loss, it_train_dict,
                 duration) = training_step(sess=sess, train_dict=train_dict)
                if step % config.validation_iters == 0:
                    val_acc, val_lo, it_val_dict, duration = validation_step(
                        sess=sess, val_dict=val_dict, config=config, log=log)

                    # Save progress and important data
                    save_progress(config=config,
                                  weight_dict=weight_dict,
                                  it_val_dict=it_val_dict,
                                  exp_label=exp_label,
                                  step=step,
                                  directories=directories,
                                  sess=sess,
                                  saver=saver,
                                  data_structure=data_structure,
                                  val_acc=val_acc,
                                  val_lo=val_lo,
                                  train_acc=train_acc,
                                  train_loss=train_loss,
                                  timesteps=duration,
                                  log=log,
                                  summary_op=summary_op,
                                  summary_writer=summary_writer,
                                  save_activities=save_activities,
                                  save_checkpoints=save_checkpoints)

                    # Training status and validation accuracy
                    format_str = (
                        '%s: step %d, loss = %.2f (%.1f examples/sec; '
                        '%.3f sec/batch) | Training accuracy = %s | '
                        'Validation accuracy = %s | logdir = %s')
                    log.info(format_str %
                             (datetime.now(), step, train_acc,
                              config.batch_size / duration, float(duration),
                              train_loss, val_acc, directories['summaries']))
                else:
                    # Training status
                    format_str = (
                        '%s: step %d, loss = %.5f (%.1f examples/sec; '
                        '%.3f sec/batch) | Training accuracy = %s')
                    log.info(
                        format_str %
                        (datetime.now(), step, train_loss, config.batch_size /
                         duration, float(duration), train_acc))

                # End iteration
                step += 1
        except tf.errors.OutOfRangeError:
            log.info('Done training for %d epochs, %d steps.' %
                     (config.epochs, step))
            log.info('Saved to: %s' % directories['checkpoints'])
        finally:
            coord.request_stop()
        coord.join(threads)
        sess.close()

    # Package output variables into a dictionary
    if save_gradients:
        np.savez(
            os.path.join(config.results, '%s_train_gradients' % exp_label),
            **it_train_dict)
        np.savez(os.path.join(config.results, '%s_val_gradients' % exp_label),
                 **it_val_dict)
    return