def factorize(values, sort=False, order=None, na_sentinel=-1, size_hint=None): """ Encode input values as an enumerated type or categorical variable Parameters ---------- values : ndarray (1-d) Sequence sort : boolean, default False Sort by values na_sentinel : int, default -1 Value to mark "not found" size_hint : hint to the hashtable sizer Returns ------- labels : the indexer to the original array uniques : ndarray (1-d) or Index the unique values. Index is returned when passed values is Index or Series note: an array of Periods will ignore sort as it returns an always sorted PeriodIndex """ from pandas import Index, Series, DatetimeIndex vals = np.asarray(values) # localize to UTC is_datetimetz_type = is_datetimetz(values) if is_datetimetz_type: values = DatetimeIndex(values) vals = values.asi8 is_datetime = is_datetime64_dtype(vals) is_timedelta = is_timedelta64_dtype(vals) (hash_klass, vec_klass), vals = _get_data_algo(vals, _hashtables) table = hash_klass(size_hint or len(vals)) uniques = vec_klass() labels = table.get_labels(vals, uniques, 0, na_sentinel, True) labels = _ensure_platform_int(labels) uniques = uniques.to_array() if sort and len(uniques) > 0: uniques, labels = safe_sort(uniques, labels, na_sentinel=na_sentinel, assume_unique=True) if is_datetimetz_type: # reset tz uniques = values._shallow_copy(uniques) elif is_datetime: uniques = uniques.astype('M8[ns]') elif is_timedelta: uniques = uniques.astype('m8[ns]') if isinstance(values, Index): uniques = values._shallow_copy(uniques, name=None) elif isinstance(values, Series): uniques = Index(uniques) return labels, uniques
def factorize(values, sort=False, order=None, na_sentinel=-1, size_hint=None): """ Encode input values as an enumerated type or categorical variable Parameters ---------- values : ndarray (1-d) Sequence sort : boolean, default False Sort by values na_sentinel : int, default -1 Value to mark "not found" size_hint : hint to the hashtable sizer Returns ------- labels : the indexer to the original array uniques : ndarray (1-d) or Index the unique values. Index is returned when passed values is Index or Series note: an array of Periods will ignore sort as it returns an always sorted PeriodIndex """ from pandas import Index, Series, DatetimeIndex vals = np.asarray(values) # localize to UTC is_datetimetz = com.is_datetimetz(values) if is_datetimetz: values = DatetimeIndex(values) vals = values.tz_localize(None) is_datetime = com.is_datetime64_dtype(vals) is_timedelta = com.is_timedelta64_dtype(vals) (hash_klass, vec_klass), vals = _get_data_algo(vals, _hashtables) table = hash_klass(size_hint or len(vals)) uniques = vec_klass() labels = table.get_labels(vals, uniques, 0, na_sentinel, True) labels = com._ensure_platform_int(labels) uniques = uniques.to_array() if sort and len(uniques) > 0: try: sorter = uniques.argsort() except: # unorderable in py3 if mixed str/int t = hash_klass(len(uniques)) t.map_locations(com._ensure_object(uniques)) # order ints before strings ordered = np.concatenate([ np.sort(np.array([e for i, e in enumerate(uniques) if f(e)], dtype=object)) for f in [lambda x: not isinstance(x, string_types), lambda x: isinstance(x, string_types)]]) sorter = com._ensure_platform_int(t.lookup( com._ensure_object(ordered))) reverse_indexer = np.empty(len(sorter), dtype=np.int_) reverse_indexer.put(sorter, np.arange(len(sorter))) mask = labels < 0 labels = reverse_indexer.take(labels) np.putmask(labels, mask, -1) uniques = uniques.take(sorter) if is_datetimetz: # reset tz uniques = DatetimeIndex(uniques.astype('M8[ns]')).tz_localize( values.tz) elif is_datetime: uniques = uniques.astype('M8[ns]') elif is_timedelta: uniques = uniques.astype('m8[ns]') if isinstance(values, Index): uniques = values._shallow_copy(uniques, name=None) elif isinstance(values, Series): uniques = Index(uniques) return labels, uniques