def test_learner_cross_validate_LGBC(): inputer = Inputers(description_filepath= "../../descriptions/pre/inputers/pima-diabetes.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/LGBC.yaml") learner.train(X, y, checkpoint="pima_LGBMC.ckp") learner.cross_validate( X, y, cv_description_filepath= "../../descriptions/learners/Cross_validation_classification.yaml", ) assert len(learner.evaluate(X, y).keys()) == 9
def test_learner_cross_validate_RFC_iris_multiclass_evaluate_AO(): inputer = Inputers( description_filepath="../../descriptions/pre/inputers/iris.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/RFC.yaml") learner.train(X, y, checkpoint="iris)RC.ckp") learner.cross_validate( X, y, cv_description_filepath= "../../descriptions/learners/Cross_validation_classification.yaml", ) assert learner.evaluate(X, y)["accuracy"] == 1.0
def test_learner_cross_validate_RFC_iris_milticlass_evaluate_test_accuracy(): inputer = Inputers( description_filepath="../../descriptions/pre/inputers/iris.yaml") dataset = inputer.transform() y = dataset[inputer.target].values X = dataset[dataset.columns.difference([inputer.target])] learner = Learners( description_filepath="../../descriptions/learners/RFC.yaml") learner.train(X, y, checkpoint="pima_LGBMC.ckp") score = learner.cross_validate( X, y, cv_description_filepath= "../../descriptions/learners/Cross_validation_classification.yaml", ) assert score["mean"]["test_accuracy"] >= 0.95