예제 #1
0
파일: test_auc_op.py 프로젝트: iducn/Paddle
    def setUp(self):
        self.op_type = "auc"
        pred = np.random.random((128, 2)).astype("float32")
        labels = np.random.randint(0, 2, (128, 1)).astype("int64")
        num_thresholds = 200
        slide_steps = 0

        stat_pos = np.zeros((1, (num_thresholds + 1))).astype("int64")
        stat_neg = np.zeros((1, (num_thresholds + 1))).astype("int64")

        self.inputs = {
            'Predict': pred,
            'Label': labels,
            "StatPos": stat_pos,
            "StatNeg": stat_neg
        }
        self.attrs = {
            'curve': 'ROC',
            'num_thresholds': num_thresholds,
            "slide_steps": slide_steps
        }

        python_auc = metrics.Auc(name="auc",
                                 curve='ROC',
                                 num_thresholds=num_thresholds)
        python_auc.update(pred, labels)

        pos = python_auc._stat_pos
        neg = python_auc._stat_neg
        self.outputs = {
            'AUC': np.array(python_auc.eval()),
            'StatPosOut': np.array(pos),
            'StatNegOut': np.array(neg)
        }
    def setUp(self):
        self.op_type = "auc"
        pred = np.random.random((128, 2)).astype("float32")
        pred0 = pred[:, 0].reshape(128, 1)
        labels = np.random.randint(0, 2, (128, 1)).astype("int64")
        num_thresholds = 200

        stat_pos = np.zeros((num_thresholds + 1, )).astype("int64")
        stat_neg = np.zeros((num_thresholds + 1, )).astype("int64")

        self.inputs = {
            'Predict': pred0,
            'Label': labels,
            "StatPos": stat_pos,
            "StatNeg": stat_neg
        }
        self.attrs = {
            'curve': 'ROC',
            'num_thresholds': num_thresholds,
            "slide_steps": 1
        }

        python_auc = metrics.Auc(name="auc",
                                 curve='ROC',
                                 num_thresholds=num_thresholds)
        for i in range(128):
            pred[i][1] = pred[i][0]
        python_auc.update(pred, labels)

        self.outputs = {
            'AUC': np.array(python_auc.eval()),
            'StatPosOut': np.array(python_auc._stat_pos),
            'StatNegOut': np.array(python_auc._stat_neg)
        }