예제 #1
0
 def test_sgd_virtual(self):
     t = O.SGD()
     uint_configs = {'Optimizer.epoch': 1}
     float_configs = {
         'SGD.eta': 0.0,
         'Optimizer.clip_threshold': 0.0,
         'Optimizer.lr_scale': 1.0,
         'Optimizer.l2_strength': 0.0,
     }
     t.set_configs(uint_configs, float_configs)
     uint_configs, float_configs = t.get_configs()
     self.assertEqual(uint_configs['Optimizer.epoch'], 1)
예제 #2
0
def main():
    # Loads vocab.
    vocab = make_vocab("data/ptb.train.txt")
    print("#vocab:", len(vocab))  # maybe 10000
    eos_id = vocab["<s>"]

    # Loads all corpus.
    train_corpus = load_corpus("data/ptb.train.txt", vocab)
    valid_corpus = load_corpus("data/ptb.valid.txt", vocab)
    num_train_sents = len(train_corpus)
    num_valid_sents = len(valid_corpus)
    num_train_labels = count_labels(train_corpus)
    num_valid_labels = count_labels(valid_corpus)
    print("train:", num_train_sents, "sentences,", num_train_labels, "labels")
    print("valid:", num_valid_sents, "sentences,", num_valid_labels, "labels")

    # Device and computation graph.
    dev = D.CUDA(0)
    Device.set_default(dev)
    g = Graph()
    Graph.set_default(g)

    # Our LM.
    lm = RNNLM(len(vocab), eos_id)

    # Optimizer.
    optimizer = O.SGD(1)
    #optimizer.set_weight_decay(1e-6)
    optimizer.set_gradient_clipping(5)
    optimizer.add(lm)

    # Sentence IDs.
    train_ids = list(range(num_train_sents))
    valid_ids = list(range(num_valid_sents))

    best_valid_ppl = 1e10

    # Train/valid loop.
    for epoch in range(MAX_EPOCH):
        print("epoch", epoch + 1, "/", MAX_EPOCH, ":")
        # Shuffles train sentence IDs.
        random.shuffle(train_ids)

        # Training.
        train_loss = 0
        for ofs in range(0, num_train_sents, BATCH_SIZE):
            batch_ids = train_ids[ofs:min(ofs + BATCH_SIZE, num_train_sents)]
            batch = make_batch(train_corpus, batch_ids, eos_id)

            g.clear()

            outputs = lm.forward(batch, True)
            loss = lm.loss(outputs, batch)
            train_loss += loss.to_float() * len(batch_ids)

            optimizer.reset_gradients()
            loss.backward()
            optimizer.update()

            print("%d" % ofs, end="\r")
            sys.stdout.flush()

        train_ppl = math.exp(train_loss / num_train_labels)
        print("  train ppl =", train_ppl)

        # Validation.
        valid_loss = 0
        for ofs in range(0, num_valid_sents, BATCH_SIZE):
            batch_ids = valid_ids[ofs:min(ofs + BATCH_SIZE, num_valid_sents)]
            batch = make_batch(valid_corpus, batch_ids, eos_id)

            g.clear()

            outputs = lm.forward(batch, False)
            loss = lm.loss(outputs, batch)
            valid_loss += loss.to_float() * len(batch_ids)
            print("%d" % ofs, end="\r")
            sys.stdout.flush()

        valid_ppl = math.exp(valid_loss / num_valid_labels)
        print("  valid ppl =", valid_ppl)

        if valid_ppl < best_valid_ppl:
            best_valid_ppl = valid_ppl
            print("  BEST")
        else:
            old_lr = optimizer.get_learning_rate_scaling()
            new_lr = 0.5 * old_lr
            optimizer.set_learning_rate_scaling(new_lr)
            print("  learning rate scaled:", old_lr, "->", new_lr)
예제 #3
0
def main():
    dev = D.Naive()  # or D.CUDA(gpuid)
    Device.set_default(dev)

    # Parameters
    pw1 = Parameter([8, 2], I.XavierUniform())
    pb1 = Parameter([8], I.Constant(0))
    pw2 = Parameter([1, 8], I.XavierUniform())
    pb2 = Parameter([], I.Constant(0))

    # Optimizer
    optimizer = O.SGD(0.1)

    # Registers parameters.
    optimizer.add_parameter(pw1)
    optimizer.add_parameter(pb1)
    optimizer.add_parameter(pw2)
    optimizer.add_parameter(pb2)

    # Training data
    input_data = [
        np.array([1, 1], dtype=np.float32),  # Sample 1
        np.array([1, -1], dtype=np.float32),  # Sample 2
        np.array([-1, 1], dtype=np.float32),  # Sample 3
        np.array([-1, -1], dtype=np.float32),  # Sample 4
    ]
    output_data = [
        np.array([1], dtype=np.float32),  # Label 1
        np.array([-1], dtype=np.float32),  # Label 2
        np.array([-1], dtype=np.float32),  # Label 3
        np.array([1], dtype=np.float32),  # Label 4
    ]

    g = Graph()
    Graph.set_default(g)

    for i in range(10):
        g.clear()

        # Builds a computation graph.
        x = F.input(input_data)
        w1 = F.parameter(pw1)
        b1 = F.parameter(pb1)
        w2 = F.parameter(pw2)
        b2 = F.parameter(pb2)
        h = F.tanh(w1 @ x + b1)
        y = w2 @ h + b2

        # Obtains values.
        y_val = y.to_list()
        print("epoch ", i, ":")
        for j in range(4):
            print("  [", j, "]: ", y_val[j])

        # Extends the computation graph to calculate loss values.
        t = F.input(output_data)
        diff = t - y
        loss = F.batch.mean(diff * diff)

        # Obtains the loss.
        loss_val = loss.to_float()
        print("  loss: ", loss_val)

        # Updates parameters.
        optimizer.reset_gradients()
        loss.backward()
        optimizer.update()
예제 #4
0
파일: hoge.py 프로젝트: ideuchi/python-test
    def primitiv_xor_test(self):
        dev = D.Naive()
        Device.set_default(dev)
        g = Graph()
        Graph.set_default(g)

        input_data = [
            np.array([[1], [1]]),
            np.array([[-1], [1]]),
            np.array([[-1], [-1]]),
            np.array([[1], [-1]]),
        ]

        label_data = [
            np.array([1]),
            np.array([-1]),
            np.array([1]),
            np.array([-1]),
        ]

        N = 8
        pw = Parameter([1, N], I.XavierUniform())
        pb = Parameter([], I.Constant(0))
        pu = Parameter([N, 2], I.XavierUniform())
        pc = Parameter([N], I.Constant(0))
        if os.path.isfile('output/xor/pw.data') and os.path.isfile(
                'output/xor/pb.data') and os.path.isfile(
                    'output/xor/pu.data') and os.path.isfile(
                        'output/xor/pc.data'):
            pw.load('output/xor/pw.data')
            pb.load('output/xor/pb.data')
            pu.load('output/xor/pu.data')
            pc.load('output/xor/pc.data')

        optimizer = O.SGD(0.01)
        optimizer.add(pw, pb, pu, pc)

        for epoch in range(1000):
            print(epoch, end=' ')

            g.clear()

            x = F.input(input_data)
            w = F.parameter(pw)
            b = F.parameter(pb)
            u = F.parameter(pu)
            c = F.parameter(pc)
            h = F.tanh(u @ x + c)
            y = F.tanh(w @ h + b)

            for val in y.to_list():
                print('{:+.6f},'.format(val), end=' ')

            loss = self.calc_loss(y, label_data)
            print('loss={:.6f}'.format(loss.to_float()))

            optimizer.reset_gradients()
            loss.backward()
            optimizer.update()

        pw.save('output/xor/pw.data')
        pb.save('output/xor/pb.data')
        pu.save('output/xor/pu.data')
        pc.save('output/xor/pc.data')

        return y.to_list()
예제 #5
0
def main():
    # Loads data
    train_inputs = load_images("data/train-images-idx3-ubyte", NUM_TRAIN_SAMPLES)
    train_labels = load_labels("data/train-labels-idx1-ubyte", NUM_TRAIN_SAMPLES)
    test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES)
    test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES)

    dev = D.Naive()  # or D.CUDA(gpuid)
    Device.set_default(dev)

    pw1 = Parameter([NUM_HIDDEN_UNITS, NUM_INPUT_UNITS], I.XavierUniform())
    pb1 = Parameter([NUM_HIDDEN_UNITS], I.Constant(0))
    pw2 = Parameter([NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS], I.XavierUniform())
    pb2 = Parameter([NUM_OUTPUT_UNITS], I.Constant(0))

    optimizer = O.SGD(.5)
    optimizer.add(pw1, pb1, pw2, pb2)

    def make_graph(inputs, train):
        x = F.input(inputs)

        w1 = F.parameter(pw1)
        b1 = F.parameter(pb1)
        h = F.relu(w1 @ x + b1)

        h = F.dropout(h, .5, train)

        w2 = F.parameter(pw2)
        b2 = F.parameter(pb2)
        return w2 @ h + b2

    ids = list(range(NUM_TRAIN_SAMPLES))

    g = Graph()
    Graph.set_default(g)

    for epoch in range(MAX_EPOCH):
        random.shuffle(ids)

        # Training loop
        for batch in range(NUM_TRAIN_BATCHES):
            print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES), end="")
            inputs = [train_inputs[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE)]
            labels = [train_labels[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE)]

            g.clear()

            y = make_graph(inputs, True)
            loss = F.softmax_cross_entropy(y, labels, 0)
            avg_loss = F.batch.mean(loss)

            optimizer.reset_gradients()
            avg_loss.backward()
            optimizer.update()

        print()

        match = 0

        # Test loop
        for batch in range(NUM_TEST_BATCHES):
            print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES), end="")
            inputs = [test_inputs[batch * BATCH_SIZE + i] for i in range(BATCH_SIZE)]

            g.clear()

            y = make_graph(inputs, False)
            y_val = y.to_list()
            for i in range(BATCH_SIZE):
                maxval = -1e10
                argmax = -1
                for j in range(NUM_OUTPUT_UNITS):
                    v = y_val[j + i * NUM_OUTPUT_UNITS]
                    if (v > maxval):
                        maxval = v
                        argmax = j
                if argmax == test_labels[i + batch * BATCH_SIZE]:
                    match += 1

        accuracy = 100.0 * match / NUM_TEST_SAMPLES
        print("\nepoch %d: accuracy: %.2f%%\n" % (epoch, accuracy))
예제 #6
0
def main():
    # Loads data
    train_inputs = load_images("data/train-images-idx3-ubyte",
                               NUM_TRAIN_SAMPLES)
    train_labels = load_labels("data/train-labels-idx1-ubyte",
                               NUM_TRAIN_SAMPLES)
    test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES)
    test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES)

    dev = D.CUDA(0)
    Device.set_default(dev)
    g = Graph()
    Graph.set_default(g)

    # Parameters of CNNs
    # Shape: {kernel_height, kernel_width, in_channels, out_channels}
    pw_cnn1 = Parameter(Shape([KERNEL_SIZE1, KERNEL_SIZE1, 1, NUM_CHANNELS1]),
                        I.XavierUniformConv2D())
    pw_cnn2 = Parameter(
        Shape([KERNEL_SIZE2, KERNEL_SIZE2, NUM_CHANNELS1, NUM_CHANNELS2]),
        I.XavierUniformConv2D())

    # Parameters of FC layers
    pw_fc1 = Parameter(Shape([NUM_HIDDEN_UNITS, NUM_INPUT_UNITS]),
                       I.XavierUniform())
    pw_fc2 = Parameter(Shape([NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS]),
                       I.XavierUniform())
    pb_fc1 = Parameter(Shape([NUM_HIDDEN_UNITS]), I.Constant(0))
    pb_fc2 = Parameter(Shape([NUM_OUTPUT_UNITS]), I.Constant(0))

    # Optimizer
    optimizer = O.SGD(.1)
    optimizer.add(pw_cnn1, pw_cnn2, pw_fc1, pw_fc2, pb_fc1, pb_fc2)

    # Helper lambda to construct the predictor network.
    def make_graph(inputs, train):
        # Input and parameters.
        #x = F.input(Shape([IMAGE_HEIGHT, IMAGE_WIDTH], BATCH_SIZE), inputs)
        x = F.input(inputs)
        w_cnn1 = F.parameter(pw_cnn1)
        w_cnn2 = F.parameter(pw_cnn2)
        w_fc1 = F.parameter(pw_fc1)
        w_fc2 = F.parameter(pw_fc2)
        b_fc1 = F.parameter(pb_fc1)
        b_fc2 = F.parameter(pb_fc2)
        # CNNs
        h_cnn1 = F.relu(F.conv2d(x, w_cnn1, PADDING1, PADDING1, 1, 1, 1, 1))
        h_pool1 = F.max_pool2d(h_cnn1, 2, 2, 0, 0, 2, 2)
        h_cnn2 = F.relu(
            F.conv2d(h_pool1, w_cnn2, PADDING2, PADDING2, 1, 1, 1, 1))
        h_pool2 = F.max_pool2d(h_cnn2, 2, 2, 0, 0, 2, 2)
        # FC layers
        x_fc = F.dropout(F.flatten(h_pool2), .5, train)
        h_fc = F.dropout(F.relu(F.matmul(w_fc1, x_fc) + b_fc1), .5, train)
        return F.matmul(w_fc2, h_fc) + b_fc2

    # Batch randomizer
    ids = list(range(NUM_TRAIN_SAMPLES))

    for epoch in range(MAX_EPOCH):
        # Shuffles sample IDs.
        random.shuffle(ids)

        # Training loop
        for batch in range(NUM_TRAIN_BATCHES):
            print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES),
                  end="")
            # Makes a minibatch for training.
            inputs = [
                train_inputs[ids[batch * BATCH_SIZE + i]]
                for i in range(BATCH_SIZE)
            ]
            labels = [
                train_labels[ids[batch * BATCH_SIZE + i]]
                for i in range(BATCH_SIZE)
            ]

            # Constructs the graph.
            g.clear()
            y = make_graph(inputs, True)
            loss = F.softmax_cross_entropy(y, labels, 0)
            avg_loss = F.batch.mean(loss)

            # Dump computation graph at the first time.
            # if epoch == 0 and batch == 0:
            #     print(g.dump("dot"))

            # Implicit forward, backward, and updates parameters.
            optimizer.reset_gradients()
            avg_loss.backward()
            optimizer.update()

        print()

        match = 0

        # Test loop
        for batch in range(NUM_TEST_BATCHES):
            print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES),
                  end="")
            # Makes a test minibatch.
            inputs = [
                test_inputs[batch * BATCH_SIZE + i] for i in range(BATCH_SIZE)
            ]

            # Constructs the graph.
            g.clear()
            y = make_graph(inputs, False)

            # Gets outputs, argmax, and compares them with the label.
            y_val = y.to_list()
            for i in range(BATCH_SIZE):
                maxval = -1e10
                argmax = -1
                for j in range(NUM_OUTPUT_UNITS):
                    v = y_val[j + i * NUM_OUTPUT_UNITS]
                    if v > maxval:
                        maxval = v
                        argmax = j

                if argmax == test_labels[i + batch * BATCH_SIZE]:
                    match += 1

        accuracy = 100.0 * match / NUM_TEST_SAMPLES
        print("epoch %d: accuracy: %.2f%%" % (epoch, accuracy))

    return 0
예제 #7
0
def main():
    # Loads data
    train_inputs = load_images("data/train-images-idx3-ubyte",
                               NUM_TRAIN_SAMPLES)
    train_labels = load_labels("data/train-labels-idx1-ubyte",
                               NUM_TRAIN_SAMPLES)
    test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES)
    test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES)

    # Initializes 2 device objects which manage different GPUs.
    dev0 = D.CUDA(0)
    dev1 = D.CUDA(1)

    # Parameters on GPU 0.
    pw1 = Parameter([NUM_HIDDEN_UNITS, NUM_INPUT_UNITS], I.XavierUniform(),
                    dev0)
    pb1 = Parameter([NUM_HIDDEN_UNITS], I.Constant(0), dev0)

    # Parameters on GPU 1.
    pw2 = Parameter([NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS], I.XavierUniform(),
                    dev1)
    pb2 = Parameter([NUM_OUTPUT_UNITS], I.Constant(0), dev1)

    optimizer = O.SGD(.1)
    optimizer.add(pw1, pb1, pw2, pb2)

    def make_graph(inputs):
        # We first store input values explicitly on GPU 0.
        x = F.input(inputs, device=dev0)
        w1 = F.parameter(pw1)
        b1 = F.parameter(pb1)
        w2 = F.parameter(pw2)
        b2 = F.parameter(pb2)
        # The hidden layer is calculated and implicitly stored on GPU 0.
        h_on_gpu0 = F.relu(w1 @ x + b1)
        # `copy()` transfers the hiddne layer to GPU 1.
        h_on_gpu1 = F.copy(h_on_gpu0, dev1)
        # The output layer is calculated and implicitly stored on GPU 1.
        return w2 @ h_on_gpu1 + b2

    ids = list(range(NUM_TRAIN_SAMPLES))

    g = Graph()
    Graph.set_default(g)

    for epoch in range(MAX_EPOCH):
        random.shuffle(ids)

        # Training loop
        for batch in range(NUM_TRAIN_BATCHES):
            print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES),
                  end="")
            inputs = [
                train_inputs[ids[batch * BATCH_SIZE + i]]
                for i in range(BATCH_SIZE)
            ]
            labels = [
                train_labels[ids[batch * BATCH_SIZE + i]]
                for i in range(BATCH_SIZE)
            ]

            g.clear()

            y = make_graph(inputs)
            loss = F.softmax_cross_entropy(y, labels, 0)
            avg_loss = F.batch.mean(loss)

            optimizer.reset_gradients()
            avg_loss.backward()
            optimizer.update()

        print()

        match = 0

        # Test loop
        for batch in range(NUM_TEST_BATCHES):
            print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES),
                  end="")
            inputs = [
                test_inputs[batch * BATCH_SIZE + i] for i in range(BATCH_SIZE)
            ]

            g.clear()

            y = make_graph(inputs)
            y_val = y.to_list()
            for i in range(BATCH_SIZE):
                maxval = -1e10
                argmax = -1
                for j in range(NUM_OUTPUT_UNITS):
                    v = y_val[j + i * NUM_OUTPUT_UNITS]
                    if (v > maxval):
                        maxval = v
                        argmax = j
                if argmax == test_labels[i + batch * BATCH_SIZE]:
                    match += 1

        accuracy = 100.0 * match / NUM_TEST_SAMPLES
        print("\nepoch %d: accuracy: %.2f%%\n" % (epoch, accuracy))