def main(): """ NAME customize_criteria.py NB: This program has been deprecated - use demag_gui or thellier_gui to customize acceptance criteria - OR pandas from within a jupyter notebook DESCRIPTION Allows user to specify acceptance criteria, saves them in pmag_criteria.txt SYNTAX customize_criteria.py [-h][command line options] OPTIONS -h prints help message and quits -f IFILE, reads in existing criteria -F OFILE, writes to pmag_criteria format file DEFAULTS IFILE: pmag_criteria.txt OFILE: pmag_criteria.txt OUTPUT creates a pmag_criteria.txt formatted output file """ infile, critout = "", "pmag_criteria.txt" # parse command line options if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') infile = sys.argv[ind + 1] crit_data, file_type = pmag.magic_read(infile) if file_type != 'pmag_criteria': print('bad input file') print(main.__doc__) sys.exit() print("Acceptance criteria read in from ", infile) if '-F' in sys.argv: ind = sys.argv.index('-F') critout = sys.argv[ind + 1] Dcrit, Icrit, nocrit = 0, 0, 0 custom = '1' crit = input( " [0] Use no acceptance criteria?\n [1] Use default criteria\n [2] customize criteria \n " ) if crit == '0': print('Very very loose criteria saved in ', critout) crit_data = pmag.default_criteria(1) pmag.magic_write(critout, crit_data, 'pmag_criteria') sys.exit() crit_data = pmag.default_criteria(0) if crit == '1': print('Default criteria saved in ', critout) pmag.magic_write(critout, crit_data, 'pmag_criteria') sys.exit() CritRec = crit_data[0] crit_keys = list(CritRec.keys()) crit_keys.sort() print( "Enter new threshold value.\n Return to keep default.\n Leave blank to not use as a criterion\n " ) for key in crit_keys: if key != 'pmag_criteria_code' and key != 'er_citation_names' and key != 'criteria_definition' and CritRec[ key] != "": print(key, CritRec[key]) new = input('new value: ') if new != "": CritRec[key] = (new) pmag.magic_write(critout, [CritRec], 'pmag_criteria') print("Criteria saved in pmag_criteria.txt")
def main(): """ NAME thellier_magic_redo.py DESCRIPTION Calculates paleointensity parameters for thellier-thellier type data using bounds stored in the "redo" file SYNTAX thellier_magic_redo [command line options] OPTIONS -h prints help message -usr USER: identify user, default is "" -fcr CRIT, set criteria for grading -f IN: specify input file, default is magic_measurements.txt -fre REDO: specify redo file, default is "thellier_redo" -F OUT: specify output file, default is thellier_specimens.txt -leg: attaches "Recalculated from original measurements; supercedes published results. " to comment field -CR PERC TYPE: apply a blanket cooling rate correction if none supplied in the er_samples.txt file PERC should be a percentage of original (say reduce to 90%) TYPE should be one of the following: EG (for educated guess); PS (based on pilots); TRM (based on comparison of two TRMs) -ANI: perform anisotropy correction -fsa SAMPFILE: er_samples.txt file with cooling rate correction information, default is NO CORRECTION -Fcr CRout: specify pmag_specimen format file for cooling rate corrected data -fan ANIFILE: specify rmag_anisotropy format file, default is rmag_anisotropy.txt -Fac ACout: specify pmag_specimen format file for anisotropy corrected data default is AC_specimens.txt -fnl NLTFILE: specify magic_measurments format file, default is magic_measurements.txt -Fnl NLTout: specify pmag_specimen format file for non-linear trm corrected data default is NLT_specimens.txt -z use z component differenences for pTRM calculation INPUT a thellier_redo file is Specimen_name Tmin Tmax (where Tmin and Tmax are in Centigrade) """ dir_path = '.' critout = "" version_num = pmag.get_version() field, first_save = -1, 1 spec, recnum, start, end = 0, 0, 0, 0 crfrac = 0 NltRecs, PmagSpecs, AniSpecRecs, NltSpecRecs, CRSpecs = [], [], [], [], [] meas_file, pmag_file, mk_file = "magic_measurements.txt", "thellier_specimens.txt", "thellier_redo" anis_file = "rmag_anisotropy.txt" anisout, nltout = "AC_specimens.txt", "NLT_specimens.txt" crout = "CR_specimens.txt" nlt_file = "" samp_file = "" comment, user = "", "unknown" anis, nltrm = 0, 0 jackknife = 0 # maybe in future can do jackknife args = sys.argv Zdiff = 0 if '-WD' in args: ind = args.index('-WD') dir_path = args[ind + 1] if "-h" in args: print main.__doc__ sys.exit() if "-usr" in args: ind = args.index("-usr") user = sys.argv[ind + 1] if "-leg" in args: comment = "Recalculated from original measurements; supercedes published results. " cool = 0 if "-CR" in args: cool = 1 ind = args.index("-CR") crfrac = .01 * float(sys.argv[ind + 1]) crtype = 'DA-CR-' + sys.argv[ind + 2] if "-Fcr" in args: ind = args.index("-Fcr") crout = sys.argv[ind + 1] if "-f" in args: ind = args.index("-f") meas_file = sys.argv[ind + 1] if "-F" in args: ind = args.index("-F") pmag_file = sys.argv[ind + 1] if "-fre" in args: ind = args.index("-fre") mk_file = args[ind + 1] if "-fsa" in args: ind = args.index("-fsa") samp_file = dir_path + '/' + args[ind + 1] Samps, file_type = pmag.magic_read(samp_file) SampCRs = pmag.get_dictitem( Samps, 'cooling_rate_corr', '', 'F') # get samples cooling rate corrections cool = 1 if file_type != 'er_samples': print 'not a valid er_samples.txt file' sys.exit() # # if "-ANI" in args: anis = 1 ind = args.index("-ANI") if "-Fac" in args: ind = args.index("-Fac") anisout = args[ind + 1] if "-fan" in args: ind = args.index("-fan") anis_file = args[ind + 1] # if "-NLT" in args: if "-Fnl" in args: ind = args.index("-Fnl") nltout = args[ind + 1] if "-fnl" in args: ind = args.index("-fnl") nlt_file = args[ind + 1] if "-z" in args: Zdiff = 1 if '-fcr' in sys.argv: ind = args.index("-fcr") critout = sys.argv[ind + 1] # # start reading in data: # meas_file = dir_path + "/" + meas_file mk_file = dir_path + "/" + mk_file accept = pmag.default_criteria(1)[0] # set criteria to none if critout != "": critout = dir_path + "/" + critout crit_data, file_type = pmag.magic_read(critout) if file_type != 'pmag_criteria': print 'bad pmag_criteria file, using no acceptance criteria' print "Acceptance criteria read in from ", critout for critrec in crit_data: if 'sample_int_sigma_uT' in critrec.keys( ): # accommodate Shaar's new criterion critrec['sample_int_sigma'] = '%10.3e' % ( eval(critrec['sample_int_sigma_uT']) * 1e-6) for key in critrec.keys(): if key not in accept.keys() and critrec[key] != '': accept[key] = critrec[key] meas_data, file_type = pmag.magic_read(meas_file) if file_type != 'magic_measurements': print file_type print file_type, "This is not a valid magic_measurements file " sys.exit() try: mk_f = open(mk_file, 'rU') except: print "Bad redo file" sys.exit() mkspec = [] speclist = [] for line in mk_f.readlines(): tmp = line.split() mkspec.append(tmp) speclist.append(tmp[0]) if anis == 1: anis_file = dir_path + "/" + anis_file anis_data, file_type = pmag.magic_read(anis_file) if file_type != 'rmag_anisotropy': print file_type print file_type, "This is not a valid rmag_anisotropy file " sys.exit() if nlt_file == "": nlt_data = pmag.get_dictitem( meas_data, 'magic_method_codes', 'LP-TRM', 'has') # look for trm acquisition data in the meas_data file else: nlt_file = dir_path + "/" + nlt_file nlt_data, file_type = pmag.magic_read(nlt_file) if len(nlt_data) > 0: nltrm = 1 # # sort the specimen names and step through one by one # sids = pmag.get_specs(meas_data) # print 'Processing ', len(speclist), ' specimens - please wait ' while spec < len(speclist): s = speclist[spec] recnum = 0 datablock = [] PmagSpecRec = {} PmagSpecRec["er_analyst_mail_names"] = user PmagSpecRec["er_citation_names"] = "This study" PmagSpecRec["magic_software_packages"] = version_num methcodes, inst_code = [], "" # # find the data from the meas_data file for this specimen # datablock = pmag.get_dictitem(meas_data, 'er_specimen_name', s, 'T') datablock = pmag.get_dictitem( datablock, 'magic_method_codes', 'LP-PI-TRM', 'has') #pick out the thellier experiment data if len(datablock) > 0: for rec in datablock: if "magic_instrument_codes" not in rec.keys(): rec["magic_instrument_codes"] = "unknown" # # collect info for the PmagSpecRec dictionary # rec = datablock[0] PmagSpecRec["er_specimen_name"] = s PmagSpecRec["er_sample_name"] = rec["er_sample_name"] PmagSpecRec["er_site_name"] = rec["er_site_name"] PmagSpecRec["er_location_name"] = rec["er_location_name"] PmagSpecRec["measurement_step_unit"] = "K" PmagSpecRec["specimen_correction"] = 'u' if "er_expedition_name" in rec.keys(): PmagSpecRec["er_expedition_name"] = rec["er_expedition_name"] if "magic_instrument_codes" not in rec.keys(): PmagSpecRec["magic_instrument_codes"] = "unknown" else: PmagSpecRec["magic_instrument_codes"] = rec[ "magic_instrument_codes"] if "magic_experiment_name" not in rec.keys(): rec["magic_experiment_name"] = "" else: PmagSpecRec["magic_experiment_names"] = rec[ "magic_experiment_name"] meths = rec["magic_experiment_name"].split(":") for meth in meths: if meth.strip() not in methcodes and "LP-" in meth: methcodes.append(meth.strip()) # # sort out the data into first_Z, first_I, ptrm_check, ptrm_tail # araiblock, field = pmag.sortarai(datablock, s, Zdiff) first_Z = araiblock[0] first_I = araiblock[1] ptrm_check = araiblock[2] ptrm_tail = araiblock[3] if len(first_I) < 3 or len(first_Z) < 4: spec += 1 print 'skipping specimen ', s else: # # get start, end # for redospec in mkspec: if redospec[0] == s: b, e = float(redospec[1]), float(redospec[2]) break if e > float(first_Z[-1][0]): e = float(first_Z[-1][0]) for recnum in range(len(first_Z)): if first_Z[recnum][0] == b: start = recnum if first_Z[recnum][0] == e: end = recnum nsteps = end - start if nsteps > 2: zijdblock, units = pmag.find_dmag_rec(s, meas_data) pars, errcode = pmag.PintPars(datablock, araiblock, zijdblock, start, end, accept) if 'specimen_scat' in pars.keys(): PmagSpecRec['specimen_scat'] = pars['specimen_scat'] if 'specimen_frac' in pars.keys(): PmagSpecRec['specimen_frac'] = '%5.3f' % ( pars['specimen_frac']) if 'specimen_gmax' in pars.keys(): PmagSpecRec['specimen_gmax'] = '%5.3f' % ( pars['specimen_gmax']) pars['measurement_step_unit'] = units pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars["specimen_b"] PmagSpecRec["measurement_step_min"] = '%8.3e' % ( pars["measurement_step_min"]) PmagSpecRec["measurement_step_max"] = '%8.3e' % ( pars["measurement_step_max"]) PmagSpecRec["specimen_int_n"] = '%i' % ( pars["specimen_int_n"]) PmagSpecRec["specimen_lab_field_dc"] = '%8.3e' % ( pars["specimen_lab_field_dc"]) PmagSpecRec["specimen_int"] = '%9.4e ' % ( pars["specimen_int"]) PmagSpecRec["specimen_b"] = '%5.3f ' % (pars["specimen_b"]) PmagSpecRec["specimen_q"] = '%5.1f ' % (pars["specimen_q"]) PmagSpecRec["specimen_f"] = '%5.3f ' % (pars["specimen_f"]) PmagSpecRec["specimen_fvds"] = '%5.3f' % ( pars["specimen_fvds"]) PmagSpecRec["specimen_b_beta"] = '%5.3f' % ( pars["specimen_b_beta"]) PmagSpecRec["specimen_int_mad"] = '%7.1f' % ( pars["specimen_int_mad"]) PmagSpecRec["specimen_Z"] = '%7.1f' % (pars["specimen_Z"]) PmagSpecRec["specimen_gamma"] = '%7.1f' % ( pars["specimen_gamma"]) if pars["method_codes"] != "" and pars[ "method_codes"] not in methcodes: methcodes.append(pars["method_codes"]) PmagSpecRec["specimen_dec"] = '%7.1f' % ( pars["specimen_dec"]) PmagSpecRec["specimen_inc"] = '%7.1f' % ( pars["specimen_inc"]) PmagSpecRec["specimen_tilt_correction"] = '-1' PmagSpecRec["specimen_direction_type"] = 'l' PmagSpecRec[ "direction_type"] = 'l' # this is redudant, but helpful - won't be imported PmagSpecRec["specimen_dang"] = '%7.1f ' % ( pars["specimen_dang"]) PmagSpecRec["specimen_drats"] = '%7.1f ' % ( pars["specimen_drats"]) PmagSpecRec["specimen_drat"] = '%7.1f ' % ( pars["specimen_drat"]) PmagSpecRec["specimen_int_ptrm_n"] = '%i ' % ( pars["specimen_int_ptrm_n"]) PmagSpecRec["specimen_rsc"] = '%6.4f ' % ( pars["specimen_rsc"]) PmagSpecRec["specimen_md"] = '%i ' % (int( pars["specimen_md"])) if PmagSpecRec["specimen_md"] == '-1': PmagSpecRec["specimen_md"] = "" PmagSpecRec["specimen_b_sigma"] = '%5.3f ' % ( pars["specimen_b_sigma"]) if "IE-TT" not in methcodes: methcodes.append("IE-TT") methods = "" for meth in methcodes: methods = methods + meth + ":" PmagSpecRec["magic_method_codes"] = methods.strip(':') PmagSpecRec["magic_software_packages"] = version_num PmagSpecRec["specimen_description"] = comment if critout != "": kill = pmag.grade(PmagSpecRec, accept, 'specimen_int') if len(kill) > 0: Grade = 'F' # fails else: Grade = 'A' # passes PmagSpecRec["specimen_grade"] = Grade else: PmagSpecRec["specimen_grade"] = "" # not graded if nltrm == 0 and anis == 0 and cool != 0: # apply cooling rate correction SCR = pmag.get_dictitem( SampCRs, 'er_sample_name', PmagSpecRec['er_sample_name'], 'T') # get this samples, cooling rate correction CrSpecRec = pmag.cooling_rate(PmagSpecRec, SCR, crfrac, crtype) if CrSpecRec['er_specimen_name'] != 'none': CrSpecs.append(CrSpecRec) PmagSpecs.append(PmagSpecRec) NltSpecRec = "" # # check on non-linear TRM correction # if nltrm == 1: # # find the data from the nlt_data list for this specimen # TRMs, Bs = [], [] NltSpecRec = "" NltRecs = pmag.get_dictitem( nlt_data, 'er_specimen_name', PmagSpecRec['er_specimen_name'], 'has' ) # fish out all the NLT data for this specimen if len(NltRecs) > 2: for NltRec in NltRecs: Bs.append(float(NltRec['treatment_dc_field'])) TRMs.append( float(NltRec['measurement_magn_moment'])) NLTpars = nlt.NLtrm( Bs, TRMs, float(PmagSpecRec['specimen_int']), float(PmagSpecRec['specimen_lab_field_dc']), 0) if NLTpars['banc'] > 0: NltSpecRec = {} for key in PmagSpecRec.keys(): NltSpecRec[key] = PmagSpecRec[key] NltSpecRec['specimen_int'] = '%9.4e' % ( NLTpars['banc']) NltSpecRec['magic_method_codes'] = PmagSpecRec[ "magic_method_codes"] + ":DA-NL" NltSpecRec["specimen_correction"] = 'c' NltSpecRec['specimen_grade'] = PmagSpecRec[ 'specimen_grade'] NltSpecRec[ "magic_software_packages"] = version_num print NltSpecRec[ 'er_specimen_name'], ' Banc= ', float( NLTpars['banc']) * 1e6 if anis == 0 and cool != 0: SCR = pmag.get_dictitem( SampCRs, 'er_sample_name', NltSpecRec['er_sample_name'], 'T' ) # get this samples, cooling rate correction CrSpecRec = pmag.cooling_rate( NltSpecRec, SCR, crfrac, crtype) if CrSpecRec['er_specimen_name'] != 'none': CrSpecs.append(CrSpecRec) NltSpecRecs.append(NltSpecRec) # # check on anisotropy correction if anis == 1: if NltSpecRec != "": Spc = NltSpecRec else: # find uncorrected data Spc = PmagSpecRec AniSpecs = pmag.get_dictitem( anis_data, 'er_specimen_name', PmagSpecRec['er_specimen_name'], 'T') if len(AniSpecs) > 0: AniSpec = AniSpecs[0] AniSpecRec = pmag.doaniscorr(Spc, AniSpec) AniSpecRec['specimen_grade'] = PmagSpecRec[ 'specimen_grade'] AniSpecRec[ "magic_instrument_codes"] = PmagSpecRec[ 'magic_instrument_codes'] AniSpecRec["specimen_correction"] = 'c' AniSpecRec[ "magic_software_packages"] = version_num if cool != 0: SCR = pmag.get_dictitem( SampCRs, 'er_sample_name', AniSpecRec['er_sample_name'], 'T' ) # get this samples, cooling rate correction CrSpecRec = pmag.cooling_rate( AniSpecRec, SCR, crfrac, crtype) if CrSpecRec['er_specimen_name'] != 'none': CrSpecs.append(CrSpecRec) AniSpecRecs.append(AniSpecRec) elif anis == 1: AniSpecs = pmag.get_dictitem( anis_data, 'er_specimen_name', PmagSpecRec['er_specimen_name'], 'T') if len(AniSpecs) > 0: AniSpec = AniSpecs[0] AniSpecRec = pmag.doaniscorr(PmagSpecRec, AniSpec) AniSpecRec['specimen_grade'] = PmagSpecRec[ 'specimen_grade'] AniSpecRec["magic_instrument_codes"] = PmagSpecRec[ "magic_instrument_codes"] AniSpecRec["specimen_correction"] = 'c' AniSpecRec["magic_software_packages"] = version_num if crfrac != 0: CrSpecRec = {} for key in AniSpecRec.keys(): CrSpecRec[key] = AniSpecRec[key] inten = frac * float(CrSpecRec['specimen_int']) CrSpecRec["specimen_int"] = '%9.4e ' % ( inten ) # adjust specimen intensity by cooling rate correction CrSpecRec['magic_method_codes'] = CrSpecRec[ 'magic_method_codes'] + ':DA-CR-' + crtype CRSpecs.append(CrSpecRec) AniSpecRecs.append(AniSpecRec) spec += 1 else: print "skipping ", s spec += 1 pmag_file = dir_path + '/' + pmag_file pmag.magic_write(pmag_file, PmagSpecs, 'pmag_specimens') print 'uncorrected thellier data saved in: ', pmag_file if anis == 1 and len(AniSpecRecs) > 0: anisout = dir_path + '/' + anisout pmag.magic_write(anisout, AniSpecRecs, 'pmag_specimens') print 'anisotropy corrected data saved in: ', anisout if nltrm == 1 and len(NltSpecRecs) > 0: nltout = dir_path + '/' + nltout pmag.magic_write(nltout, NltSpecRecs, 'pmag_specimens') print 'non-linear TRM corrected data saved in: ', nltout if crfrac != 0: crout = dir_path + '/' + crout pmag.magic_write(crout, CRSpecs, 'pmag_specimens') print 'cooling rate corrected data saved in: ', crout
def main(): """ NAME thellier_magic.py DESCRIPTION plots Thellier-Thellier, allowing interactive setting of bounds and customizing of selection criteria. Saves and reads interpretations from a pmag_specimen formatted table, default: thellier_specimens.txt SYNTAX thellier_magic.py [command line options] OPTIONS -h prints help message and quits -f MEAS, set magic_measurements input file -fsp PRIOR, set pmag_specimen prior interpretations file -fan ANIS, set rmag_anisotropy file for doing the anisotropy corrections -fcr CRIT, set criteria file for grading. -fmt [svg,png,jpg], format for images - default is svg -sav, saves plots with out review (default format) -spc SPEC, plots single specimen SPEC, saves plot with specified format with optional -b bounds adn quits -b BEG END: sets bounds for calculation BEG: starting step for slope calculation END: ending step for slope calculation -z use only z component difference for pTRM calculation DEFAULTS MEAS: magic_measurements.txt REDO: thellier_redo CRIT: NONE PRIOR: NONE OUTPUT figures: ALL: numbers refer to temperature steps in command line window 1) Arai plot: closed circles are zero-field first/infield open circles are infield first/zero-field triangles are pTRM checks squares are pTRM tail checks VDS is vector difference sum diamonds are bounds for interpretation 2) Zijderveld plot: closed (open) symbols are X-Y (X-Z) planes X rotated to NRM direction 3) (De/Re)Magnetization diagram: circles are NRM remaining squares are pTRM gained 4) equal area projections: green triangles are pTRM gained direction red (purple) circles are lower(upper) hemisphere of ZI step directions blue (cyan) squares are lower(upper) hemisphere IZ step directions 5) Optional: TRM acquisition 6) Optional: TDS normalization command line window: list is: temperature step numbers, temperatures (C), Dec, Inc, Int (units of magic_measuements) list of possible commands: type letter followed by return to select option saving of plots creates .svg format files with specimen_name, plot type as name """ # # initializations # meas_file, critout, inspec = "magic_measurements.txt", "", "thellier_specimens.txt" first = 1 inlt = 0 version_num = pmag.get_version() TDinit, Tinit, field, first_save = 0, 0, -1, 1 user, comment, AniSpec, locname = "", '', "", "" ans, specimen, recnum, start, end = 0, 0, 0, 0, 0 plots, pmag_out, samp_file, style = 0, "", "", "svg" verbose = pmagplotlib.verbose fmt = '.' + style # # default acceptance criteria # accept = pmag.default_criteria(0)[0] # set the default criteria # # parse command line options # Zdiff, anis = 0, 0 spc, BEG, END = "", "", "" if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') meas_file = sys.argv[ind + 1] if '-fsp' in sys.argv: ind = sys.argv.index('-fsp') inspec = sys.argv[ind + 1] if '-fan' in sys.argv: ind = sys.argv.index('-fan') anisfile = sys.argv[ind + 1] anis = 1 anis_data, file_type = pmag.magic_read(anisfile) if verbose: print("Anisotropy data read in from ", anisfile) if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = '.' + sys.argv[ind + 1] if '-dpi' in sys.argv: ind = sys.argv.index('-dpi') dpi = '.' + sys.argv[ind + 1] else: dpi = 100 if '-sav' in sys.argv: plots = 1 verbose = 0 if '-z' in sys.argv: Zdiff = 1 if '-spc' in sys.argv: ind = sys.argv.index('-spc') spc = sys.argv[ind + 1] if '-b' in sys.argv: ind = sys.argv.index('-b') BEG = int(sys.argv[ind + 1]) END = int(sys.argv[ind + 2]) if '-fcr' in sys.argv: ind = sys.argv.index('-fcr') critout = sys.argv[ind + 1] crit_data, file_type = pmag.magic_read(critout) if file_type != 'pmag_criteria': if verbose: print('bad pmag_criteria file, using no acceptance criteria') accept = pmag.default_criteria(1)[0] else: if verbose: print("Acceptance criteria read in from ", critout) accept = { 'pmag_criteria_code': 'ACCEPTANCE', 'er_citation_names': 'This study' } for critrec in crit_data: if 'sample_int_sigma_uT' in critrec.keys( ): # accommodate Shaar's new criterion critrec['sample_int_sigma'] = '%10.3e' % ( eval(critrec['sample_int_sigma_uT']) * 1e-6) for key in critrec.keys(): if key not in accept.keys() and critrec[key] != '': accept[key] = critrec[key] try: open(inspec, 'rU') PriorRecs, file_type = pmag.magic_read(inspec) if file_type != 'pmag_specimens': print(file_type) print(file_type, inspec, " is not a valid pmag_specimens file ") sys.exit() for rec in PriorRecs: if 'magic_software_packages' not in rec.keys(): rec['magic_software_packages'] = "" except IOError: PriorRecs = [] if verbose: print("starting new specimen interpretation file: ", inspec) meas_data, file_type = pmag.magic_read(meas_file) if file_type != 'magic_measurements': print(file_type) print(file_type, "This is not a valid magic_measurements file ") sys.exit() backup = 0 # define figure numbers for arai, zijderveld and # de-,re-magization diagrams AZD = {} AZD['deremag'], AZD['zijd'], AZD['arai'], AZD['eqarea'] = 1, 2, 3, 4 pmagplotlib.plot_init(AZD['arai'], 5, 5) pmagplotlib.plot_init(AZD['zijd'], 5, 5) pmagplotlib.plot_init(AZD['deremag'], 5, 5) pmagplotlib.plot_init(AZD['eqarea'], 5, 5) # # # # get list of unique specimen names # CurrRec = [] sids = pmag.get_specs(meas_data) # get plots for specimen s - default is just to step through arai diagrams # if spc != "": specimen = sids.index(spc) while specimen < len(sids): methcodes = [] if verbose: print(sids[specimen], specimen + 1, 'of ', len(sids)) MeasRecs = [] s = sids[specimen] datablock, trmblock, tdsrecs = [], [], [] PmagSpecRec = {} if first == 0: for key in keys: # make sure all new records have same set of keys PmagSpecRec[key] = "" PmagSpecRec["er_analyst_mail_names"] = user PmagSpecRec["specimen_correction"] = 'u' # # find the data from the meas_data file for this specimen # for rec in meas_data: if rec["er_specimen_name"] == s: MeasRecs.append(rec) if "magic_method_codes" not in rec.keys(): rec["magic_method_codes"] = "" methods = rec["magic_method_codes"].split(":") meths = [] for meth in methods: meths.append(meth.strip()) # take off annoying spaces methods = "" for meth in meths: if meth.strip() not in methcodes and "LP-" in meth: methcodes.append(meth.strip()) methods = methods + meth + ":" methods = methods[:-1] rec["magic_method_codes"] = methods if "LP-PI-TRM" in meths: datablock.append(rec) if "LP-TRM" in meths: trmblock.append(rec) if "LP-TRM-TD" in meths: tdsrecs.append(rec) if len(trmblock) > 2 and inspec != "": if Tinit == 0: Tinit = 1 AZD['TRM'] = 5 pmagplotlib.plot_init(AZD['TRM'], 5, 5) elif Tinit == 1: # clear the TRM figure if not needed pmagplotlib.clearFIG(AZD['TRM']) if len(tdsrecs) > 2: if TDinit == 0: TDinit = 1 AZD['TDS'] = 6 pmagplotlib.plot_init(AZD['TDS'], 5, 5) elif TDinit == 1: # clear the TDS figure if not needed pmagplotlib.clearFIG(AZD['TDS']) if len(datablock) < 4: if backup == 0: specimen += 1 if verbose: print('skipping specimen - moving forward ', s) else: specimen -= 1 if verbose: print('skipping specimen - moving backward ', s) # # collect info for the PmagSpecRec dictionary # else: rec = datablock[0] PmagSpecRec["er_citation_names"] = "This study" PmagSpecRec["er_specimen_name"] = s PmagSpecRec["er_sample_name"] = rec["er_sample_name"] PmagSpecRec["er_site_name"] = rec["er_site_name"] PmagSpecRec["er_location_name"] = rec["er_location_name"] locname = rec['er_location_name'].replace('/', '-') if "er_expedition_name" in rec.keys(): PmagSpecRec["er_expedition_name"] = rec["er_expedition_name"] if "magic_instrument_codes" not in rec.keys(): rec["magic_instrument_codes"] = "" PmagSpecRec["magic_instrument_codes"] = rec[ "magic_instrument_codes"] PmagSpecRec["measurement_step_unit"] = "K" if "magic_experiment_name" not in rec.keys(): rec["magic_experiment_name"] = "" else: PmagSpecRec["magic_experiment_names"] = rec[ "magic_experiment_name"] meths = rec["magic_method_codes"].split() # sort data into types araiblock, field = pmag.sortarai(datablock, s, Zdiff) first_Z = araiblock[0] GammaChecks = araiblock[5] if len(first_Z) < 3: if backup == 0: specimen += 1 if verbose: print('skipping specimen - moving forward ', s) else: specimen -= 1 if verbose: print('skipping specimen - moving backward ', s) else: backup = 0 zijdblock, units = pmag.find_dmag_rec(s, meas_data) recnum = 0 if verbose: print("index step Dec Inc Int Gamma") for plotrec in zijdblock: if GammaChecks != "": gamma = "" for g in GammaChecks: if g[0] == plotrec[0] - 273: gamma = g[1] break if gamma != "": print('%i %i %7.1f %7.1f %8.3e %7.1f' % (recnum, plotrec[0] - 273, plotrec[1], plotrec[2], plotrec[3], gamma)) else: print('%i %i %7.1f %7.1f %8.3e ' % (recnum, plotrec[0] - 273, plotrec[1], plotrec[2], plotrec[3])) recnum += 1 pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock, s, units[0]) if verbose: pmagplotlib.draw_figs(AZD) if len(tdsrecs) > 2: # a TDS experiment tdsblock = [] # make a list for the TDS data Mkeys = [ 'measurement_magnitude', 'measurement_magn_moment', 'measurement_magn_volume', 'measuruement_magn_mass' ] mkey, k = "", 0 # find which type of intensity while mkey == "" and k < len(Mkeys) - 1: key = Mkeys[k] if key in tdsrecs[0].keys() and tdsrecs[0][key] != "": mkey = key k += 1 if mkey == "": break # get outta here Tnorm = "" for tdrec in tdsrecs: meths = tdrec['magic_method_codes'].split(":") for meth in meths: # strip off potential nasty spaces meth.replace(" ", "") if 'LT-T-I' in meths and Tnorm == "": # found first total TRM # normalize by total TRM Tnorm = float(tdrec[mkey]) # put in the zero step tdsblock.append([273, zijdblock[0][3] / Tnorm, 1.]) # found a LP-TRM-TD demag step, now need complementary LT-T-Z from zijdblock if 'LT-T-Z' in meths and Tnorm != "": step = float(tdrec['treatment_temp']) Tint = "" if mkey != "": Tint = float(tdrec[mkey]) if Tint != "": for zrec in zijdblock: if zrec[0] == step: # found matching tdsblock.append([ step, zrec[3] / Tnorm, Tint / Tnorm ]) break if len(tdsblock) > 2: pmagplotlib.plot_tds(AZD['TDS'], tdsblock, s + ':LP-PI-TDS:') if verbose: pmagplotlib(draw_figs(AZD)) else: print("Something wrong here") if anis == 1: # look up anisotropy data for this specimen AniSpec = "" for aspec in anis_data: if aspec["er_specimen_name"] == PmagSpecRec[ "er_specimen_name"]: AniSpec = aspec if verbose: print('Found anisotropy record...') break if inspec != "": if verbose: print('Looking up saved interpretation....') found = 0 for k in range(len(PriorRecs)): try: if PriorRecs[k]["er_specimen_name"] == s: found = 1 CurrRec.append(PriorRecs[k]) for j in range(len(zijdblock)): if float(zijdblock[j][0]) == float( PriorRecs[k] ["measurement_step_min"]): start = j if float(zijdblock[j][0]) == float( PriorRecs[k] ["measurement_step_max"]): end = j pars, errcode = pmag.PintPars( datablock, araiblock, zijdblock, start, end, accept) pars['measurement_step_unit'] = "K" pars['experiment_type'] = 'LP-PI-TRM' # put in CurrRec, take out of PriorRecs del PriorRecs[k] if errcode != 1: pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * \ field*pars["specimen_b"] pars["er_specimen_name"] = s if verbose: print('Saved interpretation: ') pars, kill = pmag.scoreit( pars, PmagSpecRec, accept, '', verbose) pmagplotlib.plot_b(AZD, araiblock, zijdblock, pars) if verbose: pmagplotlib.draw_figs(AZD) if len(trmblock) > 2: blab = field best = pars["specimen_int"] Bs, TRMs = [], [] for trec in trmblock: Bs.append( float( trec['treatment_dc_field']) ) TRMs.append( float(trec[ 'measurement_magn_moment']) ) # calculate best fit parameters through TRM acquisition data, and get new banc NLpars = nlt.NLtrm( Bs, TRMs, best, blab, 0) Mp, Bp = [], [] for k in range(int(max(Bs) * 1e6)): Bp.append(float(k) * 1e-6) # predicted NRM for this field npred = nlt.TRM( Bp[-1], NLpars['xopt'][0], NLpars['xopt'][1]) Mp.append(npred) pmagplotlib.plot_trm( AZD['TRM'], Bs, TRMs, Bp, Mp, NLpars, trec['magic_experiment_name']) PmagSpecRec['specimen_int'] = NLpars[ 'banc'] if verbose: print('Banc= ', float(NLpars['banc']) * 1e6) pmagplotlib.draw_figs(AZD) mpars = pmag.domean( araiblock[1], start, end, 'DE-BFL') if verbose: print( 'pTRM direction= ', '%7.1f' % (mpars['specimen_dec']), ' %7.1f' % (mpars['specimen_inc']), ' MAD:', '%7.1f' % (mpars['specimen_mad'])) if AniSpec != "": CpTRM = pmag.Dir_anis_corr([ mpars['specimen_dec'], mpars['specimen_inc'] ], AniSpec) AniSpecRec = pmag.doaniscorr( PmagSpecRec, AniSpec) if verbose: print( 'Anisotropy corrected TRM direction= ', '%7.1f' % (CpTRM[0]), ' %7.1f' % (CpTRM[1])) print( 'Anisotropy corrected intensity= ', float( AniSpecRec['specimen_int']) * 1e6) else: print('error on specimen ', s) except: pass if verbose and found == 0: print(' None found :( ') if spc != "": if BEG != "": pars, errcode = pmag.PintPars(datablock, araiblock, zijdblock, BEG, END, accept) pars['measurement_step_unit'] = "K" pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars["specimen_b"] pars["er_specimen_name"] = s pars['specimen_grade'] = '' # ungraded pmagplotlib.plot_b(AZD, araiblock, zijdblock, pars) if verbose: pmagplotlib.draw_figs(AZD) if len(trmblock) > 2: if inlt == 0: inlt = 1 blab = field best = pars["specimen_int"] Bs, TRMs = [], [] for trec in trmblock: Bs.append(float(trec['treatment_dc_field'])) TRMs.append( float(trec['measurement_magn_moment'])) # calculate best fit parameters through TRM acquisition data, and get new banc NLpars = nlt.NLtrm(Bs, TRMs, best, blab, 0) # Mp, Bp = [], [] for k in range(int(max(Bs) * 1e6)): Bp.append(float(k) * 1e-6) # predicted NRM for this field npred = nlt.TRM(Bp[-1], NLpars['xopt'][0], NLpars['xopt'][1]) files = {} for key in AZD.keys(): files[key] = s + '_' + key + fmt pmagplotlib.save_plots(AZD, files, dpi=dpi) sys.exit() if verbose: ans = 'b' while ans != "": print(""" s[a]ve plot, set [b]ounds for calculation, [d]elete current interpretation, [p]revious, [s]ample, [q]uit: """) ans = input('Return for next specimen \n') if ans == "": specimen += 1 if ans == "d": save_redo(PriorRecs, inspec) CurrRec = [] pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock, s, units[0]) if verbose: pmagplotlib.draw_figs(AZD) if ans == 'a': files = {} for key in AZD.keys(): files[key] = "LO:_"+locname+'_SI:_'+PmagSpecRec['er_site_name'] + \ '_SA:_' + \ PmagSpecRec['er_sample_name'] + \ '_SP:_'+s+'_CO:_s_TY:_'+key+fmt pmagplotlib.save_plots(AZD, files) ans = "" if ans == 'q': print("Good bye") sys.exit() if ans == 'p': specimen = specimen - 1 backup = 1 ans = "" if ans == 's': keepon = 1 spec = input( 'Enter desired specimen name (or first part there of): ' ) while keepon == 1: try: specimen = sids.index(spec) keepon = 0 except: tmplist = [] for qq in range(len(sids)): if spec in sids[qq]: tmplist.append(sids[qq]) print(specimen, " not found, but this was: ") print(tmplist) spec = input('Select one or try again\n ') ans = "" if ans == 'b': if end == 0 or end >= len(zijdblock): end = len(zijdblock) - 1 GoOn = 0 while GoOn == 0: answer = input( 'Enter index of first point for calculation: [' + str(start) + '] ') try: start = int(answer) answer = input( 'Enter index of last point for calculation: [' + str(end) + '] ') end = int(answer) if start >= 0 and start < len( zijdblock ) - 2 and end > 0 and end < len( zijdblock) or start >= end: GoOn = 1 else: print("Bad endpoints - try again! ") start, end = 0, len(zijdblock) except ValueError: print("Bad endpoints - try again! ") start, end = 0, len(zijdblock) s = sids[specimen] pars, errcode = pmag.PintPars( datablock, araiblock, zijdblock, start, end, accept) pars['measurement_step_unit'] = "K" pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars[ "specimen_b"] pars["er_specimen_name"] = s pars, kill = pmag.scoreit(pars, PmagSpecRec, accept, '', 0) PmagSpecRec['specimen_scat'] = pars[ 'specimen_scat'] PmagSpecRec['specimen_frac'] = '%5.3f' % ( pars['specimen_frac']) PmagSpecRec['specimen_gmax'] = '%5.3f' % ( pars['specimen_gmax']) PmagSpecRec["measurement_step_min"] = '%8.3e' % ( pars["measurement_step_min"]) PmagSpecRec["measurement_step_max"] = '%8.3e' % ( pars["measurement_step_max"]) PmagSpecRec["measurement_step_unit"] = "K" PmagSpecRec["specimen_int_n"] = '%i' % ( pars["specimen_int_n"]) PmagSpecRec["specimen_lab_field_dc"] = '%8.3e' % ( pars["specimen_lab_field_dc"]) PmagSpecRec["specimen_int"] = '%9.4e ' % ( pars["specimen_int"]) PmagSpecRec["specimen_b"] = '%5.3f ' % ( pars["specimen_b"]) PmagSpecRec["specimen_q"] = '%5.1f ' % ( pars["specimen_q"]) PmagSpecRec["specimen_f"] = '%5.3f ' % ( pars["specimen_f"]) PmagSpecRec["specimen_fvds"] = '%5.3f' % ( pars["specimen_fvds"]) PmagSpecRec["specimen_b_beta"] = '%5.3f' % ( pars["specimen_b_beta"]) PmagSpecRec["specimen_int_mad"] = '%7.1f' % ( pars["specimen_int_mad"]) PmagSpecRec["specimen_Z"] = '%7.1f' % ( pars["specimen_Z"]) PmagSpecRec["specimen_gamma"] = '%7.1f' % ( pars["specimen_gamma"]) PmagSpecRec["specimen_grade"] = pars[ "specimen_grade"] if pars["method_codes"] != "": tmpcodes = pars["method_codes"].split(":") for t in tmpcodes: if t.strip() not in methcodes: methcodes.append(t.strip()) PmagSpecRec["specimen_dec"] = '%7.1f' % ( pars["specimen_dec"]) PmagSpecRec["specimen_inc"] = '%7.1f' % ( pars["specimen_inc"]) PmagSpecRec["specimen_tilt_correction"] = '-1' PmagSpecRec["specimen_direction_type"] = 'l' # this is redundant, but helpful - won't be imported PmagSpecRec["direction_type"] = 'l' PmagSpecRec["specimen_int_dang"] = '%7.1f ' % ( pars["specimen_int_dang"]) PmagSpecRec["specimen_drats"] = '%7.1f ' % ( pars["specimen_drats"]) PmagSpecRec["specimen_drat"] = '%7.1f ' % ( pars["specimen_drat"]) PmagSpecRec["specimen_int_ptrm_n"] = '%i ' % ( pars["specimen_int_ptrm_n"]) PmagSpecRec["specimen_rsc"] = '%6.4f ' % ( pars["specimen_rsc"]) PmagSpecRec["specimen_md"] = '%i ' % (int( pars["specimen_md"])) if PmagSpecRec["specimen_md"] == '-1': PmagSpecRec["specimen_md"] = "" PmagSpecRec["specimen_b_sigma"] = '%5.3f ' % ( pars["specimen_b_sigma"]) if "IE-TT" not in methcodes: methcodes.append("IE-TT") methods = "" for meth in methcodes: methods = methods + meth + ":" PmagSpecRec["magic_method_codes"] = methods[:-1] PmagSpecRec["specimen_description"] = comment PmagSpecRec[ "magic_software_packages"] = version_num pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock, s, units[0]) pmagplotlib.plot_b(AZD, araiblock, zijdblock, pars) if verbose: pmagplotlib.draw_figs(AZD) if len(trmblock) > 2: blab = field best = pars["specimen_int"] Bs, TRMs = [], [] for trec in trmblock: Bs.append(float( trec['treatment_dc_field'])) TRMs.append( float(trec['measurement_magn_moment'])) # calculate best fit parameters through TRM acquisition data, and get new banc NLpars = nlt.NLtrm(Bs, TRMs, best, blab, 0) Mp, Bp = [], [] for k in range(int(max(Bs) * 1e6)): Bp.append(float(k) * 1e-6) # predicted NRM for this field npred = nlt.TRM(Bp[-1], NLpars['xopt'][0], NLpars['xopt'][1]) Mp.append(npred) pmagplotlib.plot_trm( AZD['TRM'], Bs, TRMs, Bp, Mp, NLpars, trec['magic_experiment_name']) if verbose: print( 'Non-linear TRM corrected intensity= ', float(NLpars['banc']) * 1e6) if verbose: pmagplotlib.draw_figs(AZD) pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars[ "specimen_b"] pars, kill = pmag.scoreit(pars, PmagSpecRec, accept, '', verbose) saveit = input( "Save this interpretation? [y]/n \n") if saveit != 'n': # put back an interpretation PriorRecs.append(PmagSpecRec) specimen += 1 save_redo(PriorRecs, inspec) ans = "" elif plots == 1: specimen += 1 if fmt != ".pmag": files = {} for key in AZD.keys(): files[key] = "LO:_"+locname+'_SI:_'+PmagSpecRec['er_site_name']+'_SA:_' + \ PmagSpecRec['er_sample_name'] + \ '_SP:_'+s+'_CO:_s_TY:_'+key+'_'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['deremag'] = 'DeReMag Plot' titles['zijd'] = 'Zijderveld Plot' titles['arai'] = 'Arai Plot' AZD = pmagplotlib.add_borders( AZD, titles, black, purple) pmagplotlib.save_plots(AZD, files, dpi=dpi) # pmagplotlib.combineFigs(s,files,3) else: # save in pmag format script = "grep " + s + " output.mag | thellier -mfsi" script = script + ' %8.4e' % (field) min = '%i' % ((pars["measurement_step_min"] - 273)) Max = '%i' % ((pars["measurement_step_max"] - 273)) script = script + " " + min + " " + Max script = script + " |plotxy;cat mypost >>thellier.ps\n" pltf.write(script) pmag.domagicmag(outf, MeasRecs) if len(CurrRec) > 0: for rec in CurrRec: PriorRecs.append(rec) CurrRec = [] if plots != 1 and verbose: ans = input(" Save last plot? 1/[0] ") if ans == "1": if fmt != ".pmag": files = {} for key in AZD.keys(): files[key] = s + '_' + key + fmt pmagplotlib.save_plots(AZD, files, dpi=dpi) else: print("\n Good bye\n") sys.exit() if len(CurrRec) > 0: PriorRecs.append(CurrRec) # put back an interpretation if len(PriorRecs) > 0: save_redo(PriorRecs, inspec) print('Updated interpretations saved in ', inspec) if verbose: print("Good bye")
def main(): """ NAME thellier_magic.py DESCRIPTION plots Thellier-Thellier, allowing interactive setting of bounds and customizing of selection criteria. Saves and reads interpretations from a pmag_specimen formatted table, default: thellier_specimens.txt SYNTAX thellier_magic.py [command line options] OPTIONS -h prints help message and quits -f MEAS, set magic_measurements input file -fsp PRIOR, set pmag_specimen prior interpretations file -fan ANIS, set rmag_anisotropy file for doing the anisotropy corrections -fcr CRIT, set criteria file for grading. -fmt [svg,png,jpg], format for images - default is svg -sav, saves plots with out review (default format) -spc SPEC, plots single specimen SPEC, saves plot with specified format with optional -b bounds adn quits -b BEG END: sets bounds for calculation BEG: starting step for slope calculation END: ending step for slope calculation -z use only z component difference for pTRM calculation DEFAULTS MEAS: magic_measurements.txt REDO: thellier_redo CRIT: NONE PRIOR: NONE OUTPUT figures: ALL: numbers refer to temperature steps in command line window 1) Arai plot: closed circles are zero-field first/infield open circles are infield first/zero-field triangles are pTRM checks squares are pTRM tail checks VDS is vector difference sum diamonds are bounds for interpretation 2) Zijderveld plot: closed (open) symbols are X-Y (X-Z) planes X rotated to NRM direction 3) (De/Re)Magnetization diagram: circles are NRM remaining squares are pTRM gained 4) equal area projections: green triangles are pTRM gained direction red (purple) circles are lower(upper) hemisphere of ZI step directions blue (cyan) squares are lower(upper) hemisphere IZ step directions 5) Optional: TRM acquisition 6) Optional: TDS normalization command line window: list is: temperature step numbers, temperatures (C), Dec, Inc, Int (units of magic_measuements) list of possible commands: type letter followed by return to select option saving of plots creates .svg format files with specimen_name, plot type as name """ # # initializations # meas_file,critout,inspec="magic_measurements.txt","","thellier_specimens.txt" first=1 inlt=0 version_num=pmag.get_version() TDinit,Tinit,field,first_save=0,0,-1,1 user,comment,AniSpec,locname="",'',"","" ans,specimen,recnum,start,end=0,0,0,0,0 plots,pmag_out,samp_file,style=0,"","","svg" verbose=pmagplotlib.verbose fmt='.'+style # # default acceptance criteria # accept=pmag.default_criteria(0)[0] # set the default criteria # # parse command line options # Zdiff,anis=0,0 spc,BEG,END="","","" if '-h' in sys.argv: print main.__doc__ sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') meas_file=sys.argv[ind+1] if '-fsp' in sys.argv: ind=sys.argv.index('-fsp') inspec=sys.argv[ind+1] if '-fan' in sys.argv: ind=sys.argv.index('-fan') anisfile=sys.argv[ind+1] anis=1 anis_data,file_type=pmag.magic_read(anisfile) if verbose: print "Anisotropy data read in from ", anisfile if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt='.'+sys.argv[ind+1] if '-dpi' in sys.argv: ind=sys.argv.index('-dpi') dpi='.'+sys.argv[ind+1] else: dpi=100 if '-sav' in sys.argv: plots=1 verbose=0 if '-z' in sys.argv: Zdiff=1 if '-spc' in sys.argv: ind=sys.argv.index('-spc') spc=sys.argv[ind+1] if '-b' in sys.argv: ind=sys.argv.index('-b') BEG=int(sys.argv[ind+1]) END=int(sys.argv[ind+2]) if '-fcr' in sys.argv: ind=sys.argv.index('-fcr') critout=sys.argv[ind+1] crit_data,file_type=pmag.magic_read(critout) if file_type!='pmag_criteria': if verbose: print 'bad pmag_criteria file, using no acceptance criteria' accept=pmag.default_criteria(1)[0] else: if verbose: print "Acceptance criteria read in from ", critout accept={'pmag_criteria_code':'ACCEPTANCE','er_citation_names':'This study'} for critrec in crit_data: if 'sample_int_sigma_uT' in critrec.keys(): # accommodate Shaar's new criterion critrec['sample_int_sigma']='%10.3e'%(eval(critrec['sample_int_sigma_uT'])*1e-6) for key in critrec.keys(): if key not in accept.keys() and critrec[key]!='': accept[key]=critrec[key] try: open(inspec,'rU') PriorRecs,file_type=pmag.magic_read(inspec) if file_type != 'pmag_specimens': print file_type print file_type,inspec," is not a valid pmag_specimens file " sys.exit() for rec in PriorRecs: if 'magic_software_packages' not in rec.keys():rec['magic_software_packages']="" except IOError: PriorRecs=[] if verbose:print "starting new specimen interpretation file: ",inspec meas_data,file_type=pmag.magic_read(meas_file) if file_type != 'magic_measurements': print file_type print file_type,"This is not a valid magic_measurements file " sys.exit() backup=0 # define figure numbers for arai, zijderveld and # de-,re-magization diagrams AZD={} AZD['deremag'], AZD['zijd'],AZD['arai'],AZD['eqarea']=1,2,3,4 pmagplotlib.plot_init(AZD['arai'],5,5) pmagplotlib.plot_init(AZD['zijd'],5,5) pmagplotlib.plot_init(AZD['deremag'],5,5) pmagplotlib.plot_init(AZD['eqarea'],5,5) # # # # get list of unique specimen names # CurrRec=[] sids=pmag.get_specs(meas_data) # get plots for specimen s - default is just to step through arai diagrams # if spc!="": specimen =sids.index(spc) while specimen < len(sids): methcodes=[] if verbose: print sids[specimen],specimen+1, 'of ', len(sids) MeasRecs=[] s=sids[specimen] datablock,trmblock,tdsrecs=[],[],[] PmagSpecRec={} if first==0: for key in keys:PmagSpecRec[key]="" # make sure all new records have same set of keys PmagSpecRec["er_analyst_mail_names"]=user PmagSpecRec["specimen_correction"]='u' # # find the data from the meas_data file for this specimen # for rec in meas_data: if rec["er_specimen_name"]==s: MeasRecs.append(rec) if "magic_method_codes" not in rec.keys(): rec["magic_method_codes"]="" methods=rec["magic_method_codes"].split(":") meths=[] for meth in methods: meths.append(meth.strip()) # take off annoying spaces methods="" for meth in meths: if meth.strip() not in methcodes and "LP-" in meth:methcodes.append(meth.strip()) methods=methods+meth+":" methods=methods[:-1] rec["magic_method_codes"]=methods if "LP-PI-TRM" in meths: datablock.append(rec) if "LP-TRM" in meths: trmblock.append(rec) if "LP-TRM-TD" in meths: tdsrecs.append(rec) if len(trmblock)>2 and inspec!="": if Tinit==0: Tinit=1 AZD['TRM']=5 pmagplotlib.plot_init(AZD['TRM'],5,5) elif Tinit==1: # clear the TRM figure if not needed pmagplotlib.clearFIG(AZD['TRM']) if len(tdsrecs)>2: if TDinit==0: TDinit=1 AZD['TDS']=6 pmagplotlib.plot_init(AZD['TDS'],5,5) elif TDinit==1: # clear the TDS figure if not needed pmagplotlib.clearFIG(AZD['TDS']) if len(datablock) <4: if backup==0: specimen+=1 if verbose: print 'skipping specimen - moving forward ', s else: specimen-=1 if verbose: print 'skipping specimen - moving backward ', s # # collect info for the PmagSpecRec dictionary # else: rec=datablock[0] PmagSpecRec["er_citation_names"]="This study" PmagSpecRec["er_specimen_name"]=s PmagSpecRec["er_sample_name"]=rec["er_sample_name"] PmagSpecRec["er_site_name"]=rec["er_site_name"] PmagSpecRec["er_location_name"]=rec["er_location_name"] locname=rec['er_location_name'].replace('/','-') if "er_expedition_name" in rec.keys():PmagSpecRec["er_expedition_name"]=rec["er_expedition_name"] if "magic_instrument_codes" not in rec.keys():rec["magic_instrument_codes"]="" PmagSpecRec["magic_instrument_codes"]=rec["magic_instrument_codes"] PmagSpecRec["measurement_step_unit"]="K" if "magic_experiment_name" not in rec.keys(): rec["magic_experiment_name"]="" else: PmagSpecRec["magic_experiment_names"]=rec["magic_experiment_name"] meths=rec["magic_method_codes"].split() # sort data into types araiblock,field=pmag.sortarai(datablock,s,Zdiff) first_Z=araiblock[0] GammaChecks=araiblock[5] if len(first_Z)<3: if backup==0: specimen+=1 if verbose: print 'skipping specimen - moving forward ', s else: specimen-=1 if verbose: print 'skipping specimen - moving backward ', s else: backup=0 zijdblock,units=pmag.find_dmag_rec(s,meas_data) recnum=0 if verbose: print "index step Dec Inc Int Gamma" for plotrec in zijdblock: if GammaChecks!="": gamma="" for g in GammaChecks: if g[0]==plotrec[0]-273: gamma=g[1] break if gamma!="": print '%i %i %7.1f %7.1f %8.3e %7.1f' % (recnum,plotrec[0]-273,plotrec[1],plotrec[2],plotrec[3],gamma) else: print '%i %i %7.1f %7.1f %8.3e ' % (recnum,plotrec[0]-273,plotrec[1],plotrec[2],plotrec[3]) recnum += 1 pmagplotlib.plotAZ(AZD,araiblock,zijdblock,s,units[0]) if verbose:pmagplotlib.drawFIGS(AZD) if len(tdsrecs)>2: # a TDS experiment tdsblock=[] # make a list for the TDS data Mkeys=['measurement_magnitude','measurement_magn_moment','measurement_magn_volume','measuruement_magn_mass'] mkey,k="",0 while mkey=="" and k<len(Mkeys)-1: # find which type of intensity key= Mkeys[k] if key in tdsrecs[0].keys() and tdsrecs[0][key]!="": mkey=key k+=1 if mkey=="":break # get outta here Tnorm="" for tdrec in tdsrecs: meths=tdrec['magic_method_codes'].split(":") for meth in meths: meth.replace(" ","") # strip off potential nasty spaces if 'LT-T-I' in meths and Tnorm=="": # found first total TRM Tnorm=float(tdrec[mkey]) # normalize by total TRM tdsblock.append([273,zijdblock[0][3]/Tnorm,1.]) # put in the zero step if 'LT-T-Z' in meths and Tnorm!="": # found a LP-TRM-TD demag step, now need complementary LT-T-Z from zijdblock step=float(tdrec['treatment_temp']) Tint="" if mkey!="": Tint=float(tdrec[mkey]) if Tint!="": for zrec in zijdblock: if zrec[0]==step: # found matching tdsblock.append([step,zrec[3]/Tnorm,Tint/Tnorm]) break if len(tdsblock)>2: pmagplotlib.plotTDS(AZD['TDS'],tdsblock,s+':LP-PI-TDS:') if verbose:pmagplotlib(drawFIGS(AZD)) else: print "Something wrong here" if anis==1: # look up anisotropy data for this specimen AniSpec="" for aspec in anis_data: if aspec["er_specimen_name"]==PmagSpecRec["er_specimen_name"]: AniSpec=aspec if verbose: print 'Found anisotropy record...' break if inspec !="": if verbose: print 'Looking up saved interpretation....' found = 0 for k in range(len(PriorRecs)): try: if PriorRecs[k]["er_specimen_name"]==s: found =1 CurrRec.append(PriorRecs[k]) for j in range(len(zijdblock)): if float(zijdblock[j][0])==float(PriorRecs[k]["measurement_step_min"]):start=j if float(zijdblock[j][0])==float(PriorRecs[k]["measurement_step_max"]):end=j pars,errcode=pmag.PintPars(datablock,araiblock,zijdblock,start,end,accept) pars['measurement_step_unit']="K" pars['experiment_type']='LP-PI-TRM' del PriorRecs[k] # put in CurrRec, take out of PriorRecs if errcode!=1: pars["specimen_lab_field_dc"]=field pars["specimen_int"]=-1*field*pars["specimen_b"] pars["er_specimen_name"]=s if verbose: print 'Saved interpretation: ' pars,kill=pmag.scoreit(pars,PmagSpecRec,accept,'',verbose) pmagplotlib.plotB(AZD,araiblock,zijdblock,pars) if verbose:pmagplotlib.drawFIGS(AZD) if len(trmblock)>2: blab=field best=pars["specimen_int"] Bs,TRMs=[],[] for trec in trmblock: Bs.append(float(trec['treatment_dc_field'])) TRMs.append(float(trec['measurement_magn_moment'])) NLpars=nlt.NLtrm(Bs,TRMs,best,blab,0) # calculate best fit parameters through TRM acquisition data, and get new banc Mp,Bp=[],[] for k in range(int(max(Bs)*1e6)): Bp.append(float(k)*1e-6) npred=nlt.TRM(Bp[-1],NLpars['xopt'][0],NLpars['xopt'][1]) # predicted NRM for this field Mp.append(npred) pmagplotlib.plotTRM(AZD['TRM'],Bs,TRMs,Bp,Mp,NLpars,trec['magic_experiment_name']) PmagSpecRec['specimen_int']=NLpars['banc'] if verbose: print 'Banc= ',float(NLpars['banc'])*1e6 pmagplotlib.drawFIGS(AZD) mpars=pmag.domean(araiblock[1],start,end,'DE-BFL') if verbose: print 'pTRM direction= ','%7.1f'%(mpars['specimen_dec']),' %7.1f'%(mpars['specimen_inc']),' MAD:','%7.1f'%(mpars['specimen_mad']) if AniSpec!="": CpTRM=pmag.Dir_anis_corr([mpars['specimen_dec'],mpars['specimen_inc']],AniSpec) AniSpecRec=pmag.doaniscorr(PmagSpecRec,AniSpec) if verbose: print 'Anisotropy corrected TRM direction= ','%7.1f'%(CpTRM[0]),' %7.1f'%(CpTRM[1]) print 'Anisotropy corrected intensity= ',float(AniSpecRec['specimen_int'])*1e6 else: print 'error on specimen ',s except: pass if verbose and found==0: print ' None found :( ' if spc!="": if BEG!="": pars,errcode=pmag.PintPars(datablock,araiblock,zijdblock,BEG,END,accept) pars['measurement_step_unit']="K" pars["specimen_lab_field_dc"]=field pars["specimen_int"]=-1*field*pars["specimen_b"] pars["er_specimen_name"]=s pars['specimen_grade']='' # ungraded pmagplotlib.plotB(AZD,araiblock,zijdblock,pars) if verbose:pmagplotlib.drawFIGS(AZD) if len(trmblock)>2: if inlt==0: inlt=1 blab=field best=pars["specimen_int"] Bs,TRMs=[],[] for trec in trmblock: Bs.append(float(trec['treatment_dc_field'])) TRMs.append(float(trec['measurement_magn_moment'])) NLpars=nlt.NLtrm(Bs,TRMs,best,blab,0) # calculate best fit parameters through TRM acquisition data, and get new banc # Mp,Bp=[],[] for k in range(int(max(Bs)*1e6)): Bp.append(float(k)*1e-6) npred=nlt.TRM(Bp[-1],NLpars['xopt'][0],NLpars['xopt'][1]) # predicted NRM for this field files={} for key in AZD.keys(): files[key]=s+'_'+key+fmt pmagplotlib.saveP(AZD,files,dpi=dpi) sys.exit() if verbose: ans='b' while ans != "": print """ s[a]ve plot, set [b]ounds for calculation, [d]elete current interpretation, [p]revious, [s]ample, [q]uit: """ ans=raw_input('Return for next specimen \n') if ans=="": specimen +=1 if ans=="d": save_redo(PriorRecs,inspec) CurrRec=[] pmagplotlib.plotAZ(AZD,araiblock,zijdblock,s,units[0]) if verbose:pmagplotlib.drawFIGS(AZD) if ans=='a': files={} for key in AZD.keys(): files[key]="LO:_"+locname+'_SI:_'+PmagSpecRec['er_site_name']+'_SA:_'+PmagSpecRec['er_sample_name']+'_SP:_'+s+'_CO:_s_TY:_'+key+fmt pmagplotlib.saveP(AZD,files) ans="" if ans=='q': print "Good bye" sys.exit() if ans=='p': specimen =specimen -1 backup = 1 ans="" if ans=='s': keepon=1 spec=raw_input('Enter desired specimen name (or first part there of): ') while keepon==1: try: specimen =sids.index(spec) keepon=0 except: tmplist=[] for qq in range(len(sids)): if spec in sids[qq]:tmplist.append(sids[qq]) print specimen," not found, but this was: " print tmplist spec=raw_input('Select one or try again\n ') ans="" if ans=='b': if end==0 or end >=len(zijdblock):end=len(zijdblock)-1 GoOn=0 while GoOn==0: answer=raw_input('Enter index of first point for calculation: ['+str(start)+'] ') try: start=int(answer) answer=raw_input('Enter index of last point for calculation: ['+str(end)+'] ') end=int(answer) if start >=0 and start <len(zijdblock)-2 and end >0 and end <len(zijdblock) or start>=end: GoOn=1 else: print "Bad endpoints - try again! " start,end=0,len(zijdblock) except ValueError: print "Bad endpoints - try again! " start,end=0,len(zijdblock) s=sids[specimen] pars,errcode=pmag.PintPars(datablock,araiblock,zijdblock,start,end,accept) pars['measurement_step_unit']="K" pars["specimen_lab_field_dc"]=field pars["specimen_int"]=-1*field*pars["specimen_b"] pars["er_specimen_name"]=s pars,kill=pmag.scoreit(pars,PmagSpecRec,accept,'',0) PmagSpecRec['specimen_scat']=pars['specimen_scat'] PmagSpecRec['specimen_frac']='%5.3f'%(pars['specimen_frac']) PmagSpecRec['specimen_gmax']='%5.3f'%(pars['specimen_gmax']) PmagSpecRec["measurement_step_min"]='%8.3e' % (pars["measurement_step_min"]) PmagSpecRec["measurement_step_max"]='%8.3e' % (pars["measurement_step_max"]) PmagSpecRec["measurement_step_unit"]="K" PmagSpecRec["specimen_int_n"]='%i'%(pars["specimen_int_n"]) PmagSpecRec["specimen_lab_field_dc"]='%8.3e'%(pars["specimen_lab_field_dc"]) PmagSpecRec["specimen_int"]='%9.4e '%(pars["specimen_int"]) PmagSpecRec["specimen_b"]='%5.3f '%(pars["specimen_b"]) PmagSpecRec["specimen_q"]='%5.1f '%(pars["specimen_q"]) PmagSpecRec["specimen_f"]='%5.3f '%(pars["specimen_f"]) PmagSpecRec["specimen_fvds"]='%5.3f'%(pars["specimen_fvds"]) PmagSpecRec["specimen_b_beta"]='%5.3f'%(pars["specimen_b_beta"]) PmagSpecRec["specimen_int_mad"]='%7.1f'%(pars["specimen_int_mad"]) PmagSpecRec["specimen_Z"]='%7.1f'%(pars["specimen_Z"]) PmagSpecRec["specimen_gamma"]='%7.1f'%(pars["specimen_gamma"]) PmagSpecRec["specimen_grade"]=pars["specimen_grade"] if pars["method_codes"]!="": tmpcodes=pars["method_codes"].split(":") for t in tmpcodes: if t.strip() not in methcodes:methcodes.append(t.strip()) PmagSpecRec["specimen_dec"]='%7.1f'%(pars["specimen_dec"]) PmagSpecRec["specimen_inc"]='%7.1f'%(pars["specimen_inc"]) PmagSpecRec["specimen_tilt_correction"]='-1' PmagSpecRec["specimen_direction_type"]='l' PmagSpecRec["direction_type"]='l' # this is redundant, but helpful - won't be imported PmagSpecRec["specimen_int_dang"]='%7.1f '%(pars["specimen_int_dang"]) PmagSpecRec["specimen_drats"]='%7.1f '%(pars["specimen_drats"]) PmagSpecRec["specimen_drat"]='%7.1f '%(pars["specimen_drat"]) PmagSpecRec["specimen_int_ptrm_n"]='%i '%(pars["specimen_int_ptrm_n"]) PmagSpecRec["specimen_rsc"]='%6.4f '%(pars["specimen_rsc"]) PmagSpecRec["specimen_md"]='%i '%(int(pars["specimen_md"])) if PmagSpecRec["specimen_md"]=='-1':PmagSpecRec["specimen_md"]="" PmagSpecRec["specimen_b_sigma"]='%5.3f '%(pars["specimen_b_sigma"]) if "IE-TT" not in methcodes:methcodes.append("IE-TT") methods="" for meth in methcodes: methods=methods+meth+":" PmagSpecRec["magic_method_codes"]=methods[:-1] PmagSpecRec["specimen_description"]=comment PmagSpecRec["magic_software_packages"]=version_num pmagplotlib.plotAZ(AZD,araiblock,zijdblock,s,units[0]) pmagplotlib.plotB(AZD,araiblock,zijdblock,pars) if verbose:pmagplotlib.drawFIGS(AZD) if len(trmblock)>2: blab=field best=pars["specimen_int"] Bs,TRMs=[],[] for trec in trmblock: Bs.append(float(trec['treatment_dc_field'])) TRMs.append(float(trec['measurement_magn_moment'])) NLpars=nlt.NLtrm(Bs,TRMs,best,blab,0) # calculate best fit parameters through TRM acquisition data, and get new banc Mp,Bp=[],[] for k in range(int(max(Bs)*1e6)): Bp.append(float(k)*1e-6) npred=nlt.TRM(Bp[-1],NLpars['xopt'][0],NLpars['xopt'][1]) # predicted NRM for this field Mp.append(npred) pmagplotlib.plotTRM(AZD['TRM'],Bs,TRMs,Bp,Mp,NLpars,trec['magic_experiment_name']) if verbose: print 'Non-linear TRM corrected intensity= ',float(NLpars['banc'])*1e6 if verbose:pmagplotlib.drawFIGS(AZD) pars["specimen_lab_field_dc"]=field pars["specimen_int"]=-1*field*pars["specimen_b"] pars,kill=pmag.scoreit(pars,PmagSpecRec,accept,'',verbose) saveit=raw_input("Save this interpretation? [y]/n \n") if saveit!='n': PriorRecs.append(PmagSpecRec) # put back an interpretation specimen+=1 save_redo(PriorRecs,inspec) ans="" elif plots==1: specimen+=1 if fmt != ".pmag": files={} for key in AZD.keys(): files[key]="LO:_"+locname+'_SI:_'+PmagSpecRec['er_site_name']+'_SA:_'+PmagSpecRec['er_sample_name']+'_SP:_'+s+'_CO:_s_TY:_'+key+'_'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['deremag']='DeReMag Plot' titles['zijd']='Zijderveld Plot' titles['arai']='Arai Plot' AZD = pmagplotlib.addBorders(AZD,titles,black,purple) pmagplotlib.saveP(AZD,files,dpi=dpi) # pmagplotlib.combineFigs(s,files,3) else: # save in pmag format script="grep "+s+" output.mag | thellier -mfsi" script=script+' %8.4e'%(field) min='%i'%((pars["measurement_step_min"]-273)) Max='%i'%((pars["measurement_step_max"]-273)) script=script+" "+min+" "+Max script=script+" |plotxy;cat mypost >>thellier.ps\n" pltf.write(script) pmag.domagicmag(outf,MeasRecs) if len(CurrRec)>0: for rec in CurrRec: PriorRecs.append(rec) CurrRec=[] if plots!=1 and verbose: ans=raw_input(" Save last plot? 1/[0] ") if ans=="1": if fmt != ".pmag": files={} for key in AZD.keys(): files[key]=s+'_'+key+fmt pmagplotlib.saveP(AZD,files,dpi=dpi) else: print "\n Good bye\n" sys.exit() if len(CurrRec)>0:PriorRecs.append(CurrRec) # put back an interpretation if len(PriorRecs)>0: save_redo(PriorRecs,inspec) print 'Updated interpretations saved in ',inspec if verbose: print "Good bye"
def main(): """ NAME customize_criteria.py DESCRIPTION Allows user to specify acceptance criteria, saves them in pmag_criteria.txt SYNTAX customize_criteria.py [-h][command line options] OPTIONS -h prints help message and quits -f IFILE, reads in existing criteria -F OFILE, writes to pmag_criteria format file DEFAULTS IFILE: pmag_criteria.txt OFILE: pmag_criteria.txt OUTPUT creates a pmag_criteria.txt formatted output file """ infile,critout="","pmag_criteria.txt" # parse command line options if '-h' in sys.argv: print main.__doc__ sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') infile=sys.argv[ind+1] crit_data,file_type=pmag.magic_read(infile) if file_type!='pmag_criteria': print 'bad input file' print main.__doc__ sys.exit() print "Acceptance criteria read in from ", infile if '-F' in sys.argv: ind=sys.argv.index('-F') critout=sys.argv[ind+1] Dcrit,Icrit,nocrit=0,0,0 custom='1' crit=raw_input(" [0] Use no acceptance criteria?\n [1] Use default criteria\n [2] customize criteria \n ") if crit=='0': print 'Very very loose criteria saved in ',critout crit_data=pmag.default_criteria(1) pmag.magic_write(critout,crit_data,'pmag_criteria') sys.exit() crit_data=pmag.default_criteria(0) if crit=='1': print 'Default criteria saved in ',critout pmag.magic_write(critout,crit_data,'pmag_criteria') sys.exit() CritRec=crit_data[0] crit_keys=CritRec.keys() crit_keys.sort() print "Enter new threshold value.\n Return to keep default.\n Leave blank to not use as a criterion\n " for key in crit_keys: if key!='pmag_criteria_code' and key!='er_citation_names' and key!='criteria_definition' and CritRec[key]!="": print key, CritRec[key] new=raw_input('new value: ') if new != "": CritRec[key]=(new) pmag.magic_write(critout,[CritRec],'pmag_criteria') print "Criteria saved in pmag_criteria.txt"
def main(): """ NAME thellier_magic_redo.py DESCRIPTION Calculates paleointensity parameters for thellier-thellier type data using bounds stored in the "redo" file SYNTAX thellier_magic_redo [command line options] OPTIONS -h prints help message -usr USER: identify user, default is "" -fcr CRIT, set criteria for grading -f IN: specify input file, default is magic_measurements.txt -fre REDO: specify redo file, default is "thellier_redo" -F OUT: specify output file, default is thellier_specimens.txt -leg: attaches "Recalculated from original measurements; supercedes published results. " to comment field -CR PERC TYPE: apply a blanket cooling rate correction if none supplied in the er_samples.txt file PERC should be a percentage of original (say reduce to 90%) TYPE should be one of the following: EG (for educated guess); PS (based on pilots); TRM (based on comparison of two TRMs) -ANI: perform anisotropy correction -fsa SAMPFILE: er_samples.txt file with cooling rate correction information, default is NO CORRECTION -Fcr CRout: specify pmag_specimen format file for cooling rate corrected data -fan ANIFILE: specify rmag_anisotropy format file, default is rmag_anisotropy.txt -Fac ACout: specify pmag_specimen format file for anisotropy corrected data default is AC_specimens.txt -fnl NLTFILE: specify magic_measurments format file, default is magic_measurements.txt -Fnl NLTout: specify pmag_specimen format file for non-linear trm corrected data default is NLT_specimens.txt -z use z component differenences for pTRM calculation INPUT a thellier_redo file is Specimen_name Tmin Tmax (where Tmin and Tmax are in Centigrade) """ dir_path='.' critout="" version_num=pmag.get_version() field,first_save=-1,1 spec,recnum,start,end=0,0,0,0 crfrac=0 NltRecs,PmagSpecs,AniSpecRecs,NltSpecRecs,CRSpecs=[],[],[],[],[] meas_file,pmag_file,mk_file="magic_measurements.txt","thellier_specimens.txt","thellier_redo" anis_file="rmag_anisotropy.txt" anisout,nltout="AC_specimens.txt","NLT_specimens.txt" crout="CR_specimens.txt" nlt_file="" samp_file="" comment,user="","unknown" anis,nltrm=0,0 jackknife=0 # maybe in future can do jackknife args=sys.argv Zdiff=0 if '-WD' in args: ind=args.index('-WD') dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if "-usr" in args: ind=args.index("-usr") user=sys.argv[ind+1] if "-leg" in args: comment="Recalculated from original measurements; supercedes published results. " cool=0 if "-CR" in args: cool=1 ind=args.index("-CR") crfrac=.01*float(sys.argv[ind+1]) crtype='DA-CR-'+sys.argv[ind+2] if "-Fcr" in args: ind=args.index("-Fcr") crout=sys.argv[ind+1] if "-f" in args: ind=args.index("-f") meas_file=sys.argv[ind+1] if "-F" in args: ind=args.index("-F") pmag_file=sys.argv[ind+1] if "-fre" in args: ind=args.index("-fre") mk_file=args[ind+1] if "-fsa" in args: ind=args.index("-fsa") samp_file=dir_path+'/'+args[ind+1] Samps,file_type=pmag.magic_read(samp_file) SampCRs=pmag.get_dictitem(Samps,'cooling_rate_corr','','F') # get samples cooling rate corrections cool=1 if file_type!='er_samples': print('not a valid er_samples.txt file') sys.exit() # # if "-ANI" in args: anis=1 ind=args.index("-ANI") if "-Fac" in args: ind=args.index("-Fac") anisout=args[ind+1] if "-fan" in args: ind=args.index("-fan") anis_file=args[ind+1] # if "-NLT" in args: if "-Fnl" in args: ind=args.index("-Fnl") nltout=args[ind+1] if "-fnl" in args: ind=args.index("-fnl") nlt_file=args[ind+1] if "-z" in args: Zdiff=1 if '-fcr' in sys.argv: ind=args.index("-fcr") critout=sys.argv[ind+1] # # start reading in data: # meas_file=dir_path+"/"+meas_file mk_file=dir_path+"/"+mk_file accept=pmag.default_criteria(1)[0] # set criteria to none if critout!="": critout=dir_path+"/"+critout crit_data,file_type=pmag.magic_read(critout) if file_type!='pmag_criteria': print('bad pmag_criteria file, using no acceptance criteria') print("Acceptance criteria read in from ", critout) for critrec in crit_data: if 'sample_int_sigma_uT' in list(critrec.keys()): # accommodate Shaar's new criterion critrec['sample_int_sigma']='%10.3e'%(eval(critrec['sample_int_sigma_uT'])*1e-6) for key in list(critrec.keys()): if key not in list(accept.keys()) and critrec[key]!='': accept[key]=critrec[key] meas_data,file_type=pmag.magic_read(meas_file) if file_type != 'magic_measurements': print(file_type) print(file_type,"This is not a valid magic_measurements file ") sys.exit() try: mk_f=open(mk_file,'r') except: print("Bad redo file") sys.exit() mkspec=[] speclist=[] for line in mk_f.readlines(): tmp=line.split() mkspec.append(tmp) speclist.append(tmp[0]) if anis==1: anis_file=dir_path+"/"+anis_file anis_data,file_type=pmag.magic_read(anis_file) if file_type != 'rmag_anisotropy': print(file_type) print(file_type,"This is not a valid rmag_anisotropy file ") sys.exit() if nlt_file=="": nlt_data=pmag.get_dictitem(meas_data,'magic_method_codes','LP-TRM','has') # look for trm acquisition data in the meas_data file else: nlt_file=dir_path+"/"+nlt_file nlt_data,file_type=pmag.magic_read(nlt_file) if len(nlt_data)>0: nltrm=1 # # sort the specimen names and step through one by one # sids=pmag.get_specs(meas_data) # print('Processing ',len(speclist),' specimens - please wait ') while spec < len(speclist): s=speclist[spec] recnum=0 datablock=[] PmagSpecRec={} PmagSpecRec["er_analyst_mail_names"]=user PmagSpecRec["er_citation_names"]="This study" PmagSpecRec["magic_software_packages"]=version_num methcodes,inst_code=[],"" # # find the data from the meas_data file for this specimen # datablock=pmag.get_dictitem(meas_data,'er_specimen_name',s,'T') datablock=pmag.get_dictitem(datablock,'magic_method_codes','LP-PI-TRM','has') #pick out the thellier experiment data if len(datablock)>0: for rec in datablock: if "magic_instrument_codes" not in list(rec.keys()): rec["magic_instrument_codes"]="unknown" # # collect info for the PmagSpecRec dictionary # rec=datablock[0] PmagSpecRec["er_specimen_name"]=s PmagSpecRec["er_sample_name"]=rec["er_sample_name"] PmagSpecRec["er_site_name"]=rec["er_site_name"] PmagSpecRec["er_location_name"]=rec["er_location_name"] PmagSpecRec["measurement_step_unit"]="K" PmagSpecRec["specimen_correction"]='u' if "er_expedition_name" in list(rec.keys()):PmagSpecRec["er_expedition_name"]=rec["er_expedition_name"] if "magic_instrument_codes" not in list(rec.keys()): PmagSpecRec["magic_instrument_codes"]="unknown" else: PmagSpecRec["magic_instrument_codes"]=rec["magic_instrument_codes"] if "magic_experiment_name" not in list(rec.keys()): rec["magic_experiment_name"]="" else: PmagSpecRec["magic_experiment_names"]=rec["magic_experiment_name"] meths=rec["magic_experiment_name"].split(":") for meth in meths: if meth.strip() not in methcodes and "LP-" in meth:methcodes.append(meth.strip()) # # sort out the data into first_Z, first_I, ptrm_check, ptrm_tail # araiblock,field=pmag.sortarai(datablock,s,Zdiff) first_Z=araiblock[0] first_I=araiblock[1] ptrm_check=araiblock[2] ptrm_tail=araiblock[3] if len(first_I)<3 or len(first_Z)<4: spec+=1 print('skipping specimen ', s) else: # # get start, end # for redospec in mkspec: if redospec[0]==s: b,e=float(redospec[1]),float(redospec[2]) break if e > float(first_Z[-1][0]):e=float(first_Z[-1][0]) for recnum in range(len(first_Z)): if first_Z[recnum][0]==b:start=recnum if first_Z[recnum][0]==e:end=recnum nsteps=end-start if nsteps>2: zijdblock,units=pmag.find_dmag_rec(s,meas_data) pars,errcode=pmag.PintPars(datablock,araiblock,zijdblock,start,end,accept) if 'specimen_scat' in list(pars.keys()): PmagSpecRec['specimen_scat']=pars['specimen_scat'] if 'specimen_frac' in list(pars.keys()): PmagSpecRec['specimen_frac']='%5.3f'%(pars['specimen_frac']) if 'specimen_gmax' in list(pars.keys()): PmagSpecRec['specimen_gmax']='%5.3f'%(pars['specimen_gmax']) pars['measurement_step_unit']=units pars["specimen_lab_field_dc"]=field pars["specimen_int"]=-1*field*pars["specimen_b"] PmagSpecRec["measurement_step_min"]='%8.3e' % (pars["measurement_step_min"]) PmagSpecRec["measurement_step_max"]='%8.3e' % (pars["measurement_step_max"]) PmagSpecRec["specimen_int_n"]='%i'%(pars["specimen_int_n"]) PmagSpecRec["specimen_lab_field_dc"]='%8.3e'%(pars["specimen_lab_field_dc"]) PmagSpecRec["specimen_int"]='%9.4e '%(pars["specimen_int"]) PmagSpecRec["specimen_b"]='%5.3f '%(pars["specimen_b"]) PmagSpecRec["specimen_q"]='%5.1f '%(pars["specimen_q"]) PmagSpecRec["specimen_f"]='%5.3f '%(pars["specimen_f"]) PmagSpecRec["specimen_fvds"]='%5.3f'%(pars["specimen_fvds"]) PmagSpecRec["specimen_b_beta"]='%5.3f'%(pars["specimen_b_beta"]) PmagSpecRec["specimen_int_mad"]='%7.1f'%(pars["specimen_int_mad"]) PmagSpecRec["specimen_gamma"]='%7.1f'%(pars["specimen_gamma"]) if pars["magic_method_codes"]!="" and pars["magic_method_codes"] not in methcodes: methcodes.append(pars["magic_method_codes"]) PmagSpecRec["specimen_dec"]='%7.1f'%(pars["specimen_dec"]) PmagSpecRec["specimen_inc"]='%7.1f'%(pars["specimen_inc"]) PmagSpecRec["specimen_tilt_correction"]='-1' PmagSpecRec["specimen_direction_type"]='l' PmagSpecRec["direction_type"]='l' # this is redudant, but helpful - won't be imported PmagSpecRec["specimen_dang"]='%7.1f '%(pars["specimen_dang"]) PmagSpecRec["specimen_drats"]='%7.1f '%(pars["specimen_drats"]) PmagSpecRec["specimen_drat"]='%7.1f '%(pars["specimen_drat"]) PmagSpecRec["specimen_int_ptrm_n"]='%i '%(pars["specimen_int_ptrm_n"]) PmagSpecRec["specimen_rsc"]='%6.4f '%(pars["specimen_rsc"]) PmagSpecRec["specimen_md"]='%i '%(int(pars["specimen_md"])) if PmagSpecRec["specimen_md"]=='-1':PmagSpecRec["specimen_md"]="" PmagSpecRec["specimen_b_sigma"]='%5.3f '%(pars["specimen_b_sigma"]) if "IE-TT" not in methcodes:methcodes.append("IE-TT") methods="" for meth in methcodes: methods=methods+meth+":" PmagSpecRec["magic_method_codes"]=methods.strip(':') PmagSpecRec["magic_software_packages"]=version_num PmagSpecRec["specimen_description"]=comment if critout!="": kill=pmag.grade(PmagSpecRec,accept,'specimen_int') if len(kill)>0: Grade='F' # fails else: Grade='A' # passes PmagSpecRec["specimen_grade"]=Grade else: PmagSpecRec["specimen_grade"]="" # not graded if nltrm==0 and anis==0 and cool!=0: # apply cooling rate correction SCR=pmag.get_dictitem(SampCRs,'er_sample_name',PmagSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction CrSpecRec=pmag.cooling_rate(PmagSpecRec,SCR,crfrac,crtype) if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec) PmagSpecs.append(PmagSpecRec) NltSpecRec="" # # check on non-linear TRM correction # if nltrm==1: # # find the data from the nlt_data list for this specimen # TRMs,Bs=[],[] NltSpecRec="" NltRecs=pmag.get_dictitem(nlt_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'has') # fish out all the NLT data for this specimen if len(NltRecs) > 2: for NltRec in NltRecs: Bs.append(float(NltRec['treatment_dc_field'])) TRMs.append(float(NltRec['measurement_magn_moment'])) NLTpars=nlt.NLtrm(Bs,TRMs,float(PmagSpecRec['specimen_int']),float(PmagSpecRec['specimen_lab_field_dc']),0) if NLTpars['banc']>0: NltSpecRec={} for key in list(PmagSpecRec.keys()): NltSpecRec[key]=PmagSpecRec[key] NltSpecRec['specimen_int']='%9.4e'%(NLTpars['banc']) NltSpecRec['magic_method_codes']=PmagSpecRec["magic_method_codes"]+":DA-NL" NltSpecRec["specimen_correction"]='c' NltSpecRec['specimen_grade']=PmagSpecRec['specimen_grade'] NltSpecRec["magic_software_packages"]=version_num print(NltSpecRec['er_specimen_name'], ' Banc= ',float(NLTpars['banc'])*1e6) if anis==0 and cool!=0: SCR=pmag.get_dictitem(SampCRs,'er_sample_name',NltSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction CrSpecRec=pmag.cooling_rate(NltSpecRec,SCR,crfrac,crtype) if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec) NltSpecRecs.append(NltSpecRec) # # check on anisotropy correction if anis==1: if NltSpecRec!="": Spc=NltSpecRec else: # find uncorrected data Spc=PmagSpecRec AniSpecs=pmag.get_dictitem(anis_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'T') if len(AniSpecs)>0: AniSpec=AniSpecs[0] AniSpecRec=pmag.doaniscorr(Spc,AniSpec) AniSpecRec['specimen_grade']=PmagSpecRec['specimen_grade'] AniSpecRec["magic_instrument_codes"]=PmagSpecRec['magic_instrument_codes'] AniSpecRec["specimen_correction"]='c' AniSpecRec["magic_software_packages"]=version_num if cool!=0: SCR=pmag.get_dictitem(SampCRs,'er_sample_name',AniSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction CrSpecRec=pmag.cooling_rate(AniSpecRec,SCR,crfrac,crtype) if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec) AniSpecRecs.append(AniSpecRec) elif anis==1: AniSpecs=pmag.get_dictitem(anis_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'T') if len(AniSpecs)>0: AniSpec=AniSpecs[0] AniSpecRec=pmag.doaniscorr(PmagSpecRec,AniSpec) AniSpecRec['specimen_grade']=PmagSpecRec['specimen_grade'] AniSpecRec["magic_instrument_codes"]=PmagSpecRec["magic_instrument_codes"] AniSpecRec["specimen_correction"]='c' AniSpecRec["magic_software_packages"]=version_num if crfrac!=0: CrSpecRec={} for key in list(AniSpecRec.keys()):CrSpecRec[key]=AniSpecRec[key] inten=frac*float(CrSpecRec['specimen_int']) CrSpecRec["specimen_int"]='%9.4e '%(inten) # adjust specimen intensity by cooling rate correction CrSpecRec['magic_method_codes'] = CrSpecRec['magic_method_codes']+':DA-CR-'+crtype CRSpecs.append(CrSpecRec) AniSpecRecs.append(AniSpecRec) spec +=1 else: print("skipping ",s) spec+=1 pmag_file=dir_path+'/'+pmag_file pmag.magic_write(pmag_file,PmagSpecs,'pmag_specimens') print('uncorrected thellier data saved in: ',pmag_file) if anis==1 and len(AniSpecRecs)>0: anisout=dir_path+'/'+anisout pmag.magic_write(anisout,AniSpecRecs,'pmag_specimens') print('anisotropy corrected data saved in: ',anisout) if nltrm==1 and len(NltSpecRecs)>0: nltout=dir_path+'/'+nltout pmag.magic_write(nltout,NltSpecRecs,'pmag_specimens') print('non-linear TRM corrected data saved in: ',nltout) if crfrac!=0: crout=dir_path+'/'+crout pmag.magic_write(crout,CRSpecs,'pmag_specimens') print('cooling rate corrected data saved in: ',crout)
def main(): """ NAME thellier_magic.py DESCRIPTION plots Thellier-Thellier data in version 3.0 format Reads saved interpretations from a specimen formatted table, default: specimens.txt SYNTAX thellier_magic.py [command line options] OPTIONS -h prints help message and quits -f MEAS, set measurements input file, default is 'measurements.txt' -fsp PRIOR, set specimens.txt prior interpretations file, default is 'specimens.txt' -fcr CRIT, set criteria file for grading. # not yet implemented -fmt [svg,png,jpg], format for images - default is svg -sav, saves plots with out review (in format specified by -fmt key or default) -spc SPEC, plots single specimen SPEC, saves plot with specified format with optional -b bounds and quits -b BEG END: sets bounds for calculation BEG: starting step number for slope calculation END: ending step number for slope calculation -z use only z component difference for pTRM calculation OUTPUT figures: ALL: numbers refer to temperature steps in command line window 1) Arai plot: closed circles are zero-field first/infield open circles are infield first/zero-field triangles are pTRM checks squares are pTRM tail checks VDS is vector difference sum diamonds are bounds for interpretation 2) Zijderveld plot: closed (open) symbols are X-Y (X-Z) planes X rotated to NRM direction 3) (De/Re)Magnetization diagram: circles are NRM remaining squares are pTRM gained 4) equal area projections: green triangles are pTRM gained direction red (purple) circles are lower(upper) hemisphere of ZI step directions blue (cyan) squares are lower(upper) hemisphere IZ step directions 5) Optional: TRM acquisition 6) Optional: TDS normalization command line window: list is: temperature step numbers, temperatures (C), Dec, Inc, Int (units of measuements) list of possible commands: type letter followed by return to select option saving of plots creates image files with specimen, plot type as name """ # # initializations # version_num = pmag.get_version() verbose = pmagplotlib.verbose # # default acceptance criteria # accept = pmag.default_criteria(0)[0] # set the default criteria # # parse command line options # plots, fmt, Zdiff = 0, 'svg', 0 if '-h' in sys.argv: print(main.__doc__) sys.exit() dir_path = pmag.get_named_arg_from_sys("-WD", default_val=os.getcwd()) meas_file = pmag.get_named_arg_from_sys("-f", default_val="measurements.txt") spec_file = pmag.get_named_arg_from_sys("-fsp", default_val="specimens.txt") crit_file = pmag.get_named_arg_from_sys("-fcr", default_val="criteria.txt") spec_file = os.path.join(dir_path, spec_file) meas_file = os.path.join(dir_path, meas_file) crit_file = os.path.join(dir_path, crit_file) fmt = pmag.get_named_arg_from_sys("-fmt", "svg") if '-sav' in sys.argv: plots, verbose = 1, 0 if '-z' in sys.argv: Zdiff = 1 specimen = pmag.get_named_arg_from_sys("-spc", default_val="") if '-b' in sys.argv: ind = sys.argv.index('-b') start = int(sys.argv[ind + 1]) end = int(sys.argv[ind + 2]) else: start, end = "", "" fnames = { 'measurements': meas_file, 'specimens': spec_file, 'criteria': crit_file } contribution = nb.Contribution( dir_path, custom_filenames=fnames, read_tables=['measurements', 'specimens', 'criteria']) # # import prior interpretations from specimen file # specimen_cols = [ 'analysts', 'aniso_ftest', 'aniso_ftest12', 'aniso_ftest23', 'aniso_s', 'aniso_s_mean', 'aniso_s_n_measurements', 'aniso_s_sigma', 'aniso_s_unit', 'aniso_tilt_correction', 'aniso_type', 'aniso_v1', 'aniso_v2', 'aniso_v3', 'citations', 'description', 'dir_alpha95', 'dir_comp', 'dir_dec', 'dir_inc', 'dir_mad_free', 'dir_n_measurements', 'dir_tilt_correction', 'experiments', 'geologic_classes', 'geologic_types', 'hyst_bc', 'hyst_bcr', 'hyst_mr_moment', 'hyst_ms_moment', 'int_abs', 'int_b', 'int_b_beta', 'int_b_sigma', 'int_corr', 'int_dang', 'int_drats', 'int_f', 'int_fvds', 'int_gamma', 'int_mad_free', 'int_md', 'int_n_measurements', 'int_n_ptrm', 'int_q', 'int_rsc', 'int_treat_dc_field', 'lithologies', 'meas_step_max', 'meas_step_min', 'meas_step_unit', 'method_codes', 'sample', 'software_packages', 'specimen' ] if 'specimens' in contribution.tables: spec_container = contribution.tables['specimens'] prior_spec_data = spec_container.get_records_for_code( 'LP-PI-TRM', strict_match=False) # look up all prior intensity interpretations else: spec_container, prior_spec_data = None, [] backup = 0 # Mkeys = ['magn_moment', 'magn_volume', 'magn_mass'] # # create measurement dataframe # meas_container = contribution.tables['measurements'] meas_data = meas_container.df # meas_data['method_codes'] = meas_data['method_codes'].str.replace( " ", "") # get rid of nasty spaces meas_data = meas_data[meas_data['method_codes'].str.contains( 'LP-PI-TRM|LP-TRM|LP-TRM-TD') == True] # fish out zero field steps for plotting intensity_types = [ col_name for col_name in meas_data.columns if col_name in Mkeys ] int_key = intensity_types[ 0] # plot first intensity method found - normalized to initial value anyway - doesn't matter which used meas_data = meas_data[meas_data[int_key].notnull( )] # get all the non-null intensity records of the same type if 'flag' not in meas_data.columns: meas_data['flag'] = 'g' # set the default flag to good meas_data = meas_data[meas_data['flag'].str.contains('g') == True] # only the 'good' measurements thel_data = meas_data[meas_data['method_codes'].str.contains('LP-PI-TRM') == True] # get all the Thellier data trm_data = meas_data[meas_data['method_codes'].str.contains('LP-TRM') == True] # get all the TRM acquisition data td_data = meas_data[meas_data['method_codes'].str.contains('LP-TRM-TD') == True] # get all the TD data anis_data = meas_data[meas_data['method_codes'].str.contains('LP-AN') == True] # get all the anisotropy data # # get list of unique specimen names from measurement data # specimen_names = meas_data.specimen.unique( ) # this is a Series of all the specimen names specimen_names = specimen_names.tolist() # turns it into a list specimen_names.sort() # sorts by specimen name # # set up new DataFrame for this sessions specimen interpretations # spec_container = nb.MagicDataFrame(dtype='specimens', columns=specimen_cols) current_spec_data = spec_container.df # this is for interpretations from this session if specimen == "": # do all specimens k = 0 else: k = specimen_names.index(specimen) # just do this one # define figure numbers for arai, zijderveld and # de-,re-magnetization diagrams AZD = {} AZD['deremag'], AZD['zijd'], AZD['arai'], AZD['eqarea'] = 1, 2, 3, 4 pmagplotlib.plot_init(AZD['arai'], 5, 5) pmagplotlib.plot_init(AZD['zijd'], 5, 5) pmagplotlib.plot_init(AZD['deremag'], 5, 5) pmagplotlib.plot_init(AZD['eqarea'], 5, 5) if len(trm_data) > 0: AZD['TRM'] = 5 pmagplotlib.plot_init(AZD['TRM'], 5, 5) if len(td_data) > 0: AZD['TDS'] = 6 pmagplotlib.plot_init(AZD['TDS'], 5, 5) # while k < len(specimen_names): this_specimen = specimen_names[ k] # set the current specimen for plotting if verbose and this_specimen != "": print(this_specimen, k + 1, 'out of ', len(specimen_names)) # # set up datablocks # thelblock = thel_data[thel_data['specimen'].str.contains(this_specimen) == True] # fish out this specimen trmblock = trm_data[trm_data['specimen'].str.contains(this_specimen) == True] # fish out this specimen tdsrecs = td_data[td_data['specimen'].str.contains(this_specimen) == True] # fish out this specimen anisblock = anis_data[anis_data['specimen'].str.contains(this_specimen) == True] # fish out the anisotropy data prior_specimen_interpretations = prior_spec_data[ prior_spec_data['specimen'].str.contains( this_specimen) == True] # fish out prior interpretation # # sort data into types # araiblock, field = pmag.sortarai(thelblock, this_specimen, Zdiff, version=3) first_Z = araiblock[0] GammaChecks = araiblock[5] if len(first_Z) < 3: if backup == 0: k += 1 if verbose: print('skipping specimen - moving forward ', this_specimen) else: k -= 1 if verbose: print('skipping specimen - moving backward ', this_specimen) else: backup = 0 zijdblock, units = pmag.find_dmag_rec(this_specimen, thelblock, version=3) if start == "" and len(prior_specimen_interpretations) > 0: if verbose: print('Looking up saved interpretation....') # # get prior interpretation steps # beg_int = pd.to_numeric(prior_specimen_interpretations. meas_step_min.values).tolist()[0] end_int = pd.to_numeric(prior_specimen_interpretations. meas_step_max.values).tolist()[0] else: beg_int, end_int = "", "" recnum = 0 if verbose: print("index step Dec Inc Int Gamma") for plotrec in zijdblock: if plotrec[0] == beg_int: start = recnum # while we are at it, collect these bounds if plotrec[0] == end_int: end = recnum if verbose: if GammaChecks != "": gamma = "" for g in GammaChecks: if g[0] == plotrec[0] - 273: gamma = g[1] break if gamma != "": print('%i %i %7.1f %7.1f %8.3e %7.1f' % (recnum, plotrec[0] - 273, plotrec[1], plotrec[2], plotrec[3], gamma)) else: print('%i %i %7.1f %7.1f %8.3e ' % (recnum, plotrec[0] - 273, plotrec[1], plotrec[2], plotrec[3])) recnum += 1 for fig in list(AZD.keys()): pmagplotlib.clearFIG(AZD[fig]) # clear all figures pmagplotlib.plotAZ(AZD, araiblock, zijdblock, this_specimen, units[0]) if verbose: pmagplotlib.drawFIGS(AZD) pars, errcode = pmag.PintPars(thelblock, araiblock, zijdblock, start, end, accept, version=3) pars['measurement_step_unit'] = "K" pars['experiment_type'] = 'LP-PI-TRM' # # work on saving interpretations stuff later # if errcode != 1: # no problem in PintPars pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars["specimen_b"] pars["er_specimen_name"] = this_specimen #pars,kill=pmag.scoreit(pars,this_specimen_interpretation,accept,'',verbose) # deal with this later pars["specimen_grade"] = 'None' pars['measurement_step_min'] = pars['meas_step_min'] pars['measurement_step_max'] = pars['meas_step_max'] if pars['measurement_step_unit'] == 'K': outstr = "specimen Tmin Tmax N lab_field B_anc b q f(coe) Fvds beta MAD Dang Drats Nptrm Grade R MD% sigma Gamma_max \n" pars_out = (this_specimen, (pars["meas_step_min"] - 273), (pars["meas_step_max"] - 273), (pars["specimen_int_n"]), 1e6 * (pars["specimen_lab_field_dc"]), 1e6 * (pars["specimen_int"]), pars["specimen_b"], pars["specimen_q"], pars["specimen_f"], pars["specimen_fvds"], pars["specimen_b_beta"], pars["int_mad_free"], pars["int_dang"], pars["int_drats"], pars["int_n_ptrm"], pars["specimen_grade"], np.sqrt(pars["specimen_rsc"]), int(pars["int_md"]), pars["specimen_b_sigma"], pars['specimen_gamma']) outstring = '%s %4.0f %4.0f %i %4.1f %4.1f %5.3f %5.1f %5.3f %5.3f %5.3f %7.1f %7.1f %7.1f %s %s %6.3f %i %5.3f %7.1f' % pars_out + '\n' elif pars['measurement_step_unit'] == 'J': outstr = "specimen Wmin Wmax N lab_field B_anc b q f(coe) Fvds beta MAD Dang Drats Nptrm Grade R MD% sigma ThetaMax DeltaMax GammaMax\n" pars_out = ( this_specimen, (pars["meas_step_min"]), (pars["meas_step_max"]), (pars["specimen_int_n"]), 1e6 * (pars["specimen_lab_field_dc"]), 1e6 * (pars["specimen_int"]), pars["specimen_b"], pars["specimen_q"], pars["specimen_f"], pars["specimen_fvds"], pars["specimen_b_beta"], pars["specimen_int_mad"], pars["specimen_int_dang"], pars["specimen_drats"], pars["specimen_int_ptrm_n"], pars["specimen_grade"], np.sqrt(pars["specimen_rsc"]), int(pars["specimen_md"]), pars["specimen_b_sigma"], pars["specimen_theta"], pars["specimen_delta"], pars["specimen_gamma"]) outstring = '%s %4.0f %4.0f %i %4.1f %4.1f %5.3f %5.1f %5.3f %5.3f %5.3f %7.1f %7.1f %7.1f %s %s %6.3f %i %5.3f %7.1f %7.1f %7.1f' % pars_out + '\n' print(outstr) print(outstring) pmagplotlib.plotB(AZD, araiblock, zijdblock, pars) mpars = pmag.domean(araiblock[1], start, end, 'DE-BFL') if verbose: pmagplotlib.drawFIGS(AZD) print('pTRM direction= ', '%7.1f' % (mpars['specimen_dec']), ' %7.1f' % (mpars['specimen_inc']), ' MAD:', '%7.1f' % (mpars['specimen_mad'])) if len(anisblock) > 0: # this specimen has anisotropy data if verbose: print('Found anisotropy record... but ignoring for now ') if plots == 1: if fmt != "pmag": files = {} for key in list(AZD.keys()): files[ key] = 'SP:_' + this_specimen + '_TY:_' + key + '_' + '.' + fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['deremag'] = 'DeReMag Plot' titles['zijd'] = 'Zijderveld Plot' titles['arai'] = 'Arai Plot' titles['TRM'] = 'TRM Acquisition data' AZD = pmagplotlib.addBorders(AZD, titles, black, purple) pmagplotlib.saveP(AZD, files) else: # save in pmag format print('pmag format no longer supported') #script="grep "+this_specimen+" output.mag | thellier -mfsi" #script=script+' %8.4e'%(field) #min='%i'%((pars["measurement_step_min"]-273)) #Max='%i'%((pars["measurement_step_max"]-273)) #script=script+" "+min+" "+Max #script=script+" |plotxy;cat mypost >>thellier.ps\n" #pltf.write(script) #pmag.domagicmag(outf,MeasRecs) if specimen != "": sys.exit() # syonara if verbose: ans = input('Return for next specimen, q to quit: ') if ans == 'q': sys.exit() k += 1 # moving on
def main(): """ NAME specimens_results_magic.py DESCRIPTION combines pmag_specimens.txt file with age, location, acceptance criteria and outputs pmag_results table along with other MagIC tables necessary for uploading to the database SYNTAX specimens_results_magic.py [command line options] OPTIONS -h prints help message and quits -usr USER: identify user, default is "" -f: specimen input magic_measurements format file, default is "magic_measurements.txt" -fsp: specimen input pmag_specimens format file, default is "pmag_specimens.txt" -fsm: sample input er_samples format file, default is "er_samples.txt" -fsi: specimen input er_sites format file, default is "er_sites.txt" -fla: specify a file with paleolatitudes for calculating VADMs, default is not to calculate VADMS format is: site_name paleolatitude (space delimited file) -fa AGES: specify er_ages format file with age information -crd [s,g,t,b]: specify coordinate system (s, specimen, g geographic, t, tilt corrected, b, geographic and tilt corrected) Default is to assume geographic NB: only the tilt corrected data will appear on the results table, if both g and t are selected. -cor [AC:CR:NL]: colon delimited list of required data adjustments for all specimens included in intensity calculations (anisotropy, cooling rate, non-linear TRM) unless specified, corrections will not be applied -pri [TRM:ARM] colon delimited list of priorities for anisotropy correction (-cor must also be set to include AC). default is TRM, then ARM -age MIN MAX UNITS: specify age boundaries and units -exc: use exiting selection criteria (in pmag_criteria.txt file), default is default criteria -C: no acceptance criteria -aD: average directions per sample, default is NOT -aI: average multiple specimen intensities per sample, default is by site -aC: average all components together, default is NOT -pol: calculate polarity averages -sam: save sample level vgps and v[a]dms, default is by site -xSi: skip the site level intensity calculation -p: plot directions and look at intensities by site, default is NOT -fmt: specify output for saved images, default is svg (only if -p set) -lat: use present latitude for calculating VADMs, default is not to calculate VADMs -xD: skip directions -xI: skip intensities OUPUT writes pmag_samples, pmag_sites, pmag_results tables """ # set defaults Comps = [] # list of components version_num = pmag.get_version() args = sys.argv DefaultAge = ["none"] skipdirs, coord, excrit, custom, vgps, average, Iaverage, plotsites, opt = 1, 0, 0, 0, 0, 0, 0, 0, 0 get_model_lat = 0 # this skips VADM calculation altogether, when get_model_lat=1, uses present day fmt = 'svg' dir_path = "." model_lat_file = "" Caverage = 0 infile = 'pmag_specimens.txt' measfile = "magic_measurements.txt" sampfile = "er_samples.txt" sitefile = "er_sites.txt" agefile = "er_ages.txt" specout = "er_specimens.txt" sampout = "pmag_samples.txt" siteout = "pmag_sites.txt" resout = "pmag_results.txt" critout = "pmag_criteria.txt" instout = "magic_instruments.txt" sigcutoff, OBJ = "", "" noDir, noInt = 0, 0 polarity = 0 coords = ['0'] Dcrit, Icrit, nocrit = 0, 0, 0 corrections = [] nocorrection = ['DA-NL', 'DA-AC', 'DA-CR'] priorities = ['DA-AC-ARM', 'DA-AC-TRM'] # priorities for anisotropy correction # get command line stuff if "-h" in args: print main.__doc__ sys.exit() if '-WD' in args: ind = args.index("-WD") dir_path = args[ind + 1] if '-cor' in args: ind = args.index('-cor') cors = args[ind + 1].split(':') # list of required data adjustments for cor in cors: nocorrection.remove('DA-' + cor) corrections.append('DA-' + cor) if '-pri' in args: ind = args.index('-pri') priorities = args[ind + 1].split( ':') # list of required data adjustments for p in priorities: p = 'DA-AC-' + p if '-f' in args: ind = args.index("-f") measfile = args[ind + 1] if '-fsp' in args: ind = args.index("-fsp") infile = args[ind + 1] if '-fsi' in args: ind = args.index("-fsi") sitefile = args[ind + 1] if "-crd" in args: ind = args.index("-crd") coord = args[ind + 1] if coord == 's': coords = ['-1'] if coord == 'g': coords = ['0'] if coord == 't': coords = ['100'] if coord == 'b': coords = ['0', '100'] if "-usr" in args: ind = args.index("-usr") user = sys.argv[ind + 1] else: user = "" if "-C" in args: Dcrit, Icrit, nocrit = 1, 1, 1 # no selection criteria if "-sam" in args: vgps = 1 # save sample level VGPS/VADMs if "-xSi" in args: nositeints = 1 # skip site level intensity else: nositeints = 0 if "-age" in args: ind = args.index("-age") DefaultAge[0] = args[ind + 1] DefaultAge.append(args[ind + 2]) DefaultAge.append(args[ind + 3]) Daverage, Iaverage, Caverage = 0, 0, 0 if "-aD" in args: Daverage = 1 # average by sample directions if "-aI" in args: Iaverage = 1 # average by sample intensities if "-aC" in args: Caverage = 1 # average all components together ??? why??? if "-pol" in args: polarity = 1 # calculate averages by polarity if '-xD' in args: noDir = 1 if '-xI' in args: noInt = 1 elif "-fla" in args: if '-lat' in args: print "you should set a paleolatitude file OR use present day lat - not both" sys.exit() ind = args.index("-fla") model_lat_file = dir_path + '/' + args[ind + 1] get_model_lat = 2 mlat = open(model_lat_file, 'rU') ModelLats = [] for line in mlat.readlines(): ModelLat = {} tmp = line.split() ModelLat["er_site_name"] = tmp[0] ModelLat["site_model_lat"] = tmp[1] ModelLat["er_sample_name"] = tmp[0] ModelLat["sample_lat"] = tmp[1] ModelLats.append(ModelLat) get_model_lat = 2 elif '-lat' in args: get_model_lat = 1 if "-p" in args: plotsites = 1 if "-fmt" in args: ind = args.index("-fmt") fmt = args[ind + 1] if noDir == 0: # plot by site - set up plot window import pmagplotlib EQ = {} EQ['eqarea'] = 1 pmagplotlib.plot_init( EQ['eqarea'], 5, 5) # define figure 1 as equal area projection pmagplotlib.plotNET( EQ['eqarea'] ) # I don't know why this has to be here, but otherwise the first plot never plots... pmagplotlib.drawFIGS(EQ) if '-WD' in args: infile = dir_path + '/' + infile measfile = dir_path + '/' + measfile instout = dir_path + '/' + instout sampfile = dir_path + '/' + sampfile sitefile = dir_path + '/' + sitefile agefile = dir_path + '/' + agefile specout = dir_path + '/' + specout sampout = dir_path + '/' + sampout siteout = dir_path + '/' + siteout resout = dir_path + '/' + resout critout = dir_path + '/' + critout if "-exc" in args: # use existing pmag_criteria file if "-C" in args: print 'you can not use both existing and no criteria - choose either -exc OR -C OR neither (for default)' sys.exit() crit_data, file_type = pmag.magic_read(critout) print "Acceptance criteria read in from ", critout else: # use default criteria (if nocrit set, then get really loose criteria as default) crit_data = pmag.default_criteria(nocrit) if nocrit == 0: print "Acceptance criteria are defaults" else: print "No acceptance criteria used " accept = {} for critrec in crit_data: for key in critrec.keys(): # need to migrate specimen_dang to specimen_int_dang for intensity data using old format if 'IE-SPEC' in critrec.keys() and 'specimen_dang' in critrec.keys( ) and 'specimen_int_dang' not in critrec.keys(): critrec['specimen_int_dang'] = critrec['specimen_dang'] del critrec['specimen_dang'] # need to get rid of ron shaars sample_int_sigma_uT if 'sample_int_sigma_uT' in critrec.keys(): critrec['sample_int_sigma'] = '%10.3e' % ( eval(critrec['sample_int_sigma_uT']) * 1e-6) if key not in accept.keys() and critrec[key] != '': accept[key] = critrec[key] # # if "-exc" not in args and "-C" not in args: print "args", args pmag.magic_write(critout, [accept], 'pmag_criteria') print "\n Pmag Criteria stored in ", critout, '\n' # # now we're done slow dancing # SiteNFO, file_type = pmag.magic_read( sitefile) # read in site data - has the lats and lons SampNFO, file_type = pmag.magic_read( sampfile) # read in site data - has the lats and lons height_nfo = pmag.get_dictitem(SiteNFO, 'site_height', '', 'F') # find all the sites with height info. if agefile != "": AgeNFO, file_type = pmag.magic_read( agefile) # read in the age information Data, file_type = pmag.magic_read( infile) # read in specimen interpretations IntData = pmag.get_dictitem(Data, 'specimen_int', '', 'F') # retrieve specimens with intensity data comment, orient = "", [] samples, sites = [], [] for rec in Data: # run through the data filling in missing keys and finding all components, coordinates available # fill in missing fields, collect unique sample and site names if 'er_sample_name' not in rec.keys(): rec['er_sample_name'] = "" elif rec['er_sample_name'] not in samples: samples.append(rec['er_sample_name']) if 'er_site_name' not in rec.keys(): rec['er_site_name'] = "" elif rec['er_site_name'] not in sites: sites.append(rec['er_site_name']) if 'specimen_int' not in rec.keys(): rec['specimen_int'] = '' if 'specimen_comp_name' not in rec.keys( ) or rec['specimen_comp_name'] == "": rec['specimen_comp_name'] = 'A' if rec['specimen_comp_name'] not in Comps: Comps.append(rec['specimen_comp_name']) rec['specimen_tilt_correction'] = rec[ 'specimen_tilt_correction'].strip('\n') if "specimen_tilt_correction" not in rec.keys(): rec["specimen_tilt_correction"] = "-1" # assume sample coordinates if rec["specimen_tilt_correction"] not in orient: orient.append(rec["specimen_tilt_correction"] ) # collect available coordinate systems if "specimen_direction_type" not in rec.keys(): rec["specimen_direction_type"] = 'l' # assume direction is line - not plane if "specimen_dec" not in rec.keys(): rec["specimen_direction_type"] = '' # if no declination, set direction type to blank if "specimen_n" not in rec.keys(): rec["specimen_n"] = '' # put in n if "specimen_alpha95" not in rec.keys(): rec["specimen_alpha95"] = '' # put in alpha95 if "magic_method_codes" not in rec.keys(): rec["magic_method_codes"] = '' # # start parsing data into SpecDirs, SpecPlanes, SpecInts SpecInts, SpecDirs, SpecPlanes = [], [], [] samples.sort() # get sorted list of samples and sites sites.sort() if noInt == 0: # don't skip intensities IntData = pmag.get_dictitem( Data, 'specimen_int', '', 'F') # retrieve specimens with intensity data if nocrit == 0: # use selection criteria for rec in IntData: # do selection criteria kill = pmag.grade(rec, accept, 'specimen_int') if len(kill) == 0: SpecInts.append( rec ) # intensity record to be included in sample, site calculations else: SpecInts = IntData[:] # take everything - no selection criteria # check for required data adjustments if len(corrections) > 0 and len(SpecInts) > 0: for cor in corrections: SpecInts = pmag.get_dictitem( SpecInts, 'magic_method_codes', cor, 'has') # only take specimens with the required corrections if len(nocorrection) > 0 and len(SpecInts) > 0: for cor in nocorrection: SpecInts = pmag.get_dictitem( SpecInts, 'magic_method_codes', cor, 'not' ) # exclude the corrections not specified for inclusion # take top priority specimen of its name in remaining specimens (only one per customer) PrioritySpecInts = [] specimens = pmag.get_specs(SpecInts) # get list of uniq specimen names for spec in specimens: ThisSpecRecs = pmag.get_dictitem( SpecInts, 'er_specimen_name', spec, 'T') # all the records for this specimen if len(ThisSpecRecs) == 1: PrioritySpecInts.append(ThisSpecRecs[0]) elif len(ThisSpecRecs) > 1: # more than one prec = [] for p in priorities: ThisSpecRecs = pmag.get_dictitem( SpecInts, 'magic_method_codes', p, 'has') # all the records for this specimen if len(ThisSpecRecs) > 0: prec.append(ThisSpecRecs[0]) PrioritySpecInts.append(prec[0]) # take the best one SpecInts = PrioritySpecInts # this has the first specimen record if noDir == 0: # don't skip directions AllDirs = pmag.get_dictitem( Data, 'specimen_direction_type', '', 'F') # retrieve specimens with directed lines and planes Ns = pmag.get_dictitem( AllDirs, 'specimen_n', '', 'F') # get all specimens with specimen_n information if nocrit != 1: # use selection criteria for rec in Ns: # look through everything with specimen_n for "good" data kill = pmag.grade(rec, accept, 'specimen_dir') if len(kill) == 0: # nothing killed it SpecDirs.append(rec) else: # no criteria SpecDirs = AllDirs[:] # take them all # SpecDirs is now the list of all specimen directions (lines and planes) that pass muster # PmagSamps, SampDirs = [], [ ] # list of all sample data and list of those that pass the DE-SAMP criteria PmagSites, PmagResults = [], [ ] # list of all site data and selected results SampInts = [] for samp in samples: # run through the sample names if Daverage == 1: # average by sample if desired SampDir = pmag.get_dictitem( SpecDirs, 'er_sample_name', samp, 'T') # get all the directional data for this sample if len(SampDir) > 0: # there are some directions for coord in coords: # step through desired coordinate systems CoordDir = pmag.get_dictitem( SampDir, 'specimen_tilt_correction', coord, 'T') # get all the directions for this sample if len(CoordDir ) > 0: # there are some with this coordinate system if Caverage == 0: # look component by component for comp in Comps: CompDir = pmag.get_dictitem( CoordDir, 'specimen_comp_name', comp, 'T' ) # get all directions from this component if len(CompDir) > 0: # there are some PmagSampRec = pmag.lnpbykey( CompDir, 'sample', 'specimen' ) # get a sample average from all specimens PmagSampRec["er_location_name"] = CompDir[0][ 'er_location_name'] # decorate the sample record PmagSampRec["er_site_name"] = CompDir[0][ 'er_site_name'] PmagSampRec["er_sample_name"] = samp PmagSampRec[ "er_citation_names"] = "This study" PmagSampRec["er_analyst_mail_names"] = user PmagSampRec[ 'magic_software_packages'] = version_num if nocrit != 1: PmagSampRec[ 'pmag_criteria_codes'] = "ACCEPT" if agefile != "": PmagSampRec = pmag.get_age( PmagSampRec, "er_site_name", "sample_inferred_", AgeNFO, DefaultAge) site_height = pmag.get_dictitem( height_nfo, 'er_site_name', PmagSampRec['er_site_name'], 'T') if len(site_height) > 0: PmagSampRec[ "sample_height"] = site_height[0][ 'site_height'] # add in height if available PmagSampRec['sample_comp_name'] = comp PmagSampRec[ 'sample_tilt_correction'] = coord PmagSampRec[ 'er_specimen_names'] = pmag.get_list( CompDir, 'er_specimen_name' ) # get a list of the specimen names used PmagSampRec[ 'magic_method_codes'] = pmag.get_list( CompDir, 'magic_method_codes' ) # get a list of the methods used if nocrit != 1: # apply selection criteria kill = pmag.grade( PmagSampRec, accept, 'sample_dir') else: kill = [] if len(kill) == 0: SampDirs.append(PmagSampRec) if vgps == 1: # if sample level VGP info desired, do that now PmagResRec = pmag.getsampVGP( PmagSampRec, SiteNFO) if PmagResRec != "": PmagResults.append(PmagResRec) PmagSamps.append(PmagSampRec) if Caverage == 1: # average all components together basically same as above PmagSampRec = pmag.lnpbykey( CoordDir, 'sample', 'specimen') PmagSampRec["er_location_name"] = CoordDir[0][ 'er_location_name'] PmagSampRec["er_site_name"] = CoordDir[0][ 'er_site_name'] PmagSampRec["er_sample_name"] = samp PmagSampRec["er_citation_names"] = "This study" PmagSampRec["er_analyst_mail_names"] = user PmagSampRec[ 'magic_software_packages'] = version_num if nocrit != 1: PmagSampRec['pmag_criteria_codes'] = "" if agefile != "": PmagSampRec = pmag.get_age( PmagSampRec, "er_site_name", "sample_inferred_", AgeNFO, DefaultAge) site_height = pmag.get_dictitem( height_nfo, 'er_site_name', site, 'T') if len(site_height) > 0: PmagSampRec["sample_height"] = site_height[0][ 'site_height'] # add in height if available PmagSampRec['sample_tilt_correction'] = coord PmagSampRec['sample_comp_name'] = pmag.get_list( CoordDir, 'specimen_comp_name') # get components used PmagSampRec['er_specimen_names'] = pmag.get_list( CoordDir, 'er_specimen_name' ) # get specimne names averaged PmagSampRec['magic_method_codes'] = pmag.get_list( CoordDir, 'magic_method_codes') # assemble method codes if nocrit != 1: # apply selection criteria kill = pmag.grade(PmagSampRec, accept, 'sample_dir') if len(kill) == 0: # passes the mustard SampDirs.append(PmagSampRec) if vgps == 1: PmagResRec = pmag.getsampVGP( PmagSampRec, SiteNFO) if PmagResRec != "": PmagResults.append(PmagResRec) else: # take everything SampDirs.append(PmagSampRec) if vgps == 1: PmagResRec = pmag.getsampVGP( PmagSampRec, SiteNFO) if PmagResRec != "": PmagResults.append(PmagResRec) PmagSamps.append(PmagSampRec) if Iaverage == 1: # average by sample if desired SampI = pmag.get_dictitem( SpecInts, 'er_sample_name', samp, 'T') # get all the intensity data for this sample if len(SampI) > 0: # there are some PmagSampRec = pmag.average_int( SampI, 'specimen', 'sample') # get average intensity stuff PmagSampRec[ "sample_description"] = "sample intensity" # decorate sample record PmagSampRec["sample_direction_type"] = "" PmagSampRec['er_site_name'] = SampI[0]["er_site_name"] PmagSampRec['er_sample_name'] = samp PmagSampRec['er_location_name'] = SampI[0]["er_location_name"] PmagSampRec["er_citation_names"] = "This study" PmagSampRec["er_analyst_mail_names"] = user if agefile != "": PmagSampRec = pmag.get_age(PmagSampRec, "er_site_name", "sample_inferred_", AgeNFO, DefaultAge) site_height = pmag.get_dictitem(height_nfo, 'er_site_name', PmagSampRec['er_site_name'], 'T') if len(site_height) > 0: PmagSampRec["sample_height"] = site_height[0][ 'site_height'] # add in height if available PmagSampRec['er_specimen_names'] = pmag.get_list( SampI, 'er_specimen_name') PmagSampRec['magic_method_codes'] = pmag.get_list( SampI, 'magic_method_codes') if nocrit != 1: # apply criteria! kill = pmag.grade(PmagSampRec, accept, 'sample_int') if len(kill) == 0: PmagSampRec['pmag_criteria_codes'] = "ACCEPT" SampInts.append(PmagSampRec) PmagSamps.append(PmagSampRec) else: PmagSampRec = {} # sample rejected else: # no criteria SampInts.append(PmagSampRec) PmagSamps.append(PmagSampRec) PmagSampRec['pmag_criteria_codes'] = "" if vgps == 1 and get_model_lat != 0 and PmagSampRec != {}: # if get_model_lat == 1: # use sample latitude PmagResRec = pmag.getsampVDM(PmagSampRec, SampNFO) del (PmagResRec['model_lat'] ) # get rid of the model lat key elif get_model_lat == 2: # use model latitude PmagResRec = pmag.getsampVDM(PmagSampRec, ModelLats) if PmagResRec != {}: PmagResRec['magic_method_codes'] = PmagResRec[ 'magic_method_codes'] + ":IE-MLAT" if PmagResRec != {}: PmagResRec['er_specimen_names'] = PmagSampRec[ 'er_specimen_names'] PmagResRec['er_sample_names'] = PmagSampRec[ 'er_sample_name'] PmagResRec['pmag_criteria_codes'] = 'ACCEPT' PmagResRec['average_int_sigma_perc'] = PmagSampRec[ 'sample_int_sigma_perc'] PmagResRec['average_int_sigma'] = PmagSampRec[ 'sample_int_sigma'] PmagResRec['average_int_n'] = PmagSampRec[ 'sample_int_n'] PmagResRec['vadm_n'] = PmagSampRec['sample_int_n'] PmagResRec['data_type'] = 'i' PmagResults.append(PmagResRec) if len(PmagSamps) > 0: TmpSamps, keylist = pmag.fillkeys( PmagSamps) # fill in missing keys from different types of records pmag.magic_write(sampout, TmpSamps, 'pmag_samples') # save in sample output file print ' sample averages written to ', sampout # #create site averages from specimens or samples as specified # for site in sites: if Daverage == 0: key, dirlist = 'specimen', SpecDirs # if specimen averages at site level desired if Daverage == 1: key, dirlist = 'sample', SampDirs # if sample averages at site level desired tmp = pmag.get_dictitem(dirlist, 'er_site_name', site, 'T') # get all the sites with directions tmp1 = pmag.get_dictitem( tmp, key + '_tilt_correction', coords[-1], 'T') # use only the last coordinate if Caverage==0 sd = pmag.get_dictitem( SiteNFO, 'er_site_name', site, 'T') # fish out site information (lat/lon, etc.) if len(sd) > 0: sitedat = sd[0] if Caverage == 0: # do component wise averaging for comp in Comps: siteD = pmag.get_dictitem(tmp1, key + '_comp_name', comp, 'T') # get all components comp if len( siteD ) > 0: # there are some for this site and component name PmagSiteRec = pmag.lnpbykey( siteD, 'site', key) # get an average for this site PmagSiteRec[ 'site_comp_name'] = comp # decorate the site record PmagSiteRec["er_location_name"] = siteD[0][ 'er_location_name'] PmagSiteRec["er_site_name"] = siteD[0]['er_site_name'] PmagSiteRec['site_tilt_correction'] = coords[-1] PmagSiteRec['site_comp_name'] = pmag.get_list( siteD, key + '_comp_name') if Daverage == 1: PmagSiteRec['er_sample_names'] = pmag.get_list( siteD, 'er_sample_name') else: PmagSiteRec['er_specimen_names'] = pmag.get_list( siteD, 'er_specimen_name') # determine the demagnetization code (DC3,4 or 5) for this site AFnum = len( pmag.get_dictitem(siteD, 'magic_method_codes', 'LP-DIR-AF', 'has')) Tnum = len( pmag.get_dictitem(siteD, 'magic_method_codes', 'LP-DIR-T', 'has')) DC = 3 if AFnum > 0: DC += 1 if Tnum > 0: DC += 1 PmagSiteRec['magic_method_codes'] = pmag.get_list( siteD, 'magic_method_codes') + ':' + 'LP-DC' + str(DC) PmagSiteRec['magic_method_codes'].strip(":") if plotsites == 1: print PmagSiteRec['er_site_name'] pmagplotlib.plotSITE(EQ['eqarea'], PmagSiteRec, siteD, key) # plot and list the data pmagplotlib.drawFIGS(EQ) PmagSites.append(PmagSiteRec) else: # last component only siteD = tmp1[:] # get the last orientation system specified if len(siteD) > 0: # there are some PmagSiteRec = pmag.lnpbykey( siteD, 'site', key) # get the average for this site PmagSiteRec["er_location_name"] = siteD[0][ 'er_location_name'] # decorate the record PmagSiteRec["er_site_name"] = siteD[0]['er_site_name'] PmagSiteRec['site_comp_name'] = comp PmagSiteRec['site_tilt_correction'] = coords[-1] PmagSiteRec['site_comp_name'] = pmag.get_list( siteD, key + '_comp_name') PmagSiteRec['er_specimen_names'] = pmag.get_list( siteD, 'er_specimen_name') PmagSiteRec['er_sample_names'] = pmag.get_list( siteD, 'er_sample_name') AFnum = len( pmag.get_dictitem(siteD, 'magic_method_codes', 'LP-DIR-AF', 'has')) Tnum = len( pmag.get_dictitem(siteD, 'magic_method_codes', 'LP-DIR-T', 'has')) DC = 3 if AFnum > 0: DC += 1 if Tnum > 0: DC += 1 PmagSiteRec['magic_method_codes'] = pmag.get_list( siteD, 'magic_method_codes') + ':' + 'LP-DC' + str(DC) PmagSiteRec['magic_method_codes'].strip(":") if Daverage == 0: PmagSiteRec['site_comp_name'] = pmag.get_list( siteD, key + '_comp_name') if plotsites == 1: pmagplotlib.plotSITE(EQ['eqarea'], PmagSiteRec, siteD, key) pmagplotlib.drawFIGS(EQ) PmagSites.append(PmagSiteRec) else: print 'site information not found in er_sites for site, ', site, ' site will be skipped' for PmagSiteRec in PmagSites: # now decorate each dictionary some more, and calculate VGPs etc. for results table PmagSiteRec["er_citation_names"] = "This study" PmagSiteRec["er_analyst_mail_names"] = user PmagSiteRec['magic_software_packages'] = version_num if agefile != "": PmagSiteRec = pmag.get_age(PmagSiteRec, "er_site_name", "site_inferred_", AgeNFO, DefaultAge) PmagSiteRec['pmag_criteria_codes'] = 'ACCEPT' if 'site_n_lines' in PmagSiteRec.keys( ) and 'site_n_planes' in PmagSiteRec.keys() and PmagSiteRec[ 'site_n_lines'] != "" and PmagSiteRec['site_n_planes'] != "": if int(PmagSiteRec["site_n_planes"]) > 0: PmagSiteRec["magic_method_codes"] = PmagSiteRec[ 'magic_method_codes'] + ":DE-FM-LP" elif int(PmagSiteRec["site_n_lines"]) > 2: PmagSiteRec["magic_method_codes"] = PmagSiteRec[ 'magic_method_codes'] + ":DE-FM" kill = pmag.grade(PmagSiteRec, accept, 'site_dir') if len(kill) == 0: PmagResRec = { } # set up dictionary for the pmag_results table entry PmagResRec['data_type'] = 'i' # decorate it a bit PmagResRec['magic_software_packages'] = version_num PmagSiteRec[ 'site_description'] = 'Site direction included in results table' PmagResRec['pmag_criteria_codes'] = 'ACCEPT' dec = float(PmagSiteRec["site_dec"]) inc = float(PmagSiteRec["site_inc"]) if 'site_alpha95' in PmagSiteRec.keys( ) and PmagSiteRec['site_alpha95'] != "": a95 = float(PmagSiteRec["site_alpha95"]) else: a95 = 180. sitedat = pmag.get_dictitem( SiteNFO, 'er_site_name', PmagSiteRec['er_site_name'], 'T')[0] # fish out site information (lat/lon, etc.) lat = float(sitedat['site_lat']) lon = float(sitedat['site_lon']) plong, plat, dp, dm = pmag.dia_vgp( dec, inc, a95, lat, lon) # get the VGP for this site if PmagSiteRec['site_tilt_correction'] == '-1': C = ' (spec coord) ' if PmagSiteRec['site_tilt_correction'] == '0': C = ' (geog. coord) ' if PmagSiteRec['site_tilt_correction'] == '100': C = ' (strat. coord) ' PmagResRec["pmag_result_name"] = "VGP Site: " + PmagSiteRec[ "er_site_name"] # decorate some more PmagResRec[ "result_description"] = "Site VGP, coord system = " + str( coord) + ' component: ' + comp PmagResRec['er_site_names'] = PmagSiteRec['er_site_name'] PmagResRec['pmag_criteria_codes'] = 'ACCEPT' PmagResRec['er_citation_names'] = 'This study' PmagResRec['er_analyst_mail_names'] = user PmagResRec["er_location_names"] = PmagSiteRec[ "er_location_name"] if Daverage == 1: PmagResRec["er_sample_names"] = PmagSiteRec[ "er_sample_names"] else: PmagResRec["er_specimen_names"] = PmagSiteRec[ "er_specimen_names"] PmagResRec["tilt_correction"] = PmagSiteRec[ 'site_tilt_correction'] PmagResRec["pole_comp_name"] = PmagSiteRec['site_comp_name'] PmagResRec["average_dec"] = PmagSiteRec["site_dec"] PmagResRec["average_inc"] = PmagSiteRec["site_inc"] PmagResRec["average_alpha95"] = PmagSiteRec["site_alpha95"] PmagResRec["average_n"] = PmagSiteRec["site_n"] PmagResRec["average_n_lines"] = PmagSiteRec["site_n_lines"] PmagResRec["average_n_planes"] = PmagSiteRec["site_n_planes"] PmagResRec["vgp_n"] = PmagSiteRec["site_n"] PmagResRec["average_k"] = PmagSiteRec["site_k"] PmagResRec["average_r"] = PmagSiteRec["site_r"] PmagResRec["average_lat"] = '%10.4f ' % (lat) PmagResRec["average_lon"] = '%10.4f ' % (lon) if agefile != "": PmagResRec = pmag.get_age(PmagResRec, "er_site_names", "average_", AgeNFO, DefaultAge) site_height = pmag.get_dictitem(height_nfo, 'er_site_name', site, 'T') if len(site_height) > 0: PmagResRec["average_height"] = site_height[0][ 'site_height'] PmagResRec["vgp_lat"] = '%7.1f ' % (plat) PmagResRec["vgp_lon"] = '%7.1f ' % (plong) PmagResRec["vgp_dp"] = '%7.1f ' % (dp) PmagResRec["vgp_dm"] = '%7.1f ' % (dm) PmagResRec["magic_method_codes"] = PmagSiteRec[ "magic_method_codes"] if PmagSiteRec['site_tilt_correction'] == '0': PmagSiteRec['magic_method_codes'] = PmagSiteRec[ 'magic_method_codes'] + ":DA-DIR-GEO" if PmagSiteRec['site_tilt_correction'] == '100': PmagSiteRec['magic_method_codes'] = PmagSiteRec[ 'magic_method_codes'] + ":DA-DIR-TILT" PmagSiteRec['site_polarity'] = "" if polarity == 1: # assign polarity based on angle of pole lat to spin axis - may want to re-think this sometime angle = pmag.angle([0, 0], [0, (90 - plat)]) if angle <= 55.: PmagSiteRec["site_polarity"] = 'n' if angle > 55. and angle < 125.: PmagSiteRec["site_polarity"] = 't' if angle >= 125.: PmagSiteRec["site_polarity"] = 'r' PmagResults.append(PmagResRec) if polarity == 1: crecs = pmag.get_dictitem(PmagSites, 'site_tilt_correction', '100', 'T') # find the tilt corrected data if len(crecs) < 2: crecs = pmag.get_dictitem( PmagSites, 'site_tilt_correction', '0', 'T') # if there aren't any, find the geographic corrected data if len(crecs) > 2: # if there are some, comp = pmag.get_list( crecs, 'site_comp_name').split(':')[0] # find the first component crecs = pmag.get_dictitem( crecs, 'site_comp_name', comp, 'T') # fish out all of the first component precs = [] for rec in crecs: precs.append({ 'dec': rec['site_dec'], 'inc': rec['site_inc'], 'name': rec['er_site_name'], 'loc': rec['er_location_name'] }) polpars = pmag.fisher_by_pol( precs) # calculate average by polarity for mode in polpars.keys( ): # hunt through all the modes (normal=A, reverse=B, all=ALL) PolRes = {} PolRes['er_citation_names'] = 'This study' PolRes[ "pmag_result_name"] = "Polarity Average: Polarity " + mode # PolRes["data_type"] = "a" PolRes["average_dec"] = '%7.1f' % (polpars[mode]['dec']) PolRes["average_inc"] = '%7.1f' % (polpars[mode]['inc']) PolRes["average_n"] = '%i' % (polpars[mode]['n']) PolRes["average_r"] = '%5.4f' % (polpars[mode]['r']) PolRes["average_k"] = '%6.0f' % (polpars[mode]['k']) PolRes["average_alpha95"] = '%7.1f' % ( polpars[mode]['alpha95']) PolRes['er_site_names'] = polpars[mode]['sites'] PolRes['er_location_names'] = polpars[mode]['locs'] PolRes['magic_software_packages'] = version_num PmagResults.append(PolRes) if noInt != 1 and nositeints != 1: for site in sites: # now do intensities for each site if plotsites == 1: print site if Iaverage == 0: key, intlist = 'specimen', SpecInts # if using specimen level data if Iaverage == 1: key, intlist = 'sample', PmagSamps # if using sample level data Ints = pmag.get_dictitem( intlist, 'er_site_name', site, 'T') # get all the intensities for this site if len(Ints) > 0: # there are some PmagSiteRec = pmag.average_int( Ints, key, 'site') # get average intensity stuff for site table PmagResRec = pmag.average_int( Ints, key, 'average') # get average intensity stuff for results table if plotsites == 1: # if site by site examination requested - print this site out to the screen for rec in Ints: print rec['er_' + key + '_name'], ' %7.1f' % ( 1e6 * float(rec[key + '_int'])) if len(Ints) > 1: print 'Average: ', '%7.1f' % (1e6 * float( PmagResRec['average_int'])), 'N: ', len(Ints) print 'Sigma: ', '%7.1f' % ( 1e6 * float(PmagResRec['average_int_sigma']) ), 'Sigma %: ', PmagResRec['average_int_sigma_perc'] raw_input('Press any key to continue\n') er_location_name = Ints[0]["er_location_name"] PmagSiteRec[ "er_location_name"] = er_location_name # decorate the records PmagSiteRec["er_citation_names"] = "This study" PmagResRec["er_location_names"] = er_location_name PmagResRec["er_citation_names"] = "This study" PmagSiteRec["er_analyst_mail_names"] = user PmagResRec["er_analyst_mail_names"] = user PmagResRec["data_type"] = 'i' if Iaverage == 0: PmagSiteRec['er_specimen_names'] = pmag.get_list( Ints, 'er_specimen_name') # list of all specimens used PmagResRec['er_specimen_names'] = pmag.get_list( Ints, 'er_specimen_name') PmagSiteRec['er_sample_names'] = pmag.get_list( Ints, 'er_sample_name') # list of all samples used PmagResRec['er_sample_names'] = pmag.get_list( Ints, 'er_sample_name') PmagSiteRec['er_site_name'] = site PmagResRec['er_site_names'] = site PmagSiteRec['magic_method_codes'] = pmag.get_list( Ints, 'magic_method_codes') PmagResRec['magic_method_codes'] = pmag.get_list( Ints, 'magic_method_codes') kill = pmag.grade(PmagSiteRec, accept, 'site_int') if nocrit == 1 or len(kill) == 0: b, sig = float(PmagResRec['average_int']), "" if (PmagResRec['average_int_sigma']) != "": sig = float(PmagResRec['average_int_sigma']) sdir = pmag.get_dictitem(PmagResults, 'er_site_names', site, 'T') # fish out site direction if len(sdir) > 0 and sdir[-1][ 'average_inc'] != "": # get the VDM for this record using last average inclination (hope it is the right one!) inc = float(sdir[0]['average_inc']) # mlat = pmag.magnetic_lat( inc) # get magnetic latitude using dipole formula PmagResRec["vdm"] = '%8.3e ' % (pmag.b_vdm( b, mlat)) # get VDM with magnetic latitude PmagResRec["vdm_n"] = PmagResRec['average_int_n'] if 'average_int_sigma' in PmagResRec.keys( ) and PmagResRec['average_int_sigma'] != "": vdm_sig = pmag.b_vdm( float(PmagResRec['average_int_sigma']), mlat) PmagResRec["vdm_sigma"] = '%8.3e ' % (vdm_sig) else: PmagResRec["vdm_sigma"] = "" mlat = "" # define a model latitude if get_model_lat == 1: # use present site latitude mlats = pmag.get_dictitem(SiteNFO, 'er_site_name', site, 'T') if len(mlats) > 0: mlat = mlats[0]['site_lat'] elif get_model_lat == 2: # use a model latitude from some plate reconstruction model (or something) mlats = pmag.get_dictitem(ModelLats, 'er_site_name', site, 'T') if len(mlats) > 0: PmagResRec['model_lat'] = mlats[0][ 'site_model_lat'] mlat = PmagResRec['model_lat'] if mlat != "": PmagResRec["vadm"] = '%8.3e ' % ( pmag.b_vdm(b, float(mlat)) ) # get the VADM using the desired latitude if sig != "": vdm_sig = pmag.b_vdm( float(PmagResRec['average_int_sigma']), float(mlat)) PmagResRec["vadm_sigma"] = '%8.3e ' % (vdm_sig) PmagResRec["vadm_n"] = PmagResRec['average_int_n'] else: PmagResRec["vadm_sigma"] = "" sitedat = pmag.get_dictitem( SiteNFO, 'er_site_name', PmagSiteRec['er_site_name'], 'T') # fish out site information (lat/lon, etc.) if len(sitedat) > 0: sitedat = sitedat[0] PmagResRec['average_lat'] = sitedat['site_lat'] PmagResRec['average_lon'] = sitedat['site_lon'] else: PmagResRec['average_lon'] = 'UNKNOWN' PmagResRec['average_lon'] = 'UNKNOWN' PmagResRec['magic_software_packages'] = version_num PmagResRec["pmag_result_name"] = "V[A]DM: Site " + site PmagResRec["result_description"] = "V[A]DM of site" PmagResRec["pmag_criteria_codes"] = "ACCEPT" if agefile != "": PmagResRec = pmag.get_age(PmagResRec, "er_site_names", "average_", AgeNFO, DefaultAge) site_height = pmag.get_dictitem(height_nfo, 'er_site_name', site, 'T') if len(site_height) > 0: PmagResRec["average_height"] = site_height[0][ 'site_height'] PmagSites.append(PmagSiteRec) PmagResults.append(PmagResRec) if len(PmagSites) > 0: Tmp, keylist = pmag.fillkeys(PmagSites) pmag.magic_write(siteout, Tmp, 'pmag_sites') print ' sites written to ', siteout else: print "No Site level table" if len(PmagResults) > 0: TmpRes, keylist = pmag.fillkeys(PmagResults) pmag.magic_write(resout, TmpRes, 'pmag_results') print ' results written to ', resout else: print "No Results level table"
def main(): """ NAME thellier_magic.py DESCRIPTION plots Thellier-Thellier data in version 3.0 format Reads saved interpretations from a specimen formatted table, default: specimens.txt SYNTAX thellier_magic.py [command line options] OPTIONS -h prints help message and quits -f MEAS, set measurements input file, default is 'measurements.txt' -fsp PRIOR, set specimens.txt prior interpretations file, default is 'specimens.txt' -fcr CRIT, set criteria file for grading. # not yet implemented -fmt [svg,png,jpg], format for images - default is svg -sav, saves plots with out review (in format specified by -fmt key or default) -spc SPEC, plots single specimen SPEC, saves plot with specified format with optional -b bounds and quits -b BEG END: sets bounds for calculation BEG: starting step number for slope calculation END: ending step number for slope calculation -z use only z component difference for pTRM calculation OUTPUT figures: ALL: numbers refer to temperature steps in command line window 1) Arai plot: closed circles are zero-field first/infield open circles are infield first/zero-field triangles are pTRM checks squares are pTRM tail checks VDS is vector difference sum diamonds are bounds for interpretation 2) Zijderveld plot: closed (open) symbols are X-Y (X-Z) planes X rotated to NRM direction 3) (De/Re)Magnetization diagram: circles are NRM remaining squares are pTRM gained 4) equal area projections: green triangles are pTRM gained direction red (purple) circles are lower(upper) hemisphere of ZI step directions blue (cyan) squares are lower(upper) hemisphere IZ step directions 5) Optional: TRM acquisition 6) Optional: TDS normalization command line window: list is: temperature step numbers, temperatures (C), Dec, Inc, Int (units of measuements) list of possible commands: type letter followed by return to select option saving of plots creates image files with specimen, plot type as name """ # # initializations # version_num=pmag.get_version() verbose=pmagplotlib.verbose # # default acceptance criteria # accept=pmag.default_criteria(0)[0] # set the default criteria # # parse command line options # plots,fmt,Zdiff=0,'svg',0 if '-h' in sys.argv: print(main.__doc__) sys.exit() dir_path = pmag.get_named_arg_from_sys("-WD", default_val=os.getcwd()) meas_file = pmag.get_named_arg_from_sys("-f", default_val="measurements.txt") spec_file=pmag.get_named_arg_from_sys("-fsp", default_val="specimens.txt") crit_file=pmag.get_named_arg_from_sys("-fcr", default_val="criteria.txt") spec_file=os.path.join(dir_path,spec_file) meas_file=os.path.join(dir_path,meas_file) crit_file=os.path.join(dir_path,crit_file) fmt = pmag.get_named_arg_from_sys("-fmt", "svg") if '-sav' in sys.argv: plots,verbose=1,0 if '-z' in sys.argv: Zdiff=1 specimen=pmag.get_named_arg_from_sys("-spc",default_val="") if '-b' in sys.argv: ind=sys.argv.index('-b') start=int(sys.argv[ind+1]) end=int(sys.argv[ind+2]) else: start,end="","" fnames = {'measurements': meas_file, 'specimens': spec_file, 'criteria': crit_file} contribution = nb.Contribution(dir_path, custom_filenames=fnames, read_tables=['measurements', 'specimens', 'criteria']) # # import prior interpretations from specimen file # specimen_cols = ['analysts', 'aniso_ftest', 'aniso_ftest12', 'aniso_ftest23', 'aniso_s', 'aniso_s_mean', 'aniso_s_n_measurements', 'aniso_s_sigma', 'aniso_s_unit', 'aniso_tilt_correction', 'aniso_type', 'aniso_v1', 'aniso_v2', 'aniso_v3', 'citations', 'description', 'dir_alpha95', 'dir_comp', 'dir_dec', 'dir_inc', 'dir_mad_free', 'dir_n_measurements', 'dir_tilt_correction', 'experiments', 'geologic_classes', 'geologic_types', 'hyst_bc', 'hyst_bcr', 'hyst_mr_moment', 'hyst_ms_moment', 'int_abs', 'int_b', 'int_b_beta', 'int_b_sigma', 'int_corr', 'int_dang', 'int_drats', 'int_f', 'int_fvds', 'int_gamma', 'int_mad_free', 'int_md', 'int_n_measurements', 'int_n_ptrm', 'int_q', 'int_rsc', 'int_treat_dc_field', 'lithologies', 'meas_step_max', 'meas_step_min', 'meas_step_unit', 'method_codes', 'sample', 'software_packages', 'specimen'] if 'specimens' in contribution.tables: spec_container = contribution.tables['specimens'] prior_spec_data=spec_container.get_records_for_code('LP-PI-TRM',strict_match=False) # look up all prior intensity interpretations else: spec_container, prior_spec_data = None, [] backup=0 # Mkeys = ['magn_moment', 'magn_volume', 'magn_mass'] # # create measurement dataframe # meas_container = contribution.tables['measurements'] meas_data = meas_container.df # meas_data['method_codes']=meas_data['method_codes'].str.replace(" ","") # get rid of nasty spaces meas_data= meas_data[meas_data['method_codes'].str.contains('LP-PI-TRM|LP-TRM|LP-TRM-TD')==True] # fish out zero field steps for plotting intensity_types = [col_name for col_name in meas_data.columns if col_name in Mkeys] int_key = intensity_types[0] # plot first intensity method found - normalized to initial value anyway - doesn't matter which used meas_data = meas_data[meas_data[int_key].notnull()] # get all the non-null intensity records of the same type if 'flag' not in meas_data.columns: meas_data['flag'] = 'g' # set the default flag to good meas_data = meas_data[meas_data['flag'].str.contains('g')==True] # only the 'good' measurements thel_data = meas_data[meas_data['method_codes'].str.contains('LP-PI-TRM')==True] # get all the Thellier data trm_data = meas_data[meas_data['method_codes'].str.contains('LP-TRM')==True] # get all the TRM acquisition data td_data = meas_data[meas_data['method_codes'].str.contains('LP-TRM-TD')==True] # get all the TD data anis_data = meas_data[meas_data['method_codes'].str.contains('LP-AN')==True] # get all the anisotropy data # # get list of unique specimen names from measurement data # specimen_names= meas_data.specimen.unique() # this is a Series of all the specimen names specimen_names= specimen_names.tolist() # turns it into a list specimen_names.sort() # sorts by specimen name # # set up new DataFrame for this sessions specimen interpretations # spec_container = nb.MagicDataFrame(dtype='specimens', columns=specimen_cols) current_spec_data = spec_container.df # this is for interpretations from this session if specimen=="": # do all specimens k = 0 else: k=specimen_names.index(specimen) # just do this one # define figure numbers for arai, zijderveld and # de-,re-magnetization diagrams AZD={} AZD['deremag'], AZD['zijd'],AZD['arai'],AZD['eqarea']=1,2,3,4 pmagplotlib.plot_init(AZD['arai'],5,5) pmagplotlib.plot_init(AZD['zijd'],5,5) pmagplotlib.plot_init(AZD['deremag'],5,5) pmagplotlib.plot_init(AZD['eqarea'],5,5) if len(trm_data)>0: AZD['TRM']=5 pmagplotlib.plot_init(AZD['TRM'],5,5) if len(td_data)>0: AZD['TDS']=6 pmagplotlib.plot_init(AZD['TDS'],5,5) # while k < len(specimen_names): this_specimen=specimen_names[k] # set the current specimen for plotting if verbose and this_specimen!="":print(this_specimen, k+1 , 'out of ',len(specimen_names)) # # set up datablocks # thelblock= thel_data[thel_data['specimen'].str.contains(this_specimen)==True] # fish out this specimen trmblock= trm_data[trm_data['specimen'].str.contains(this_specimen)==True] # fish out this specimen tdsrecs= td_data[td_data['specimen'].str.contains(this_specimen)==True] # fish out this specimen anisblock= anis_data[anis_data['specimen'].str.contains(this_specimen)==True] # fish out the anisotropy data prior_specimen_interpretations= prior_spec_data[prior_spec_data['specimen'].str.contains(this_specimen)==True] # fish out prior interpretation # # sort data into types # araiblock,field=pmag.sortarai(thelblock,this_specimen,Zdiff,version=3) first_Z=araiblock[0] GammaChecks=araiblock[5] if len(first_Z)<3: if backup==0: k+=1 if verbose: print('skipping specimen - moving forward ', this_specimen) else: k-=1 if verbose: print('skipping specimen - moving backward ', this_specimen) else: backup=0 zijdblock,units=pmag.find_dmag_rec(this_specimen,thelblock,version=3) if start=="" and len(prior_specimen_interpretations)>0: if verbose: print('Looking up saved interpretation....') # # get prior interpretation steps # beg_int=pd.to_numeric(prior_specimen_interpretations.meas_step_min.values).tolist()[0] end_int=pd.to_numeric(prior_specimen_interpretations.meas_step_max.values).tolist()[0] else: beg_int,end_int="","" recnum=0 if verbose: print("index step Dec Inc Int Gamma") for plotrec in zijdblock: if plotrec[0]==beg_int:start=recnum # while we are at it, collect these bounds if plotrec[0]==end_int:end=recnum if verbose: if GammaChecks!="": gamma="" for g in GammaChecks: if g[0]==plotrec[0]-273: gamma=g[1] break if gamma!="": print('%i %i %7.1f %7.1f %8.3e %7.1f' % (recnum,plotrec[0]-273,plotrec[1],plotrec[2],plotrec[3],gamma)) else: print('%i %i %7.1f %7.1f %8.3e ' % (recnum,plotrec[0]-273,plotrec[1],plotrec[2],plotrec[3])) recnum += 1 for fig in list(AZD.keys()):pmagplotlib.clearFIG(AZD[fig]) # clear all figures pmagplotlib.plotAZ(AZD,araiblock,zijdblock,this_specimen,units[0]) if verbose:pmagplotlib.drawFIGS(AZD) pars,errcode=pmag.PintPars(thelblock,araiblock,zijdblock,start,end,accept,version=3) pars['measurement_step_unit']="K" pars['experiment_type']='LP-PI-TRM' # # work on saving interpretations stuff later # if errcode!=1: # no problem in PintPars pars["specimen_lab_field_dc"]=field pars["specimen_int"]=-1*field*pars["specimen_b"] pars["er_specimen_name"]=this_specimen #pars,kill=pmag.scoreit(pars,this_specimen_interpretation,accept,'',verbose) # deal with this later pars["specimen_grade"]='None' pars['measurement_step_min']=pars['meas_step_min'] pars['measurement_step_max']=pars['meas_step_max'] if pars['measurement_step_unit']=='K': outstr= "specimen Tmin Tmax N lab_field B_anc b q f(coe) Fvds beta MAD Dang Drats Nptrm Grade R MD% sigma Gamma_max \n" pars_out= (this_specimen,(pars["meas_step_min"]-273),(pars["meas_step_max"]-273),(pars["specimen_int_n"]),1e6*(pars["specimen_lab_field_dc"]),1e6*(pars["specimen_int"]),pars["specimen_b"],pars["specimen_q"],pars["specimen_f"],pars["specimen_fvds"],pars["specimen_b_beta"],pars["int_mad_free"],pars["int_dang"],pars["int_drats"],pars["int_n_ptrm"],pars["specimen_grade"],np.sqrt(pars["specimen_rsc"]),int(pars["int_md"]), pars["specimen_b_sigma"],pars['specimen_gamma']) outstring= '%s %4.0f %4.0f %i %4.1f %4.1f %5.3f %5.1f %5.3f %5.3f %5.3f %7.1f %7.1f %7.1f %s %s %6.3f %i %5.3f %7.1f' % pars_out +'\n' elif pars['measurement_step_unit']=='J': outstr= "specimen Wmin Wmax N lab_field B_anc b q f(coe) Fvds beta MAD Dang Drats Nptrm Grade R MD% sigma ThetaMax DeltaMax GammaMax\n" pars_out= (this_specimen,(pars["meas_step_min"]),(pars["meas_step_max"]),(pars["specimen_int_n"]),1e6*(pars["specimen_lab_field_dc"]),1e6*(pars["specimen_int"]),pars["specimen_b"],pars["specimen_q"],pars["specimen_f"],pars["specimen_fvds"],pars["specimen_b_beta"],pars["specimen_int_mad"],pars["specimen_int_dang"],pars["specimen_drats"],pars["specimen_int_ptrm_n"],pars["specimen_grade"],np.sqrt(pars["specimen_rsc"]),int(pars["specimen_md"]), pars["specimen_b_sigma"],pars["specimen_theta"],pars["specimen_delta"],pars["specimen_gamma"]) outstring= '%s %4.0f %4.0f %i %4.1f %4.1f %5.3f %5.1f %5.3f %5.3f %5.3f %7.1f %7.1f %7.1f %s %s %6.3f %i %5.3f %7.1f %7.1f %7.1f' % pars_out +'\n' print(outstr) print(outstring) pmagplotlib.plotB(AZD,araiblock,zijdblock,pars) mpars=pmag.domean(araiblock[1],start,end,'DE-BFL') if verbose: pmagplotlib.drawFIGS(AZD) print('pTRM direction= ','%7.1f'%(mpars['specimen_dec']),' %7.1f'%(mpars['specimen_inc']),' MAD:','%7.1f'%(mpars['specimen_mad'])) if len(anisblock)>0: # this specimen has anisotropy data if verbose: print('Found anisotropy record... but ignoring for now ') if plots==1: if fmt != "pmag": files={} for key in list(AZD.keys()): files[key]='SP:_'+this_specimen+'_TY:_'+key+'_'+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['deremag']='DeReMag Plot' titles['zijd']='Zijderveld Plot' titles['arai']='Arai Plot' titles['TRM']='TRM Acquisition data' AZD = pmagplotlib.addBorders(AZD,titles,black,purple) pmagplotlib.saveP(AZD,files) else: # save in pmag format print('pmag format no longer supported') #script="grep "+this_specimen+" output.mag | thellier -mfsi" #script=script+' %8.4e'%(field) #min='%i'%((pars["measurement_step_min"]-273)) #Max='%i'%((pars["measurement_step_max"]-273)) #script=script+" "+min+" "+Max #script=script+" |plotxy;cat mypost >>thellier.ps\n" #pltf.write(script) #pmag.domagicmag(outf,MeasRecs) if specimen!="": sys.exit() # syonara if verbose: ans=input('Return for next specimen, q to quit: ') if ans=='q':sys.exit() k+=1 # moving on
def main(): """ NAME specimens_results_magic.py DESCRIPTION combines pmag_specimens.txt file with age, location, acceptance criteria and outputs pmag_results table along with other MagIC tables necessary for uploading to the database SYNTAX specimens_results_magic.py [command line options] OPTIONS -h prints help message and quits -usr USER: identify user, default is "" -f: specimen input magic_measurements format file, default is "magic_measurements.txt" -fsp: specimen input pmag_specimens format file, default is "pmag_specimens.txt" -fsm: sample input er_samples format file, default is "er_samples.txt" -fsi: specimen input er_sites format file, default is "er_sites.txt" -fla: specify a file with paleolatitudes for calculating VADMs, default is not to calculate VADMS format is: site_name paleolatitude (space delimited file) -fa AGES: specify er_ages format file with age information -crd [s,g,t,b]: specify coordinate system (s, specimen, g geographic, t, tilt corrected, b, geographic and tilt corrected) Default is to assume geographic NB: only the tilt corrected data will appear on the results table, if both g and t are selected. -cor [AC:CR:NL]: colon delimited list of required data adjustments for all specimens included in intensity calculations (anisotropy, cooling rate, non-linear TRM) unless specified, corrections will not be applied -pri [TRM:ARM] colon delimited list of priorities for anisotropy correction (-cor must also be set to include AC). default is TRM, then ARM -age MIN MAX UNITS: specify age boundaries and units -exc: use exiting selection criteria (in pmag_criteria.txt file), default is default criteria -C: no acceptance criteria -aD: average directions per sample, default is NOT -aI: average multiple specimen intensities per sample, default is by site -aC: average all components together, default is NOT -pol: calculate polarity averages -sam: save sample level vgps and v[a]dms, default is by site -xSi: skip the site level intensity calculation -p: plot directions and look at intensities by site, default is NOT -fmt: specify output for saved images, default is svg (only if -p set) -lat: use present latitude for calculating VADMs, default is not to calculate VADMs -xD: skip directions -xI: skip intensities OUPUT writes pmag_samples, pmag_sites, pmag_results tables """ # set defaults Comps=[] # list of components version_num=pmag.get_version() args=sys.argv DefaultAge=["none"] skipdirs,coord,excrit,custom,vgps,average,Iaverage,plotsites,opt=1,0,0,0,0,0,0,0,0 get_model_lat=0 # this skips VADM calculation altogether, when get_model_lat=1, uses present day fmt='svg' dir_path="." model_lat_file="" Caverage=0 infile='pmag_specimens.txt' measfile="magic_measurements.txt" sampfile="er_samples.txt" sitefile="er_sites.txt" agefile="er_ages.txt" specout="er_specimens.txt" sampout="pmag_samples.txt" siteout="pmag_sites.txt" resout="pmag_results.txt" critout="pmag_criteria.txt" instout="magic_instruments.txt" sigcutoff,OBJ="","" noDir,noInt=0,0 polarity=0 coords=['0'] Dcrit,Icrit,nocrit=0,0,0 corrections=[] nocorrection=['DA-NL','DA-AC','DA-CR'] priorities=['DA-AC-ARM','DA-AC-TRM'] # priorities for anisotropy correction # get command line stuff if "-h" in args: print(main.__doc__) sys.exit() if '-WD' in args: ind=args.index("-WD") dir_path=args[ind+1] if '-cor' in args: ind=args.index('-cor') cors=args[ind+1].split(':') # list of required data adjustments for cor in cors: nocorrection.remove('DA-'+cor) corrections.append('DA-'+cor) if '-pri' in args: ind=args.index('-pri') priorities=args[ind+1].split(':') # list of required data adjustments for p in priorities: p='DA-AC-'+p if '-f' in args: ind=args.index("-f") measfile=args[ind+1] if '-fsp' in args: ind=args.index("-fsp") infile=args[ind+1] if '-fsi' in args: ind=args.index("-fsi") sitefile=args[ind+1] if "-crd" in args: ind=args.index("-crd") coord=args[ind+1] if coord=='s':coords=['-1'] if coord=='g':coords=['0'] if coord=='t':coords=['100'] if coord=='b':coords=['0','100'] if "-usr" in args: ind=args.index("-usr") user=sys.argv[ind+1] else: user="" if "-C" in args: Dcrit,Icrit,nocrit=1,1,1 # no selection criteria if "-sam" in args: vgps=1 # save sample level VGPS/VADMs if "-xSi" in args: nositeints=1 # skip site level intensity else: nositeints=0 if "-age" in args: ind=args.index("-age") DefaultAge[0]=args[ind+1] DefaultAge.append(args[ind+2]) DefaultAge.append(args[ind+3]) Daverage,Iaverage,Caverage=0,0,0 if "-aD" in args: Daverage=1 # average by sample directions if "-aI" in args: Iaverage=1 # average by sample intensities if "-aC" in args: Caverage=1 # average all components together ??? why??? if "-pol" in args: polarity=1 # calculate averages by polarity if '-xD' in args:noDir=1 if '-xI' in args: noInt=1 elif "-fla" in args: if '-lat' in args: print("you should set a paleolatitude file OR use present day lat - not both") sys.exit() ind=args.index("-fla") model_lat_file=dir_path+'/'+args[ind+1] get_model_lat=2 mlat=open(model_lat_file,'r') ModelLats=[] for line in mlat.readlines(): ModelLat={} tmp=line.split() ModelLat["er_site_name"]=tmp[0] ModelLat["site_model_lat"]=tmp[1] ModelLat["er_sample_name"]=tmp[0] ModelLat["sample_lat"]=tmp[1] ModelLats.append(ModelLat) get_model_lat=2 elif '-lat' in args: get_model_lat=1 if "-p" in args: plotsites=1 if "-fmt" in args: ind=args.index("-fmt") fmt=args[ind+1] if noDir==0: # plot by site - set up plot window import pmagplotlib EQ={} EQ['eqarea']=1 pmagplotlib.plot_init(EQ['eqarea'],5,5) # define figure 1 as equal area projection pmagplotlib.plotNET(EQ['eqarea']) # I don't know why this has to be here, but otherwise the first plot never plots... pmagplotlib.drawFIGS(EQ) if '-WD' in args: infile=dir_path+'/'+infile measfile=dir_path+'/'+measfile instout=dir_path+'/'+instout sampfile=dir_path+'/'+sampfile sitefile=dir_path+'/'+sitefile agefile=dir_path+'/'+agefile specout=dir_path+'/'+specout sampout=dir_path+'/'+sampout siteout=dir_path+'/'+siteout resout=dir_path+'/'+resout critout=dir_path+'/'+critout if "-exc" in args: # use existing pmag_criteria file if "-C" in args: print('you can not use both existing and no criteria - choose either -exc OR -C OR neither (for default)') sys.exit() crit_data,file_type=pmag.magic_read(critout) print("Acceptance criteria read in from ", critout) else : # use default criteria (if nocrit set, then get really loose criteria as default) crit_data=pmag.default_criteria(nocrit) if nocrit==0: print("Acceptance criteria are defaults") else: print("No acceptance criteria used ") accept={} for critrec in crit_data: for key in list(critrec.keys()): # need to migrate specimen_dang to specimen_int_dang for intensity data using old format if 'IE-SPEC' in list(critrec.keys()) and 'specimen_dang' in list(critrec.keys()) and 'specimen_int_dang' not in list(critrec.keys()): critrec['specimen_int_dang']=critrec['specimen_dang'] del critrec['specimen_dang'] # need to get rid of ron shaars sample_int_sigma_uT if 'sample_int_sigma_uT' in list(critrec.keys()): critrec['sample_int_sigma']='%10.3e'%(eval(critrec['sample_int_sigma_uT'])*1e-6) if key not in list(accept.keys()) and critrec[key]!='': accept[key]=critrec[key] # # if "-exc" not in args and "-C" not in args: print("args",args) pmag.magic_write(critout,[accept],'pmag_criteria') print("\n Pmag Criteria stored in ",critout,'\n') # # now we're done slow dancing # SiteNFO,file_type=pmag.magic_read(sitefile) # read in site data - has the lats and lons SampNFO,file_type=pmag.magic_read(sampfile) # read in site data - has the lats and lons height_nfo=pmag.get_dictitem(SiteNFO,'site_height','','F') # find all the sites with height info. if agefile !="":AgeNFO,file_type=pmag.magic_read(agefile) # read in the age information Data,file_type=pmag.magic_read(infile) # read in specimen interpretations IntData=pmag.get_dictitem(Data,'specimen_int','','F') # retrieve specimens with intensity data comment,orient="",[] samples,sites=[],[] for rec in Data: # run through the data filling in missing keys and finding all components, coordinates available # fill in missing fields, collect unique sample and site names if 'er_sample_name' not in list(rec.keys()): rec['er_sample_name']="" elif rec['er_sample_name'] not in samples: samples.append(rec['er_sample_name']) if 'er_site_name' not in list(rec.keys()): rec['er_site_name']="" elif rec['er_site_name'] not in sites: sites.append(rec['er_site_name']) if 'specimen_int' not in list(rec.keys()):rec['specimen_int']='' if 'specimen_comp_name' not in list(rec.keys()) or rec['specimen_comp_name']=="":rec['specimen_comp_name']='A' if rec['specimen_comp_name'] not in Comps:Comps.append(rec['specimen_comp_name']) rec['specimen_tilt_correction']=rec['specimen_tilt_correction'].strip('\n') if "specimen_tilt_correction" not in list(rec.keys()): rec["specimen_tilt_correction"]="-1" # assume sample coordinates if rec["specimen_tilt_correction"] not in orient: orient.append(rec["specimen_tilt_correction"]) # collect available coordinate systems if "specimen_direction_type" not in list(rec.keys()): rec["specimen_direction_type"]='l' # assume direction is line - not plane if "specimen_dec" not in list(rec.keys()): rec["specimen_direction_type"]='' # if no declination, set direction type to blank if "specimen_n" not in list(rec.keys()): rec["specimen_n"]='' # put in n if "specimen_alpha95" not in list(rec.keys()): rec["specimen_alpha95"]='' # put in alpha95 if "magic_method_codes" not in list(rec.keys()): rec["magic_method_codes"]='' # # start parsing data into SpecDirs, SpecPlanes, SpecInts SpecInts,SpecDirs,SpecPlanes=[],[],[] samples.sort() # get sorted list of samples and sites sites.sort() if noInt==0: # don't skip intensities IntData=pmag.get_dictitem(Data,'specimen_int','','F') # retrieve specimens with intensity data if nocrit==0: # use selection criteria for rec in IntData: # do selection criteria kill=pmag.grade(rec,accept,'specimen_int') if len(kill)==0: SpecInts.append(rec) # intensity record to be included in sample, site calculations else: SpecInts=IntData[:] # take everything - no selection criteria # check for required data adjustments if len(corrections)>0 and len(SpecInts)>0: for cor in corrections: SpecInts=pmag.get_dictitem(SpecInts,'magic_method_codes',cor,'has') # only take specimens with the required corrections if len(nocorrection)>0 and len(SpecInts)>0: for cor in nocorrection: SpecInts=pmag.get_dictitem(SpecInts,'magic_method_codes',cor,'not') # exclude the corrections not specified for inclusion # take top priority specimen of its name in remaining specimens (only one per customer) PrioritySpecInts=[] specimens=pmag.get_specs(SpecInts) # get list of uniq specimen names for spec in specimens: ThisSpecRecs=pmag.get_dictitem(SpecInts,'er_specimen_name',spec,'T') # all the records for this specimen if len(ThisSpecRecs)==1: PrioritySpecInts.append(ThisSpecRecs[0]) elif len(ThisSpecRecs)>1: # more than one prec=[] for p in priorities: ThisSpecRecs=pmag.get_dictitem(SpecInts,'magic_method_codes',p,'has') # all the records for this specimen if len(ThisSpecRecs)>0:prec.append(ThisSpecRecs[0]) PrioritySpecInts.append(prec[0]) # take the best one SpecInts=PrioritySpecInts # this has the first specimen record if noDir==0: # don't skip directions AllDirs=pmag.get_dictitem(Data,'specimen_direction_type','','F') # retrieve specimens with directed lines and planes Ns=pmag.get_dictitem(AllDirs,'specimen_n','','F') # get all specimens with specimen_n information if nocrit!=1: # use selection criteria for rec in Ns: # look through everything with specimen_n for "good" data kill=pmag.grade(rec,accept,'specimen_dir') if len(kill)==0: # nothing killed it SpecDirs.append(rec) else: # no criteria SpecDirs=AllDirs[:] # take them all # SpecDirs is now the list of all specimen directions (lines and planes) that pass muster # PmagSamps,SampDirs=[],[] # list of all sample data and list of those that pass the DE-SAMP criteria PmagSites,PmagResults=[],[] # list of all site data and selected results SampInts=[] for samp in samples: # run through the sample names if Daverage==1: # average by sample if desired SampDir=pmag.get_dictitem(SpecDirs,'er_sample_name',samp,'T') # get all the directional data for this sample if len(SampDir)>0: # there are some directions for coord in coords: # step through desired coordinate systems CoordDir=pmag.get_dictitem(SampDir,'specimen_tilt_correction',coord,'T') # get all the directions for this sample if len(CoordDir)>0: # there are some with this coordinate system if Caverage==0: # look component by component for comp in Comps: CompDir=pmag.get_dictitem(CoordDir,'specimen_comp_name',comp,'T') # get all directions from this component if len(CompDir)>0: # there are some PmagSampRec=pmag.lnpbykey(CompDir,'sample','specimen') # get a sample average from all specimens PmagSampRec["er_location_name"]=CompDir[0]['er_location_name'] # decorate the sample record PmagSampRec["er_site_name"]=CompDir[0]['er_site_name'] PmagSampRec["er_sample_name"]=samp PmagSampRec["er_citation_names"]="This study" PmagSampRec["er_analyst_mail_names"]=user PmagSampRec['magic_software_packages']=version_num if nocrit!=1:PmagSampRec['pmag_criteria_codes']="ACCEPT" if agefile != "": PmagSampRec= pmag.get_age(PmagSampRec,"er_site_name","sample_inferred_",AgeNFO,DefaultAge) site_height=pmag.get_dictitem(height_nfo,'er_site_name',PmagSampRec['er_site_name'],'T') if len(site_height)>0:PmagSampRec["sample_height"]=site_height[0]['site_height'] # add in height if available PmagSampRec['sample_comp_name']=comp PmagSampRec['sample_tilt_correction']=coord PmagSampRec['er_specimen_names']= pmag.get_list(CompDir,'er_specimen_name') # get a list of the specimen names used PmagSampRec['magic_method_codes']= pmag.get_list(CompDir,'magic_method_codes') # get a list of the methods used if nocrit!=1: # apply selection criteria kill=pmag.grade(PmagSampRec,accept,'sample_dir') else: kill=[] if len(kill)==0: SampDirs.append(PmagSampRec) if vgps==1: # if sample level VGP info desired, do that now PmagResRec=pmag.getsampVGP(PmagSampRec,SiteNFO) if PmagResRec!="":PmagResults.append(PmagResRec) PmagSamps.append(PmagSampRec) if Caverage==1: # average all components together basically same as above PmagSampRec=pmag.lnpbykey(CoordDir,'sample','specimen') PmagSampRec["er_location_name"]=CoordDir[0]['er_location_name'] PmagSampRec["er_site_name"]=CoordDir[0]['er_site_name'] PmagSampRec["er_sample_name"]=samp PmagSampRec["er_citation_names"]="This study" PmagSampRec["er_analyst_mail_names"]=user PmagSampRec['magic_software_packages']=version_num if nocrit!=1:PmagSampRec['pmag_criteria_codes']="" if agefile != "": PmagSampRec= pmag.get_age(PmagSampRec,"er_site_name","sample_inferred_",AgeNFO,DefaultAge) site_height=pmag.get_dictitem(height_nfo,'er_site_name',site,'T') if len(site_height)>0:PmagSampRec["sample_height"]=site_height[0]['site_height'] # add in height if available PmagSampRec['sample_tilt_correction']=coord PmagSampRec['sample_comp_name']= pmag.get_list(CoordDir,'specimen_comp_name') # get components used PmagSampRec['er_specimen_names']= pmag.get_list(CoordDir,'er_specimen_name') # get specimne names averaged PmagSampRec['magic_method_codes']= pmag.get_list(CoordDir,'magic_method_codes') # assemble method codes if nocrit!=1: # apply selection criteria kill=pmag.grade(PmagSampRec,accept,'sample_dir') if len(kill)==0: # passes the mustard SampDirs.append(PmagSampRec) if vgps==1: PmagResRec=pmag.getsampVGP(PmagSampRec,SiteNFO) if PmagResRec!="":PmagResults.append(PmagResRec) else: # take everything SampDirs.append(PmagSampRec) if vgps==1: PmagResRec=pmag.getsampVGP(PmagSampRec,SiteNFO) if PmagResRec!="":PmagResults.append(PmagResRec) PmagSamps.append(PmagSampRec) if Iaverage==1: # average by sample if desired SampI=pmag.get_dictitem(SpecInts,'er_sample_name',samp,'T') # get all the intensity data for this sample if len(SampI)>0: # there are some PmagSampRec=pmag.average_int(SampI,'specimen','sample') # get average intensity stuff PmagSampRec["sample_description"]="sample intensity" # decorate sample record PmagSampRec["sample_direction_type"]="" PmagSampRec['er_site_name']=SampI[0]["er_site_name"] PmagSampRec['er_sample_name']=samp PmagSampRec['er_location_name']=SampI[0]["er_location_name"] PmagSampRec["er_citation_names"]="This study" PmagSampRec["er_analyst_mail_names"]=user if agefile != "": PmagSampRec=pmag.get_age(PmagSampRec,"er_site_name","sample_inferred_", AgeNFO,DefaultAge) site_height=pmag.get_dictitem(height_nfo,'er_site_name',PmagSampRec['er_site_name'],'T') if len(site_height)>0:PmagSampRec["sample_height"]=site_height[0]['site_height'] # add in height if available PmagSampRec['er_specimen_names']= pmag.get_list(SampI,'er_specimen_name') PmagSampRec['magic_method_codes']= pmag.get_list(SampI,'magic_method_codes') if nocrit!=1: # apply criteria! kill=pmag.grade(PmagSampRec,accept,'sample_int') if len(kill)==0: PmagSampRec['pmag_criteria_codes']="ACCEPT" SampInts.append(PmagSampRec) PmagSamps.append(PmagSampRec) else:PmagSampRec={} # sample rejected else: # no criteria SampInts.append(PmagSampRec) PmagSamps.append(PmagSampRec) PmagSampRec['pmag_criteria_codes']="" if vgps==1 and get_model_lat!=0 and PmagSampRec!={}: # if get_model_lat==1: # use sample latitude PmagResRec=pmag.getsampVDM(PmagSampRec,SampNFO) del(PmagResRec['model_lat']) # get rid of the model lat key elif get_model_lat==2: # use model latitude PmagResRec=pmag.getsampVDM(PmagSampRec,ModelLats) if PmagResRec!={}:PmagResRec['magic_method_codes']=PmagResRec['magic_method_codes']+":IE-MLAT" if PmagResRec!={}: PmagResRec['er_specimen_names']=PmagSampRec['er_specimen_names'] PmagResRec['er_sample_names']=PmagSampRec['er_sample_name'] PmagResRec['pmag_criteria_codes']='ACCEPT' PmagResRec['average_int_sigma_perc']=PmagSampRec['sample_int_sigma_perc'] PmagResRec['average_int_sigma']=PmagSampRec['sample_int_sigma'] PmagResRec['average_int_n']=PmagSampRec['sample_int_n'] PmagResRec['vadm_n']=PmagSampRec['sample_int_n'] PmagResRec['data_type']='i' PmagResults.append(PmagResRec) if len(PmagSamps)>0: TmpSamps,keylist=pmag.fillkeys(PmagSamps) # fill in missing keys from different types of records pmag.magic_write(sampout,TmpSamps,'pmag_samples') # save in sample output file print(' sample averages written to ',sampout) # #create site averages from specimens or samples as specified # for site in sites: if Daverage==0: key,dirlist='specimen',SpecDirs # if specimen averages at site level desired if Daverage==1: key,dirlist='sample',SampDirs # if sample averages at site level desired tmp=pmag.get_dictitem(dirlist,'er_site_name',site,'T') # get all the sites with directions tmp1=pmag.get_dictitem(tmp,key+'_tilt_correction',coords[-1],'T') # use only the last coordinate if Caverage==0 sd=pmag.get_dictitem(SiteNFO,'er_site_name',site,'T') # fish out site information (lat/lon, etc.) if len(sd)>0: sitedat=sd[0] if Caverage==0: # do component wise averaging for comp in Comps: siteD=pmag.get_dictitem(tmp1,key+'_comp_name',comp,'T') # get all components comp if len(siteD)>0: # there are some for this site and component name PmagSiteRec=pmag.lnpbykey(siteD,'site',key) # get an average for this site PmagSiteRec['site_comp_name']=comp # decorate the site record PmagSiteRec["er_location_name"]=siteD[0]['er_location_name'] PmagSiteRec["er_site_name"]=siteD[0]['er_site_name'] PmagSiteRec['site_tilt_correction']=coords[-1] PmagSiteRec['site_comp_name']= pmag.get_list(siteD,key+'_comp_name') if Daverage==1: PmagSiteRec['er_sample_names']= pmag.get_list(siteD,'er_sample_name') else: PmagSiteRec['er_specimen_names']= pmag.get_list(siteD,'er_specimen_name') # determine the demagnetization code (DC3,4 or 5) for this site AFnum=len(pmag.get_dictitem(siteD,'magic_method_codes','LP-DIR-AF','has')) Tnum=len(pmag.get_dictitem(siteD,'magic_method_codes','LP-DIR-T','has')) DC=3 if AFnum>0:DC+=1 if Tnum>0:DC+=1 PmagSiteRec['magic_method_codes']= pmag.get_list(siteD,'magic_method_codes')+':'+ 'LP-DC'+str(DC) PmagSiteRec['magic_method_codes'].strip(":") if plotsites==1: print(PmagSiteRec['er_site_name']) pmagplotlib.plotSITE(EQ['eqarea'],PmagSiteRec,siteD,key) # plot and list the data pmagplotlib.drawFIGS(EQ) PmagSites.append(PmagSiteRec) else: # last component only siteD=tmp1[:] # get the last orientation system specified if len(siteD)>0: # there are some PmagSiteRec=pmag.lnpbykey(siteD,'site',key) # get the average for this site PmagSiteRec["er_location_name"]=siteD[0]['er_location_name'] # decorate the record PmagSiteRec["er_site_name"]=siteD[0]['er_site_name'] PmagSiteRec['site_comp_name']=comp PmagSiteRec['site_tilt_correction']=coords[-1] PmagSiteRec['site_comp_name']= pmag.get_list(siteD,key+'_comp_name') PmagSiteRec['er_specimen_names']= pmag.get_list(siteD,'er_specimen_name') PmagSiteRec['er_sample_names']= pmag.get_list(siteD,'er_sample_name') AFnum=len(pmag.get_dictitem(siteD,'magic_method_codes','LP-DIR-AF','has')) Tnum=len(pmag.get_dictitem(siteD,'magic_method_codes','LP-DIR-T','has')) DC=3 if AFnum>0:DC+=1 if Tnum>0:DC+=1 PmagSiteRec['magic_method_codes']= pmag.get_list(siteD,'magic_method_codes')+':'+ 'LP-DC'+str(DC) PmagSiteRec['magic_method_codes'].strip(":") if Daverage==0:PmagSiteRec['site_comp_name']= pmag.get_list(siteD,key+'_comp_name') if plotsites==1: pmagplotlib.plotSITE(EQ['eqarea'],PmagSiteRec,siteD,key) pmagplotlib.drawFIGS(EQ) PmagSites.append(PmagSiteRec) else: print('site information not found in er_sites for site, ',site,' site will be skipped') for PmagSiteRec in PmagSites: # now decorate each dictionary some more, and calculate VGPs etc. for results table PmagSiteRec["er_citation_names"]="This study" PmagSiteRec["er_analyst_mail_names"]=user PmagSiteRec['magic_software_packages']=version_num if agefile != "": PmagSiteRec= pmag.get_age(PmagSiteRec,"er_site_name","site_inferred_",AgeNFO,DefaultAge) PmagSiteRec['pmag_criteria_codes']='ACCEPT' if 'site_n_lines' in list(PmagSiteRec.keys()) and 'site_n_planes' in list(PmagSiteRec.keys()) and PmagSiteRec['site_n_lines']!="" and PmagSiteRec['site_n_planes']!="": if int(PmagSiteRec["site_n_planes"])>0: PmagSiteRec["magic_method_codes"]=PmagSiteRec['magic_method_codes']+":DE-FM-LP" elif int(PmagSiteRec["site_n_lines"])>2: PmagSiteRec["magic_method_codes"]=PmagSiteRec['magic_method_codes']+":DE-FM" kill=pmag.grade(PmagSiteRec,accept,'site_dir') if len(kill)==0: PmagResRec={} # set up dictionary for the pmag_results table entry PmagResRec['data_type']='i' # decorate it a bit PmagResRec['magic_software_packages']=version_num PmagSiteRec['site_description']='Site direction included in results table' PmagResRec['pmag_criteria_codes']='ACCEPT' dec=float(PmagSiteRec["site_dec"]) inc=float(PmagSiteRec["site_inc"]) if 'site_alpha95' in list(PmagSiteRec.keys()) and PmagSiteRec['site_alpha95']!="": a95=float(PmagSiteRec["site_alpha95"]) else:a95=180. sitedat=pmag.get_dictitem(SiteNFO,'er_site_name',PmagSiteRec['er_site_name'],'T')[0] # fish out site information (lat/lon, etc.) lat=float(sitedat['site_lat']) lon=float(sitedat['site_lon']) plong,plat,dp,dm=pmag.dia_vgp(dec,inc,a95,lat,lon) # get the VGP for this site if PmagSiteRec['site_tilt_correction']=='-1':C=' (spec coord) ' if PmagSiteRec['site_tilt_correction']=='0':C=' (geog. coord) ' if PmagSiteRec['site_tilt_correction']=='100':C=' (strat. coord) ' PmagResRec["pmag_result_name"]="VGP Site: "+PmagSiteRec["er_site_name"] # decorate some more PmagResRec["result_description"]="Site VGP, coord system = "+str(coord)+' component: '+comp PmagResRec['er_site_names']=PmagSiteRec['er_site_name'] PmagResRec['pmag_criteria_codes']='ACCEPT' PmagResRec['er_citation_names']='This study' PmagResRec['er_analyst_mail_names']=user PmagResRec["er_location_names"]=PmagSiteRec["er_location_name"] if Daverage==1: PmagResRec["er_sample_names"]=PmagSiteRec["er_sample_names"] else: PmagResRec["er_specimen_names"]=PmagSiteRec["er_specimen_names"] PmagResRec["tilt_correction"]=PmagSiteRec['site_tilt_correction'] PmagResRec["pole_comp_name"]=PmagSiteRec['site_comp_name'] PmagResRec["average_dec"]=PmagSiteRec["site_dec"] PmagResRec["average_inc"]=PmagSiteRec["site_inc"] PmagResRec["average_alpha95"]=PmagSiteRec["site_alpha95"] PmagResRec["average_n"]=PmagSiteRec["site_n"] PmagResRec["average_n_lines"]=PmagSiteRec["site_n_lines"] PmagResRec["average_n_planes"]=PmagSiteRec["site_n_planes"] PmagResRec["vgp_n"]=PmagSiteRec["site_n"] PmagResRec["average_k"]=PmagSiteRec["site_k"] PmagResRec["average_r"]=PmagSiteRec["site_r"] PmagResRec["average_lat"]='%10.4f ' %(lat) PmagResRec["average_lon"]='%10.4f ' %(lon) if agefile != "": PmagResRec= pmag.get_age(PmagResRec,"er_site_names","average_",AgeNFO,DefaultAge) site_height=pmag.get_dictitem(height_nfo,'er_site_name',site,'T') if len(site_height)>0:PmagResRec["average_height"]=site_height[0]['site_height'] PmagResRec["vgp_lat"]='%7.1f ' % (plat) PmagResRec["vgp_lon"]='%7.1f ' % (plong) PmagResRec["vgp_dp"]='%7.1f ' % (dp) PmagResRec["vgp_dm"]='%7.1f ' % (dm) PmagResRec["magic_method_codes"]= PmagSiteRec["magic_method_codes"] if PmagSiteRec['site_tilt_correction']=='0':PmagSiteRec['magic_method_codes']=PmagSiteRec['magic_method_codes']+":DA-DIR-GEO" if PmagSiteRec['site_tilt_correction']=='100':PmagSiteRec['magic_method_codes']=PmagSiteRec['magic_method_codes']+":DA-DIR-TILT" PmagSiteRec['site_polarity']="" if polarity==1: # assign polarity based on angle of pole lat to spin axis - may want to re-think this sometime angle=pmag.angle([0,0],[0,(90-plat)]) if angle <= 55.: PmagSiteRec["site_polarity"]='n' if angle > 55. and angle < 125.: PmagSiteRec["site_polarity"]='t' if angle >= 125.: PmagSiteRec["site_polarity"]='r' PmagResults.append(PmagResRec) if polarity==1: crecs=pmag.get_dictitem(PmagSites,'site_tilt_correction','100','T') # find the tilt corrected data if len(crecs)<2:crecs=pmag.get_dictitem(PmagSites,'site_tilt_correction','0','T') # if there aren't any, find the geographic corrected data if len(crecs)>2: # if there are some, comp=pmag.get_list(crecs,'site_comp_name').split(':')[0] # find the first component crecs=pmag.get_dictitem(crecs,'site_comp_name',comp,'T') # fish out all of the first component precs=[] for rec in crecs: precs.append({'dec':rec['site_dec'],'inc':rec['site_inc'],'name':rec['er_site_name'],'loc':rec['er_location_name']}) polpars=pmag.fisher_by_pol(precs) # calculate average by polarity for mode in list(polpars.keys()): # hunt through all the modes (normal=A, reverse=B, all=ALL) PolRes={} PolRes['er_citation_names']='This study' PolRes["pmag_result_name"]="Polarity Average: Polarity "+mode # PolRes["data_type"]="a" PolRes["average_dec"]='%7.1f'%(polpars[mode]['dec']) PolRes["average_inc"]='%7.1f'%(polpars[mode]['inc']) PolRes["average_n"]='%i'%(polpars[mode]['n']) PolRes["average_r"]='%5.4f'%(polpars[mode]['r']) PolRes["average_k"]='%6.0f'%(polpars[mode]['k']) PolRes["average_alpha95"]='%7.1f'%(polpars[mode]['alpha95']) PolRes['er_site_names']= polpars[mode]['sites'] PolRes['er_location_names']= polpars[mode]['locs'] PolRes['magic_software_packages']=version_num PmagResults.append(PolRes) if noInt!=1 and nositeints!=1: for site in sites: # now do intensities for each site if plotsites==1:print(site) if Iaverage==0: key,intlist='specimen',SpecInts # if using specimen level data if Iaverage==1: key,intlist='sample',PmagSamps # if using sample level data Ints=pmag.get_dictitem(intlist,'er_site_name',site,'T') # get all the intensities for this site if len(Ints)>0: # there are some PmagSiteRec=pmag.average_int(Ints,key,'site') # get average intensity stuff for site table PmagResRec=pmag.average_int(Ints,key,'average') # get average intensity stuff for results table if plotsites==1: # if site by site examination requested - print this site out to the screen for rec in Ints:print(rec['er_'+key+'_name'],' %7.1f'%(1e6*float(rec[key+'_int']))) if len(Ints)>1: print('Average: ','%7.1f'%(1e6*float(PmagResRec['average_int'])),'N: ',len(Ints)) print('Sigma: ','%7.1f'%(1e6*float(PmagResRec['average_int_sigma'])),'Sigma %: ',PmagResRec['average_int_sigma_perc']) input('Press any key to continue\n') er_location_name=Ints[0]["er_location_name"] PmagSiteRec["er_location_name"]=er_location_name # decorate the records PmagSiteRec["er_citation_names"]="This study" PmagResRec["er_location_names"]=er_location_name PmagResRec["er_citation_names"]="This study" PmagSiteRec["er_analyst_mail_names"]=user PmagResRec["er_analyst_mail_names"]=user PmagResRec["data_type"]='i' if Iaverage==0: PmagSiteRec['er_specimen_names']= pmag.get_list(Ints,'er_specimen_name') # list of all specimens used PmagResRec['er_specimen_names']= pmag.get_list(Ints,'er_specimen_name') PmagSiteRec['er_sample_names']= pmag.get_list(Ints,'er_sample_name') # list of all samples used PmagResRec['er_sample_names']= pmag.get_list(Ints,'er_sample_name') PmagSiteRec['er_site_name']= site PmagResRec['er_site_names']= site PmagSiteRec['magic_method_codes']= pmag.get_list(Ints,'magic_method_codes') PmagResRec['magic_method_codes']= pmag.get_list(Ints,'magic_method_codes') kill=pmag.grade(PmagSiteRec,accept,'site_int') if nocrit==1 or len(kill)==0: b,sig=float(PmagResRec['average_int']),"" if(PmagResRec['average_int_sigma'])!="":sig=float(PmagResRec['average_int_sigma']) sdir=pmag.get_dictitem(PmagResults,'er_site_names',site,'T') # fish out site direction if len(sdir)>0 and sdir[-1]['average_inc']!="": # get the VDM for this record using last average inclination (hope it is the right one!) inc=float(sdir[0]['average_inc']) # mlat=pmag.magnetic_lat(inc) # get magnetic latitude using dipole formula PmagResRec["vdm"]='%8.3e '% (pmag.b_vdm(b,mlat)) # get VDM with magnetic latitude PmagResRec["vdm_n"]=PmagResRec['average_int_n'] if 'average_int_sigma' in list(PmagResRec.keys()) and PmagResRec['average_int_sigma']!="": vdm_sig=pmag.b_vdm(float(PmagResRec['average_int_sigma']),mlat) PmagResRec["vdm_sigma"]='%8.3e '% (vdm_sig) else: PmagResRec["vdm_sigma"]="" mlat="" # define a model latitude if get_model_lat==1: # use present site latitude mlats=pmag.get_dictitem(SiteNFO,'er_site_name',site,'T') if len(mlats)>0: mlat=mlats[0]['site_lat'] elif get_model_lat==2: # use a model latitude from some plate reconstruction model (or something) mlats=pmag.get_dictitem(ModelLats,'er_site_name',site,'T') if len(mlats)>0: PmagResRec['model_lat']=mlats[0]['site_model_lat'] mlat=PmagResRec['model_lat'] if mlat!="": PmagResRec["vadm"]='%8.3e '% (pmag.b_vdm(b,float(mlat))) # get the VADM using the desired latitude if sig!="": vdm_sig=pmag.b_vdm(float(PmagResRec['average_int_sigma']),float(mlat)) PmagResRec["vadm_sigma"]='%8.3e '% (vdm_sig) PmagResRec["vadm_n"]=PmagResRec['average_int_n'] else: PmagResRec["vadm_sigma"]="" sitedat=pmag.get_dictitem(SiteNFO,'er_site_name',PmagSiteRec['er_site_name'],'T') # fish out site information (lat/lon, etc.) if len(sitedat)>0: sitedat=sitedat[0] PmagResRec['average_lat']=sitedat['site_lat'] PmagResRec['average_lon']=sitedat['site_lon'] else: PmagResRec['average_lon']='UNKNOWN' PmagResRec['average_lon']='UNKNOWN' PmagResRec['magic_software_packages']=version_num PmagResRec["pmag_result_name"]="V[A]DM: Site "+site PmagResRec["result_description"]="V[A]DM of site" PmagResRec["pmag_criteria_codes"]="ACCEPT" if agefile != "": PmagResRec= pmag.get_age(PmagResRec,"er_site_names","average_",AgeNFO,DefaultAge) site_height=pmag.get_dictitem(height_nfo,'er_site_name',site,'T') if len(site_height)>0:PmagResRec["average_height"]=site_height[0]['site_height'] PmagSites.append(PmagSiteRec) PmagResults.append(PmagResRec) if len(PmagSites)>0: Tmp,keylist=pmag.fillkeys(PmagSites) pmag.magic_write(siteout,Tmp,'pmag_sites') print(' sites written to ',siteout) else: print("No Site level table") if len(PmagResults)>0: TmpRes,keylist=pmag.fillkeys(PmagResults) pmag.magic_write(resout,TmpRes,'pmag_results') print(' results written to ',resout) else: print("No Results level table")