def test_sgd_virtual(self): t = O.SGD() uint_configs = {'Optimizer.epoch': 1} float_configs = { 'SGD.eta': 0.0, 'Optimizer.clip_threshold': 0.0, 'Optimizer.lr_scale': 1.0, 'Optimizer.l2_strength': 0.0, } t.set_configs(uint_configs, float_configs) uint_configs, float_configs = t.get_configs() self.assertEqual(uint_configs['Optimizer.epoch'], 1)
def main(): # Loads vocab. vocab = make_vocab("data/ptb.train.txt") print("#vocab:", len(vocab)) # maybe 10000 eos_id = vocab["<s>"] # Loads all corpus. train_corpus = load_corpus("data/ptb.train.txt", vocab) valid_corpus = load_corpus("data/ptb.valid.txt", vocab) num_train_sents = len(train_corpus) num_valid_sents = len(valid_corpus) num_train_labels = count_labels(train_corpus) num_valid_labels = count_labels(valid_corpus) print("train:", num_train_sents, "sentences,", num_train_labels, "labels") print("valid:", num_valid_sents, "sentences,", num_valid_labels, "labels") # Device and computation graph. dev = D.CUDA(0) Device.set_default(dev) g = Graph() Graph.set_default(g) # Our LM. lm = RNNLM(len(vocab), eos_id) # Optimizer. optimizer = O.SGD(1) #optimizer.set_weight_decay(1e-6) optimizer.set_gradient_clipping(5) optimizer.add(lm) # Sentence IDs. train_ids = list(range(num_train_sents)) valid_ids = list(range(num_valid_sents)) best_valid_ppl = 1e10 # Train/valid loop. for epoch in range(MAX_EPOCH): print("epoch", epoch + 1, "/", MAX_EPOCH, ":") # Shuffles train sentence IDs. random.shuffle(train_ids) # Training. train_loss = 0 for ofs in range(0, num_train_sents, BATCH_SIZE): batch_ids = train_ids[ofs:min(ofs + BATCH_SIZE, num_train_sents)] batch = make_batch(train_corpus, batch_ids, eos_id) g.clear() outputs = lm.forward(batch, True) loss = lm.loss(outputs, batch) train_loss += loss.to_float() * len(batch_ids) optimizer.reset_gradients() loss.backward() optimizer.update() print("%d" % ofs, end="\r") sys.stdout.flush() train_ppl = math.exp(train_loss / num_train_labels) print(" train ppl =", train_ppl) # Validation. valid_loss = 0 for ofs in range(0, num_valid_sents, BATCH_SIZE): batch_ids = valid_ids[ofs:min(ofs + BATCH_SIZE, num_valid_sents)] batch = make_batch(valid_corpus, batch_ids, eos_id) g.clear() outputs = lm.forward(batch, False) loss = lm.loss(outputs, batch) valid_loss += loss.to_float() * len(batch_ids) print("%d" % ofs, end="\r") sys.stdout.flush() valid_ppl = math.exp(valid_loss / num_valid_labels) print(" valid ppl =", valid_ppl) if valid_ppl < best_valid_ppl: best_valid_ppl = valid_ppl print(" BEST") else: old_lr = optimizer.get_learning_rate_scaling() new_lr = 0.5 * old_lr optimizer.set_learning_rate_scaling(new_lr) print(" learning rate scaled:", old_lr, "->", new_lr)
def main(): dev = D.Naive() # or D.CUDA(gpuid) Device.set_default(dev) # Parameters pw1 = Parameter([8, 2], I.XavierUniform()) pb1 = Parameter([8], I.Constant(0)) pw2 = Parameter([1, 8], I.XavierUniform()) pb2 = Parameter([], I.Constant(0)) # Optimizer optimizer = O.SGD(0.1) # Registers parameters. optimizer.add_parameter(pw1) optimizer.add_parameter(pb1) optimizer.add_parameter(pw2) optimizer.add_parameter(pb2) # Training data input_data = [ np.array([1, 1], dtype=np.float32), # Sample 1 np.array([1, -1], dtype=np.float32), # Sample 2 np.array([-1, 1], dtype=np.float32), # Sample 3 np.array([-1, -1], dtype=np.float32), # Sample 4 ] output_data = [ np.array([1], dtype=np.float32), # Label 1 np.array([-1], dtype=np.float32), # Label 2 np.array([-1], dtype=np.float32), # Label 3 np.array([1], dtype=np.float32), # Label 4 ] g = Graph() Graph.set_default(g) for i in range(10): g.clear() # Builds a computation graph. x = F.input(input_data) w1 = F.parameter(pw1) b1 = F.parameter(pb1) w2 = F.parameter(pw2) b2 = F.parameter(pb2) h = F.tanh(w1 @ x + b1) y = w2 @ h + b2 # Obtains values. y_val = y.to_list() print("epoch ", i, ":") for j in range(4): print(" [", j, "]: ", y_val[j]) # Extends the computation graph to calculate loss values. t = F.input(output_data) diff = t - y loss = F.batch.mean(diff * diff) # Obtains the loss. loss_val = loss.to_float() print(" loss: ", loss_val) # Updates parameters. optimizer.reset_gradients() loss.backward() optimizer.update()
def primitiv_xor_test(self): dev = D.Naive() Device.set_default(dev) g = Graph() Graph.set_default(g) input_data = [ np.array([[1], [1]]), np.array([[-1], [1]]), np.array([[-1], [-1]]), np.array([[1], [-1]]), ] label_data = [ np.array([1]), np.array([-1]), np.array([1]), np.array([-1]), ] N = 8 pw = Parameter([1, N], I.XavierUniform()) pb = Parameter([], I.Constant(0)) pu = Parameter([N, 2], I.XavierUniform()) pc = Parameter([N], I.Constant(0)) if os.path.isfile('output/xor/pw.data') and os.path.isfile( 'output/xor/pb.data') and os.path.isfile( 'output/xor/pu.data') and os.path.isfile( 'output/xor/pc.data'): pw.load('output/xor/pw.data') pb.load('output/xor/pb.data') pu.load('output/xor/pu.data') pc.load('output/xor/pc.data') optimizer = O.SGD(0.01) optimizer.add(pw, pb, pu, pc) for epoch in range(1000): print(epoch, end=' ') g.clear() x = F.input(input_data) w = F.parameter(pw) b = F.parameter(pb) u = F.parameter(pu) c = F.parameter(pc) h = F.tanh(u @ x + c) y = F.tanh(w @ h + b) for val in y.to_list(): print('{:+.6f},'.format(val), end=' ') loss = self.calc_loss(y, label_data) print('loss={:.6f}'.format(loss.to_float())) optimizer.reset_gradients() loss.backward() optimizer.update() pw.save('output/xor/pw.data') pb.save('output/xor/pb.data') pu.save('output/xor/pu.data') pc.save('output/xor/pc.data') return y.to_list()
def main(): # Loads data train_inputs = load_images("data/train-images-idx3-ubyte", NUM_TRAIN_SAMPLES) train_labels = load_labels("data/train-labels-idx1-ubyte", NUM_TRAIN_SAMPLES) test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES) test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES) dev = D.Naive() # or D.CUDA(gpuid) Device.set_default(dev) pw1 = Parameter([NUM_HIDDEN_UNITS, NUM_INPUT_UNITS], I.XavierUniform()) pb1 = Parameter([NUM_HIDDEN_UNITS], I.Constant(0)) pw2 = Parameter([NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS], I.XavierUniform()) pb2 = Parameter([NUM_OUTPUT_UNITS], I.Constant(0)) optimizer = O.SGD(.5) optimizer.add(pw1, pb1, pw2, pb2) def make_graph(inputs, train): x = F.input(inputs) w1 = F.parameter(pw1) b1 = F.parameter(pb1) h = F.relu(w1 @ x + b1) h = F.dropout(h, .5, train) w2 = F.parameter(pw2) b2 = F.parameter(pb2) return w2 @ h + b2 ids = list(range(NUM_TRAIN_SAMPLES)) g = Graph() Graph.set_default(g) for epoch in range(MAX_EPOCH): random.shuffle(ids) # Training loop for batch in range(NUM_TRAIN_BATCHES): print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES), end="") inputs = [train_inputs[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE)] labels = [train_labels[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE)] g.clear() y = make_graph(inputs, True) loss = F.softmax_cross_entropy(y, labels, 0) avg_loss = F.batch.mean(loss) optimizer.reset_gradients() avg_loss.backward() optimizer.update() print() match = 0 # Test loop for batch in range(NUM_TEST_BATCHES): print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES), end="") inputs = [test_inputs[batch * BATCH_SIZE + i] for i in range(BATCH_SIZE)] g.clear() y = make_graph(inputs, False) y_val = y.to_list() for i in range(BATCH_SIZE): maxval = -1e10 argmax = -1 for j in range(NUM_OUTPUT_UNITS): v = y_val[j + i * NUM_OUTPUT_UNITS] if (v > maxval): maxval = v argmax = j if argmax == test_labels[i + batch * BATCH_SIZE]: match += 1 accuracy = 100.0 * match / NUM_TEST_SAMPLES print("\nepoch %d: accuracy: %.2f%%\n" % (epoch, accuracy))
def main(): # Loads data train_inputs = load_images("data/train-images-idx3-ubyte", NUM_TRAIN_SAMPLES) train_labels = load_labels("data/train-labels-idx1-ubyte", NUM_TRAIN_SAMPLES) test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES) test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES) dev = D.CUDA(0) Device.set_default(dev) g = Graph() Graph.set_default(g) # Parameters of CNNs # Shape: {kernel_height, kernel_width, in_channels, out_channels} pw_cnn1 = Parameter(Shape([KERNEL_SIZE1, KERNEL_SIZE1, 1, NUM_CHANNELS1]), I.XavierUniformConv2D()) pw_cnn2 = Parameter( Shape([KERNEL_SIZE2, KERNEL_SIZE2, NUM_CHANNELS1, NUM_CHANNELS2]), I.XavierUniformConv2D()) # Parameters of FC layers pw_fc1 = Parameter(Shape([NUM_HIDDEN_UNITS, NUM_INPUT_UNITS]), I.XavierUniform()) pw_fc2 = Parameter(Shape([NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS]), I.XavierUniform()) pb_fc1 = Parameter(Shape([NUM_HIDDEN_UNITS]), I.Constant(0)) pb_fc2 = Parameter(Shape([NUM_OUTPUT_UNITS]), I.Constant(0)) # Optimizer optimizer = O.SGD(.1) optimizer.add(pw_cnn1, pw_cnn2, pw_fc1, pw_fc2, pb_fc1, pb_fc2) # Helper lambda to construct the predictor network. def make_graph(inputs, train): # Input and parameters. #x = F.input(Shape([IMAGE_HEIGHT, IMAGE_WIDTH], BATCH_SIZE), inputs) x = F.input(inputs) w_cnn1 = F.parameter(pw_cnn1) w_cnn2 = F.parameter(pw_cnn2) w_fc1 = F.parameter(pw_fc1) w_fc2 = F.parameter(pw_fc2) b_fc1 = F.parameter(pb_fc1) b_fc2 = F.parameter(pb_fc2) # CNNs h_cnn1 = F.relu(F.conv2d(x, w_cnn1, PADDING1, PADDING1, 1, 1, 1, 1)) h_pool1 = F.max_pool2d(h_cnn1, 2, 2, 0, 0, 2, 2) h_cnn2 = F.relu( F.conv2d(h_pool1, w_cnn2, PADDING2, PADDING2, 1, 1, 1, 1)) h_pool2 = F.max_pool2d(h_cnn2, 2, 2, 0, 0, 2, 2) # FC layers x_fc = F.dropout(F.flatten(h_pool2), .5, train) h_fc = F.dropout(F.relu(F.matmul(w_fc1, x_fc) + b_fc1), .5, train) return F.matmul(w_fc2, h_fc) + b_fc2 # Batch randomizer ids = list(range(NUM_TRAIN_SAMPLES)) for epoch in range(MAX_EPOCH): # Shuffles sample IDs. random.shuffle(ids) # Training loop for batch in range(NUM_TRAIN_BATCHES): print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES), end="") # Makes a minibatch for training. inputs = [ train_inputs[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE) ] labels = [ train_labels[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE) ] # Constructs the graph. g.clear() y = make_graph(inputs, True) loss = F.softmax_cross_entropy(y, labels, 0) avg_loss = F.batch.mean(loss) # Dump computation graph at the first time. # if epoch == 0 and batch == 0: # print(g.dump("dot")) # Implicit forward, backward, and updates parameters. optimizer.reset_gradients() avg_loss.backward() optimizer.update() print() match = 0 # Test loop for batch in range(NUM_TEST_BATCHES): print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES), end="") # Makes a test minibatch. inputs = [ test_inputs[batch * BATCH_SIZE + i] for i in range(BATCH_SIZE) ] # Constructs the graph. g.clear() y = make_graph(inputs, False) # Gets outputs, argmax, and compares them with the label. y_val = y.to_list() for i in range(BATCH_SIZE): maxval = -1e10 argmax = -1 for j in range(NUM_OUTPUT_UNITS): v = y_val[j + i * NUM_OUTPUT_UNITS] if v > maxval: maxval = v argmax = j if argmax == test_labels[i + batch * BATCH_SIZE]: match += 1 accuracy = 100.0 * match / NUM_TEST_SAMPLES print("epoch %d: accuracy: %.2f%%" % (epoch, accuracy)) return 0
def main(): # Loads data train_inputs = load_images("data/train-images-idx3-ubyte", NUM_TRAIN_SAMPLES) train_labels = load_labels("data/train-labels-idx1-ubyte", NUM_TRAIN_SAMPLES) test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES) test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES) # Initializes 2 device objects which manage different GPUs. dev0 = D.CUDA(0) dev1 = D.CUDA(1) # Parameters on GPU 0. pw1 = Parameter([NUM_HIDDEN_UNITS, NUM_INPUT_UNITS], I.XavierUniform(), dev0) pb1 = Parameter([NUM_HIDDEN_UNITS], I.Constant(0), dev0) # Parameters on GPU 1. pw2 = Parameter([NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS], I.XavierUniform(), dev1) pb2 = Parameter([NUM_OUTPUT_UNITS], I.Constant(0), dev1) optimizer = O.SGD(.1) optimizer.add(pw1, pb1, pw2, pb2) def make_graph(inputs): # We first store input values explicitly on GPU 0. x = F.input(inputs, device=dev0) w1 = F.parameter(pw1) b1 = F.parameter(pb1) w2 = F.parameter(pw2) b2 = F.parameter(pb2) # The hidden layer is calculated and implicitly stored on GPU 0. h_on_gpu0 = F.relu(w1 @ x + b1) # `copy()` transfers the hiddne layer to GPU 1. h_on_gpu1 = F.copy(h_on_gpu0, dev1) # The output layer is calculated and implicitly stored on GPU 1. return w2 @ h_on_gpu1 + b2 ids = list(range(NUM_TRAIN_SAMPLES)) g = Graph() Graph.set_default(g) for epoch in range(MAX_EPOCH): random.shuffle(ids) # Training loop for batch in range(NUM_TRAIN_BATCHES): print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES), end="") inputs = [ train_inputs[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE) ] labels = [ train_labels[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE) ] g.clear() y = make_graph(inputs) loss = F.softmax_cross_entropy(y, labels, 0) avg_loss = F.batch.mean(loss) optimizer.reset_gradients() avg_loss.backward() optimizer.update() print() match = 0 # Test loop for batch in range(NUM_TEST_BATCHES): print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES), end="") inputs = [ test_inputs[batch * BATCH_SIZE + i] for i in range(BATCH_SIZE) ] g.clear() y = make_graph(inputs) y_val = y.to_list() for i in range(BATCH_SIZE): maxval = -1e10 argmax = -1 for j in range(NUM_OUTPUT_UNITS): v = y_val[j + i * NUM_OUTPUT_UNITS] if (v > maxval): maxval = v argmax = j if argmax == test_labels[i + batch * BATCH_SIZE]: match += 1 accuracy = 100.0 * match / NUM_TEST_SAMPLES print("\nepoch %d: accuracy: %.2f%%\n" % (epoch, accuracy))