예제 #1
0
def test_learn_train_predict_prob_LGBC():
    inputer = Inputers(
        description_filepath="../../descriptions/pre/inputers/otto_group.yaml")
    dataset = inputer.transform()
    y = dataset[inputer.target].values
    X = dataset[dataset.columns.difference([inputer.target])]
    learner = Learners(
        description_filepath="../../descriptions/learners/LGBC.yaml")
    learner.train(X, y, checkpoint="otto_group_LGBMC.ckp")
    assert learner.predict(X).shape == (61878, )
예제 #2
0
def test_learn_train_predict_XGBC():
    inputer = Inputers(
        description_filepath="../../descriptions/pre/inputers/wine.yaml")
    dataset = inputer.transform()
    y = dataset[inputer.target].values
    X = dataset[dataset.columns.difference([inputer.target])]
    learner = Learners(
        description_filepath="../../descriptions/learners/XGBC.yaml")
    learner.train(X, y, checkpoint="LGBMClassifier.ckp")
    assert learner.predict(X).shape == (178, )
예제 #3
0
def test_predict_LGBC_no_fit():
    inputer = Inputers(description_filepath=
                       "../../descriptions/pre/inputers/pima-diabetes.yaml")
    diabetes = inputer.transform()
    learner = Learners(
        description_filepath="../../descriptions/learners/LGBC.yaml")
    # learner.train(
    #     diabetes, target=inputer.target, checkpoint="diabetesLGBMC.ckp"
    # )
    X = diabetes
    X_train = X[X.columns.difference([inputer.target])]
    with pytest.raises(PasoError):
        assert learner.predict(X_train).shape == (768, 2)