def setUp(self): self.op_type = "auc" pred = np.random.random((128, 2)).astype("float32") labels = np.random.randint(0, 2, (128, 1)).astype("int64") num_thresholds = 200 slide_steps = 0 stat_pos = np.zeros((1, (num_thresholds + 1))).astype("int64") stat_neg = np.zeros((1, (num_thresholds + 1))).astype("int64") self.inputs = { 'Predict': pred, 'Label': labels, "StatPos": stat_pos, "StatNeg": stat_neg } self.attrs = { 'curve': 'ROC', 'num_thresholds': num_thresholds, "slide_steps": slide_steps } python_auc = metrics.Auc(name="auc", curve='ROC', num_thresholds=num_thresholds) python_auc.update(pred, labels) pos = python_auc._stat_pos neg = python_auc._stat_neg self.outputs = { 'AUC': np.array(python_auc.eval()), 'StatPosOut': np.array(pos), 'StatNegOut': np.array(neg) }
def setUp(self): self.op_type = "auc" pred = np.random.random((128, 2)).astype("float32") pred0 = pred[:, 0].reshape(128, 1) labels = np.random.randint(0, 2, (128, 1)).astype("int64") num_thresholds = 200 stat_pos = np.zeros((num_thresholds + 1, )).astype("int64") stat_neg = np.zeros((num_thresholds + 1, )).astype("int64") self.inputs = { 'Predict': pred0, 'Label': labels, "StatPos": stat_pos, "StatNeg": stat_neg } self.attrs = { 'curve': 'ROC', 'num_thresholds': num_thresholds, "slide_steps": 1 } python_auc = metrics.Auc(name="auc", curve='ROC', num_thresholds=num_thresholds) for i in range(128): pred[i][1] = pred[i][0] python_auc.update(pred, labels) self.outputs = { 'AUC': np.array(python_auc.eval()), 'StatPosOut': np.array(python_auc._stat_pos), 'StatNegOut': np.array(python_auc._stat_neg) }