def main(): """ NAME di_tilt.py DESCRIPTION rotates geographic coordinate dec, inc data to stratigraphic coordinates using the dip and dip direction (strike+90, dip if dip to right of strike) INPUT FORMAT declination inclination dip_direction dip SYNTAX di_tilt.py [-h][-i][-f FILE] [< filename ] OPTIONS -h prints help message and quits -i for interactive data entry -f FILE command line entry of file name -F OFILE, specify output file, default is standard output OUTPUT: declination inclination """ if '-h' in sys.argv: print main.__doc__ sys.exit() if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=sys.argv[ind+1] out=open(ofile,'w') print ofile, ' opened for output' else: ofile="" if '-i' in sys.argv: # interactive flag while 1: try: Dec=float(raw_input("Declination: <cntl-D> to quit ")) except: print "\n Good-bye\n" sys.exit() Inc=float(raw_input("Inclination: ")) Dip_dir=float(raw_input("Dip direction: ")) Dip=float(raw_input("Dip: ")) print '%7.1f %7.1f'%(pmag.dotilt(Dec,Inc,Dip_dir,Dip)) elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] data=numpy.loadtxt(file) else: data=numpy.loadtxt(sys.stdin,dtype=numpy.float) # read in the data from the datafile D,I=pmag.dotilt_V(data) for k in range(len(D)): if ofile=="": print '%7.1f %7.1f'%(D[k],I[k]) else: out.write('%7.1f %7.1f\n'%(D[k],I[k]))
def main(): """ NAME foldtest.py DESCRIPTION does a fold test (Tauxe, 2010) on data INPUT FORMAT dec inc dip_direction dip SYNTAX foldtest.py [command line options] OPTIONS -h prints help message and quits -f FILE file with input data -F FILE for confidence bounds on fold test -u ANGLE (circular standard deviation) for uncertainty on bedding poles -b MIN MAX bounds for quick search of percent untilting [default is -10 to 150%] -n NB number of bootstrap samples [default is 1000] -fmt FMT, specify format - default is svg OUTPUT PLOTS Geographic: is an equal area projection of the input data in original coordinates Stratigraphic: is an equal area projection of the input data in tilt adjusted coordinates % Untilting: The dashed (red) curves are representative plots of maximum eigenvalue (tau_1) as a function of untilting The solid line is the cumulative distribution of the % Untilting required to maximize tau for all the bootstrapped data sets. The dashed vertical lines are 95% confidence bounds on the % untilting that yields the most clustered result (maximum tau_1). Command line: prints out the bootstrapped iterations and finally the confidence bounds on optimum untilting. If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated If the 95% conf bounds include 100, then a post-tilt magnetization is indicated If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is possible as is vertical axis rotation or other pathologies Geographic: is an equal area projection of the input data in OPTIONAL OUTPUT FILE: The output file has the % untilting within the 95% confidence bounds nd the number of bootstrap samples """ kappa=0 fmt='svg' nb=1000 # number of bootstraps min,max=-10,150 if '-h' in sys.argv: # check if help is needed print main.__doc__ sys.exit() # graceful quit if '-F' in sys.argv: ind=sys.argv.index('-F') outfile=open(sys.argv[ind+1],'w') else: outfile="" if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] DIDDs=numpy.loadtxt(file) else: print main.__doc__ sys.exit() if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-b' in sys.argv: ind=sys.argv.index('-b') min=float(sys.argv[ind+1]) max=float(sys.argv[ind+2]) if '-n' in sys.argv: ind=sys.argv.index('-n') nb=int(sys.argv[ind+1]) if '-u' in sys.argv: ind=sys.argv.index('-u') csd=float(sys.argv[ind+1]) kappa=(81./csd)**2 # # get to work # PLTS={'geo':1,'strat':2,'taus':3} # make plot dictionary pmagplotlib.plot_init(PLTS['geo'],5,5) pmagplotlib.plot_init(PLTS['strat'],5,5) pmagplotlib.plot_init(PLTS['taus'],5,5) pmagplotlib.plotEQ(PLTS['geo'],DIDDs,'Geographic') D,I=pmag.dotilt_V(DIDDs) TCs=numpy.array([D,I]).transpose() pmagplotlib.plotEQ(PLTS['strat'],TCs,'Stratigraphic') pmagplotlib.drawFIGS(PLTS) Percs=range(min,max) Cdf,Untilt=[],[] pylab.figure(num=PLTS['taus']) print 'doing ',nb,' iterations...please be patient.....' for n in range(nb): # do bootstrap data sets - plot first 25 as dashed red line if n%50==0:print n Taus=[] # set up lists for taus PDs=pmag.pseudo(DIDDs) if kappa!=0: for k in range(len(PDs)): d,i=pmag.fshdev(kappa) dipdir,dip=pmag.dodirot(d,i,PDs[k][2],PDs[k][3]) PDs[k][2]=dipdir PDs[k][3]=dip for perc in Percs: tilt=numpy.array([1.,1.,1.,0.01*perc]) D,I=pmag.dotilt_V(PDs*tilt) TCs=numpy.array([D,I]).transpose() ppars=pmag.doprinc(TCs) # get principal directions Taus.append(ppars['tau1']) if n<25:pylab.plot(Percs,Taus,'r--') Untilt.append(Percs[Taus.index(numpy.max(Taus))]) # tilt that gives maximum tau Cdf.append(float(n)/float(nb)) pylab.plot(Percs,Taus,'k') pylab.xlabel('% Untilting') pylab.ylabel('tau_1 (red), CDF (green)') Untilt.sort() # now for CDF of tilt of maximum tau pylab.plot(Untilt,Cdf,'g') lower=int(.025*nb) upper=int(.975*nb) pylab.axvline(x=Untilt[lower],ymin=0,ymax=1,linewidth=1,linestyle='--') pylab.axvline(x=Untilt[upper],ymin=0,ymax=1,linewidth=1,linestyle='--') tit= '%i - %i %s'%(Untilt[lower],Untilt[upper],'Percent Unfolding') print tit print 'range of all bootstrap samples: ', Untilt[0], ' - ', Untilt[-1] pylab.title(tit) outstring= '%i - %i; %i\n'%(Untilt[lower],Untilt[upper],nb) if outfile!="":outfile.write(outstring) pmagplotlib.drawFIGS(PLTS) ans= raw_input('S[a]ve all figures, <Return> to quit ') if ans!='a': print "Good bye" sys.exit() else: files={} for key in PLTS.keys(): files[key]=('foldtest_'+'%s'%(key.strip()[:2])+'.'+fmt) pmagplotlib.saveP(PLTS,files)
def main(): """ NAME foldtest_magic.py DESCRIPTION does a fold test (Tauxe, 2010) on data INPUT FORMAT pmag_specimens format file, er_samples.txt format file (for bedding) SYNTAX foldtest_magic.py [command line options] OPTIONS -h prints help message and quits -f pmag_sites formatted file [default is pmag_sites.txt] -fsa er_samples formatted file [default is er_samples.txt] -exc use pmag_criteria.txt to set acceptance criteria -n NB, set number of bootstraps, default is 1000 -b MIN, MAX, set bounds for untilting, default is -10, 150 -fmt FMT, specify format - default is svg OUTPUT Geographic: is an equal area projection of the input data in original coordinates Stratigraphic: is an equal area projection of the input data in tilt adjusted coordinates % Untilting: The dashed (red) curves are representative plots of maximum eigenvalue (tau_1) as a function of untilting The solid line is the cumulative distribution of the % Untilting required to maximize tau for all the bootstrapped data sets. The dashed vertical lines are 95% confidence bounds on the % untilting that yields the most clustered result (maximum tau_1). Command line: prints out the bootstrapped iterations and finally the confidence bounds on optimum untilting. If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated If the 95% conf bounds include 100, then a post-tilt magnetization is indicated If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is possible as is vertical axis rotation or other pathologies """ kappa=0 nb=1000 # number of bootstraps min,max=-10,150 dir_path='.' infile,orfile='pmag_sites.txt','er_samples.txt' critfile='pmag_criteria.txt' fmt='svg' if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-h' in sys.argv: # check if help is needed print main.__doc__ sys.exit() # graceful quit if '-n' in sys.argv: ind=sys.argv.index('-n') nb=int(sys.argv[ind+1]) if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-b' in sys.argv: ind=sys.argv.index('-b') min=int(sys.argv[ind+1]) max=int(sys.argv[ind+2]) if '-f' in sys.argv: ind=sys.argv.index('-f') infile=sys.argv[ind+1] if '-fsa' in sys.argv: ind=sys.argv.index('-fsa') orfile=sys.argv[ind+1] orfile=dir_path+'/'+orfile infile=dir_path+'/'+infile critfile=dir_path+'/'+critfile data,file_type=pmag.magic_read(infile) ordata,file_type=pmag.magic_read(orfile) if '-exc' in sys.argv: crits,file_type=pmag.magic_read(critfile) for crit in crits: if crit['pmag_criteria_code']=="DE-SITE": SiteCrit=crit break # get to work # PLTS={'geo':1,'strat':2,'taus':3} # make plot dictionary pmagplotlib.plot_init(PLTS['geo'],5,5) pmagplotlib.plot_init(PLTS['strat'],5,5) pmagplotlib.plot_init(PLTS['taus'],5,5) GEOrecs=pmag.get_dictitem(data,'site_tilt_correction','0','T') if len(GEOrecs)>0: # have some geographic data DIDDs= [] # set up list for dec inc dip_direction, dip for rec in GEOrecs: # parse data dip,dip_dir=0,-1 Dec=float(rec['site_dec']) Inc=float(rec['site_inc']) orecs=pmag.get_dictitem(ordata,'er_site_name',rec['er_site_name'],'T') if len(orecs)>0: if orecs[0]['sample_bed_dip_direction']!="":dip_dir=float(orecs[0]['sample_bed_dip_direction']) if orecs[0]['sample_bed_dip']!="":dip=float(orecs[0]['sample_bed_dip']) if dip!=0 and dip_dir!=-1: if '-exc' in sys.argv: keep=1 for key in SiteCrit.keys(): if 'site' in key and SiteCrit[key]!="" and rec[key]!="" and key!='site_alpha95': if float(rec[key])<float(SiteCrit[key]): keep=0 print rec['er_site_name'],key,rec[key] if key=='site_alpha95' and SiteCrit[key]!="" and rec[key]!="": if float(rec[key])>float(SiteCrit[key]): keep=0 if keep==1: DIDDs.append([Dec,Inc,dip_dir,dip]) else: DIDDs.append([Dec,Inc,dip_dir,dip]) else: print 'no geographic directional data found' sys.exit() pmagplotlib.plotEQ(PLTS['geo'],DIDDs,'Geographic') data=numpy.array(DIDDs) D,I=pmag.dotilt_V(data) TCs=numpy.array([D,I]).transpose() pmagplotlib.plotEQ(PLTS['strat'],TCs,'Stratigraphic') pmagplotlib.drawFIGS(PLTS) Percs=range(min,max) Cdf,Untilt=[],[] pylab.figure(num=PLTS['taus']) print 'doing ',nb,' iterations...please be patient.....' for n in range(nb): # do bootstrap data sets - plot first 25 as dashed red line if n%50==0:print n Taus=[] # set up lists for taus PDs=pmag.pseudo(DIDDs) if kappa!=0: for k in range(len(PDs)): d,i=pmag.fshdev(kappa) dipdir,dip=pmag.dodirot(d,i,PDs[k][2],PDs[k][3]) PDs[k][2]=dipdir PDs[k][3]=dip for perc in Percs: tilt=numpy.array([1.,1.,1.,0.01*perc]) D,I=pmag.dotilt_V(PDs*tilt) TCs=numpy.array([D,I]).transpose() ppars=pmag.doprinc(TCs) # get principal directions Taus.append(ppars['tau1']) if n<25:pylab.plot(Percs,Taus,'r--') Untilt.append(Percs[Taus.index(numpy.max(Taus))]) # tilt that gives maximum tau Cdf.append(float(n)/float(nb)) pylab.plot(Percs,Taus,'k') pylab.xlabel('% Untilting') pylab.ylabel('tau_1 (red), CDF (green)') Untilt.sort() # now for CDF of tilt of maximum tau pylab.plot(Untilt,Cdf,'g') lower=int(.025*nb) upper=int(.975*nb) pylab.axvline(x=Untilt[lower],ymin=0,ymax=1,linewidth=1,linestyle='--') pylab.axvline(x=Untilt[upper],ymin=0,ymax=1,linewidth=1,linestyle='--') tit= '%i - %i %s'%(Untilt[lower],Untilt[upper],'Percent Unfolding') print tit pylab.title(tit) pmagplotlib.drawFIGS(PLTS) ans= raw_input('S[a]ve all figures, <Return> to quit \n ') if ans!='a': print "Good bye" sys.exit() files={} for key in PLTS.keys(): files[key]=('foldtest_'+'%s'%(key.strip()[:2])+'.'+fmt) pmagplotlib.saveP(PLTS,files)