def FISTA(Op, data, niter, eps=0.1, alpha=None, eigsiter=None, eigstol=0, tol=1e-10, returninfo=False, show=False, threshkind='soft', perc=None, callback=None): r"""Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). Solve an optimization problem with :math:`L1` regularization function given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert data : :obj:`numpy.ndarray` Data niter : :obj:`int` Number of iterations eps : :obj:`float`, optional Sparsity damping alpha : :obj:`float`, optional Step size (:math:`\alpha \le 1/\lambda_{max}(\mathbf{Op}^H\mathbf{Op})` guarantees convergence. If ``None``, the maximum eigenvalue is estimated and the optimal step size is chosen. If provided, the condition will not be checked internally). eigsiter : :obj:`int`, optional Number of iterations for eigenvalue estimation if ``alpha=None`` eigstol : :obj:`float`, optional Tolerance for eigenvalue estimation if ``alpha=None`` tol : :obj:`float`, optional Tolerance. Stop iterations if difference between inverted model at subsequent iterations is smaller than ``tol`` returninfo : :obj:`bool`, optional Return info of FISTA solver show : :obj:`bool`, optional Display iterations log threshkind : :obj:`str`, optional Kind of thresholding ('hard', 'soft', 'half', 'soft-percentile', or 'half-percentile' - 'soft' used as default) perc : :obj:`float`, optional Percentile, as percentage of values to be kept by thresholding (to be provided when thresholding is soft-percentile or half-percentile) callback : :obj:`callable`, optional Function with signature (``callback(x)``) to call after each iteration where ``x`` is the current model vector Returns ------- xinv : :obj:`numpy.ndarray` Inverted model niter : :obj:`int` Number of effective iterations cost : :obj:`numpy.ndarray`, optional History of cost function Raises ------ NotImplementedError If ``threshkind`` is different from hard, soft, half, soft-percentile, or half-percentile ValueError If ``perc=None`` when ``threshkind`` is soft-percentile or half-percentile See Also -------- OMP: Orthogonal Matching Pursuit (OMP). ISTA: Iterative Shrinkage-Thresholding Algorithm (ISTA). SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1). SplitBregman: Split Bregman for mixed L2-L1 norms. Notes ----- Solves the following optimization problem for the operator :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`: .. math:: J = ||\mathbf{d} - \mathbf{Op} \mathbf{x}||_2^2 + \epsilon ||\mathbf{x}||_p using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [1]_, where :math:`p=0, 1, 1/2`. This is a modified version of ISTA solver with improved convergence properties and limited additional computational cost. Similarly to the ISTA solver, the choice of the thresholding algorithm to apply at every iteration is based on the choice of :math:`p`. .. [1] Beck, A., and Teboulle, M., “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems”, SIAM Journal on Imaging Sciences, vol. 2, pp. 183-202. 2009. """ if not threshkind in [ 'hard', 'soft', 'half', 'hard-percentile', 'soft-percentile', 'half-percentile' ]: raise NotImplementedError('threshkind should be hard, soft, half,' 'hard-percentile, soft-percentile, ' 'or half-percentile') if threshkind in ['hard-percentile', 'soft-percentile', 'half-percentile' ] and perc is None: raise ValueError('Provide a percentile when choosing hard-percentile,' 'soft-percentile, or half-percentile thresholding') # choose thresholding function if threshkind == 'soft': threshf = _softthreshold elif threshkind == 'hard': threshf = _hardthreshold elif threshkind == 'half': threshf = _halfthreshold elif threshkind == 'hard-percentile': threshf = _hardthreshold_percentile elif threshkind == 'soft-percentile': threshf = _softthreshold_percentile else: threshf = _halfthreshold_percentile if show: tstart = time.time() print('FISTA optimization (%s thresholding)\n' '-----------------------------------------------------------\n' 'The Operator Op has %d rows and %d cols\n' 'eps = %10e\ttol = %10e\tniter = %d' % (threshkind, Op.shape[0], Op.shape[1], eps, tol, niter)) # step size if alpha is None: if not isinstance(Op, LinearOperator): Op = LinearOperator(Op, explicit=False) # compute largest eigenvalues of Op^H * Op Op1 = LinearOperator(Op.H * Op, explicit=False) maxeig = np.abs( Op1.eigs(neigs=1, symmetric=True, niter=eigsiter, **dict(tol=eigstol, which='LM')))[0] alpha = 1. / maxeig # define threshold thresh = eps * alpha * 0.5 if show: if perc is None: print('alpha = %10e\tthresh = %10e' % (alpha, thresh)) else: print('alpha = %10e\tperc = %.1f' % (alpha, perc)) print('-----------------------------------------------------------\n') head1 = ' Itn x[0] r2norm r12norm xupdate' print(head1) # initialize model and cost function xinv = np.zeros(Op.shape[1], dtype=Op.dtype) zinv = xinv.copy() t = 1 if returninfo: cost = np.zeros(niter + 1) # iterate for iiter in range(niter): xinvold = xinv.copy() # compute residual resz = data - Op.matvec(zinv) # compute gradient grad = alpha * Op.rmatvec(resz) # update inverted model xinv_unthesh = zinv + grad if perc is None: xinv = threshf(xinv_unthesh, thresh) else: xinv = threshf(xinv_unthesh, 100 - perc) # update auxiliary coefficients told = t t = (1. + np.sqrt(1. + 4. * t**2)) / 2. zinv = xinv + ((told - 1.) / t) * (xinv - xinvold) # model update xupdate = np.linalg.norm(xinv - xinvold) if returninfo or show: costdata = 0.5 * np.linalg.norm(data - Op.matvec(xinv))**2 costreg = eps * np.linalg.norm(xinv, ord=1) if returninfo: cost[iiter] = costdata + costreg # run callback if callback is not None: callback(xinv) if show: if iiter < 10 or niter - iiter < 10 or iiter % 10 == 0: msg = '%6g %12.5e %10.3e %9.3e %10.3e' % \ (iiter+1, xinv[0], costdata, costdata+costreg, xupdate) print(msg) # check tolerance if xupdate < tol: niter = iiter break # get values pre-threshold at locations where xinv is different from zero # xinv = np.where(xinv != 0, xinv_unthesh, xinv) if show: print('\nIterations = %d Total time (s) = %.2f' % (niter, time.time() - tstart)) print('---------------------------------------------------------\n') if returninfo: return xinv, niter, cost[:niter] else: return xinv, niter
def ISTA(Op, data, niter, eps=0.1, alpha=None, eigsiter=None, eigstol=0, tol=1e-10, monitorres=False, returninfo=False, show=False, threshkind='soft', perc=None, callback=None): r"""Iterative Shrinkage-Thresholding Algorithm (ISTA). Solve an optimization problem with :math:`Lp, \quad p=0, 1/2, 1` regularization, given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert data : :obj:`numpy.ndarray` Data niter : :obj:`int` Number of iterations eps : :obj:`float`, optional Sparsity damping alpha : :obj:`float`, optional Step size (:math:`\alpha \le 1/\lambda_{max}(\mathbf{Op}^H\mathbf{Op})` guarantees convergence. If ``None``, the maximum eigenvalue is estimated and the optimal step size is chosen. If provided, the condition will not be checked internally). eigsiter : :obj:`float`, optional Number of iterations for eigenvalue estimation if ``alpha=None`` eigstol : :obj:`float`, optional Tolerance for eigenvalue estimation if ``alpha=None`` tol : :obj:`float`, optional Tolerance. Stop iterations if difference between inverted model at subsequent iterations is smaller than ``tol`` monitorres : :obj:`bool`, optional Monitor that residual is decreasing returninfo : :obj:`bool`, optional Return info of CG solver show : :obj:`bool`, optional Display iterations log threshkind : :obj:`str`, optional Kind of thresholding ('hard', 'soft', 'half', 'hard-percentile', 'soft-percentile', or 'half-percentile' - 'soft' used as default) perc : :obj:`float`, optional Percentile, as percentage of values to be kept by thresholding (to be provided when thresholding is soft-percentile or half-percentile) callback : :obj:`callable`, optional Function with signature (``callback(x)``) to call after each iteration where ``x`` is the current model vector Returns ------- xinv : :obj:`numpy.ndarray` Inverted model niter : :obj:`int` Number of effective iterations cost : :obj:`numpy.ndarray`, optional History of cost function Raises ------ NotImplementedError If ``threshkind`` is different from hard, soft, half, soft-percentile, or half-percentile ValueError If ``perc=None`` when ``threshkind`` is soft-percentile or half-percentile ValueError If ``monitorres=True`` and residual increases See Also -------- OMP: Orthogonal Matching Pursuit (OMP). FISTA: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1). SplitBregman: Split Bregman for mixed L2-L1 norms. Notes ----- Solves the following optimization problem for the operator :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`: .. math:: J = ||\mathbf{d} - \mathbf{Op} \mathbf{x}||_2^2 + \epsilon ||\mathbf{x}||_p using the Iterative Shrinkage-Thresholding Algorithms (ISTA) [1]_, where :math:`p=0, 1, 1/2`. This is a very simple iterative algorithm which applies the following step: .. math:: \mathbf{x}^{(i+1)} = T_{(\epsilon \alpha /2, p)} (\mathbf{x}^{(i)} + \alpha \mathbf{Op}^H (\mathbf{d} - \mathbf{Op} \mathbf{x}^{(i)})) where :math:`\epsilon \alpha /2` is the threshold and :math:`T_{(\tau, p)}` is the thresholding rule. The most common variant of ISTA uses the so-called soft-thresholding rule :math:`T(\tau, p=1)`. Alternatively an hard-thresholding rule is used in the case of `p=0` or a half-thresholding rule is used in the case of `p=1/2`. Finally, percentile bases thresholds are also implemented: the damping factor is not used anymore an the threshold changes at every iteration based on the computed percentile. .. [1] Daubechies, I., Defrise, M., and De Mol, C., “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint”, Communications on pure and applied mathematics, vol. 57, pp. 1413-1457. 2004. """ if not threshkind in [ 'hard', 'soft', 'half', 'hard-percentile', 'soft-percentile', 'half-percentile' ]: raise NotImplementedError('threshkind should be hard, soft, half,' 'hard-percentile, soft-percentile, ' 'or half-percentile') if threshkind in ['hard-percentile', 'soft-percentile', 'half-percentile' ] and perc is None: raise ValueError('Provide a percentile when choosing hard-percentile,' 'soft-percentile, or half-percentile thresholding') # choose thresholding function if threshkind == 'soft': threshf = _softthreshold elif threshkind == 'hard': threshf = _hardthreshold elif threshkind == 'half': threshf = _halfthreshold elif threshkind == 'hard-percentile': threshf = _hardthreshold_percentile elif threshkind == 'soft-percentile': threshf = _softthreshold_percentile else: threshf = _halfthreshold_percentile if show: tstart = time.time() print('ISTA optimization (%s thresholding)\n' '-----------------------------------------------------------\n' 'The Operator Op has %d rows and %d cols\n' 'eps = %10e\ttol = %10e\tniter = %d' % (threshkind, Op.shape[0], Op.shape[1], eps, tol, niter)) # step size if alpha is None: if not isinstance(Op, LinearOperator): Op = LinearOperator(Op, explicit=False) # compute largest eigenvalues of Op^H * Op Op1 = LinearOperator(Op.H * Op, explicit=False) maxeig = np.abs( Op1.eigs(neigs=1, symmetric=True, niter=eigsiter, **dict(tol=eigstol, which='LM')))[0] alpha = 1. / maxeig # define threshold thresh = eps * alpha * 0.5 if show: if perc is None: print('alpha = %10e\tthresh = %10e' % (alpha, thresh)) else: print('alpha = %10e\tperc = %.1f' % (alpha, perc)) print('-----------------------------------------------------------\n') head1 = ' Itn x[0] r2norm r12norm xupdate' print(head1) # initialize model and cost function xinv = np.zeros(Op.shape[1], dtype=Op.dtype) if monitorres: normresold = np.inf if returninfo: cost = np.zeros(niter + 1) # iterate for iiter in range(niter): xinvold = xinv.copy() # compute residual res = data - Op.matvec(xinv) if monitorres: normres = np.linalg.norm(res) if normres > normresold: raise ValueError('ISTA stopped at iteration %d due to ' 'residual increasing, consider modifying ' 'eps and/or alpha...' % iiter) else: normresold = normres # compute gradient grad = alpha * Op.rmatvec(res) # update inverted model xinv_unthesh = xinv + grad if perc is None: xinv = threshf(xinv_unthesh, thresh) else: xinv = threshf(xinv_unthesh, 100 - perc) # model update xupdate = np.linalg.norm(xinv - xinvold) if returninfo or show: costdata = 0.5 * np.linalg.norm(res)**2 costreg = eps * np.linalg.norm(xinv, ord=1) if returninfo: cost[iiter] = costdata + costreg # run callback if callback is not None: callback(xinv) if show: if iiter < 10 or niter - iiter < 10 or iiter % 10 == 0: msg = '%6g %12.5e %10.3e %9.3e %10.3e' % \ (iiter+1, xinv[0], costdata, costdata+costreg, xupdate) print(msg) # check tolerance if xupdate < tol: logging.warning('update smaller that tolerance for ' 'iteration %d' % iiter) niter = iiter break # get values pre-threshold at locations where xinv is different from zero # xinv = np.where(xinv != 0, xinv_unthesh, xinv) if show: print('\nIterations = %d Total time (s) = %.2f' % (niter, time.time() - tstart)) print('---------------------------------------------------------\n') if returninfo: return xinv, niter, cost[:niter] else: return xinv, niter
def OMP(Op, data, niter_outer=10, niter_inner=40, sigma=1e-4, normalizecols=False, show=False): r"""Orthogonal Matching Pursuit (OMP). Solve an optimization problem with :math:`L0` regularization function given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert data : :obj:`numpy.ndarray` Data niter_outer : :obj:`int` Number of iterations of outer loop niter_inner : :obj:`int` Number of iterations of inner loop sigma : :obj:`list` Maximum L2 norm of residual. When smaller stop iterations. normalizecols : :obj:`list` Normalize columns (``True``) or not (``False``). Note that this can be expensive as it requires applying the forward operator :math:`n_{cols}` times to unit vectors (i.e., containing 1 at position j and zero otherwise); use only when the columns of the operator are expected to have highly varying norms. show : :obj:`bool`, optional Display iterations log Returns ------- xinv : :obj:`numpy.ndarray` Inverted model iiter : :obj:`int` Number of effective outer iterations cost : :obj:`numpy.ndarray`, optional History of cost function See Also -------- ISTA: Iterative Shrinkage-Thresholding Algorithm (ISTA). FISTA: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1). SplitBregman: Split Bregman for mixed L2-L1 norms. Notes ----- Solves the following optimization problem for the operator :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`: .. math:: ||\mathbf{x}||_0 \quad subj. to \quad ||\mathbf{Op}\mathbf{x}-\mathbf{b}||_2 <= \sigma, using Orthogonal Matching Pursuit (OMP). This is a very simple iterative algorithm which applies the following step: .. math:: \Lambda_k = \Lambda_{k-1} \cup \{ arg max_j |\mathbf{Op}_j^H \mathbf{r}_k| \} \\ \mathbf{x}_k = \{ arg min_{\mathbf{x}} ||\mathbf{Op}_{\Lambda_k} \mathbf{x} - \mathbf{b}||_2 """ Op = LinearOperator(Op) if show: tstart = time.time() print( 'OMP optimization\n' '-----------------------------------------------------------------\n' 'The Operator Op has %d rows and %d cols\n' 'sigma = %.2e\tniter_outer = %d\tniter_inner = %d\n' 'normalization=%s' % (Op.shape[0], Op.shape[1], sigma, niter_outer, niter_inner, normalizecols)) # find normalization factor for each column if normalizecols: ncols = Op.shape[1] norms = np.zeros(ncols) for icol in range(ncols): unit = np.zeros(ncols) unit[icol] = 1 norms[icol] = np.linalg.norm(Op.matvec(unit)) if show: print( '-----------------------------------------------------------------' ) head1 = ' Itn r2norm' print(head1) cols = [] res = data.copy() cost = np.zeros(niter_outer + 1) cost[0] = np.linalg.norm(data) iiter = 0 while iiter < niter_outer and cost[iiter] > sigma: cres = np.abs(Op.rmatvec(res)) if normalizecols: cres = cres / norms # exclude columns already chosen by putting them negative if iiter > 0: cres[cols] = -1 # choose column with max cres imax = np.argwhere(cres == np.max(cres)).ravel() nimax = len(imax) if nimax > 0: imax = imax[np.random.permutation(nimax)[0]] else: imax = imax[0] cols.append(imax) # estimate model for current set of columns Opcol = Op.apply_columns(cols) x = lsqr(Opcol, data, iter_lim=niter_inner)[0] res = data - Opcol.matvec(x) iiter += 1 cost[iiter] = np.linalg.norm(res) if show: if iiter < 10 or niter_outer - iiter < 10 or iiter % 10 == 0: msg = '%6g %12.5e' % (iiter + 1, cost[iiter]) print(msg) xinv = np.zeros(Op.shape[1], dtype=Op.dtype) xinv[cols] = x if show: print('\nIterations = %d Total time (s) = %.2f' % (iiter, time.time() - tstart)) print( '-----------------------------------------------------------------\n' ) return xinv, iiter, cost
def OMP(Op, data, niter_outer=10, niter_inner=40, sigma=1e-4, normalizecols=False, show=False): r"""Orthogonal Matching Pursuit (OMP). Solve an optimization problem with :math:`L0` regularization function given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert data : :obj:`numpy.ndarray` Data niter_outer : :obj:`int`, optional Number of iterations of outer loop niter_inner : :obj:`int`, optional Number of iterations of inner loop. By choosing ``niter_inner=0``, the Matching Pursuit (MP) algorithm is implemented. sigma : :obj:`list` Maximum L2 norm of residual. When smaller stop iterations. normalizecols : :obj:`list`, optional Normalize columns (``True``) or not (``False``). Note that this can be expensive as it requires applying the forward operator :math:`n_{cols}` times to unit vectors (i.e., containing 1 at position j and zero otherwise); use only when the columns of the operator are expected to have highly varying norms. show : :obj:`bool`, optional Display iterations log Returns ------- xinv : :obj:`numpy.ndarray` Inverted model iiter : :obj:`int` Number of effective outer iterations cost : :obj:`numpy.ndarray`, optional History of cost function See Also -------- ISTA: Iterative Shrinkage-Thresholding Algorithm (ISTA). FISTA: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1). SplitBregman: Split Bregman for mixed L2-L1 norms. Notes ----- Solves the following optimization problem for the operator :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`: .. math:: ||\mathbf{x}||_0 \quad subj. to \quad ||\mathbf{Op}\mathbf{x}-\mathbf{b}||_2^2 <= \sigma, using Orthogonal Matching Pursuit (OMP). This is a very simple iterative algorithm which applies the following step: .. math:: \Lambda_k = \Lambda_{k-1} \cup \{ arg max_j |\mathbf{Op}_j^H \mathbf{r}_k| \} \\ \mathbf{x}_k = \{ arg min_{\mathbf{x}} ||\mathbf{Op}_{\Lambda_k} \mathbf{x} - \mathbf{b}||_2^2 Note that by choosing ``niter_inner=0`` the basic Matching Pursuit (MP) algorithm is implemented instead. In other words, instead of solving an optimization at each iteration to find the best :math:`\mathbf{x}` for the currently selected basis functions, the vector :math:`\mathbf{x}` is just updated at the new basis function by taking directly the value from the inner product :math:`\mathbf{Op}_j^H \mathbf{r}_k`. In this case it is highly reccomended to provide a normalized basis function. If different basis have different norms, the solver is likely to diverge. Similar observations apply to OMP, even though mild unbalancing between the basis is generally properly handled. """ ncp = get_array_module(data) Op = LinearOperator(Op) if show: tstart = time.time() algname = 'OMP optimization\n' if niter_inner > 0 else 'MP optimization\n' print(algname + '-----------------------------------------------------------------\n' 'The Operator Op has %d rows and %d cols\n' 'sigma = %.2e\tniter_outer = %d\tniter_inner = %d\n' 'normalization=%s' % (Op.shape[0], Op.shape[1], sigma, niter_outer, niter_inner, normalizecols)) # find normalization factor for each column if normalizecols: ncols = Op.shape[1] norms = ncp.zeros(ncols) for icol in range(ncols): unit = ncp.zeros(ncols, dtype=Op.dtype) unit[icol] = 1 norms[icol] = np.linalg.norm(Op.matvec(unit)) if show: print('-----------------------------------------------------------------') head1 = ' Itn r2norm' print(head1) if niter_inner == 0: x = [] cols = [] res = data.copy() cost = ncp.zeros(niter_outer + 1) cost[0] = np.linalg.norm(data) iiter = 0 while iiter < niter_outer and cost[iiter] > sigma: # compute inner products cres = Op.rmatvec(res) cres_abs = np.abs(cres) if normalizecols: cres_abs = cres_abs / norms # choose column with max cres cres_max = np.max(cres_abs) imax = np.argwhere(cres_abs == cres_max).ravel() nimax = len(imax) if nimax > 0: imax = imax[np.random.permutation(nimax)[0]] else: imax = imax[0] # update active set if imax not in cols: addnew = True cols.append(int(imax)) else: addnew = False imax_in_cols = cols.index(imax) # estimate model for current set of columns if niter_inner == 0: # MP update Opcol = Op.apply_columns([int(imax), ]) res -= Opcol.matvec(cres[imax] * ncp.ones(1)) if addnew: x.append(cres[imax]) else: x[imax_in_cols] += cres[imax] else: # OMP update Opcol = Op.apply_columns(cols) if ncp == np: x = lsqr(Opcol, data, iter_lim=niter_inner)[0] else: x = cgls(Opcol, data, ncp.zeros(int(Opcol.shape[1]), dtype=Opcol.dtype), niter=niter_inner)[0] res = data - Opcol.matvec(x) iiter += 1 cost[iiter] = np.linalg.norm(res) if show: if iiter < 10 or niter_outer - iiter < 10 or iiter % 10 == 0: msg = '%6g %12.5e' % (iiter + 1, cost[iiter]) print(msg) xinv = ncp.zeros(int(Op.shape[1]), dtype=Op.dtype) xinv[cols] = ncp.array(x) if show: print('\nIterations = %d Total time (s) = %.2f' % (iiter, time.time() - tstart)) print( '-----------------------------------------------------------------\n') return xinv, iiter, cost
def FISTA(Op, data, niter, eps=0.1, alpha=None, eigsiter=None, eigstol=0, tol=1e-10, returninfo=False, show=False): r"""Fast Iterative Soft Thresholding Algorithm (FISTA). Solve an optimization problem with :math:`L1` regularization function given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert data : :obj:`numpy.ndarray` Data niter : :obj:`int` Number of iterations eps : :obj:`float`, optional Sparsity damping alpha : :obj:`float`, optional Step size (:math:`\alpha \le 1/\lambda_{max}(\mathbf{Op}^H\mathbf{Op})` guarantees convergence. If ``None``, estimated to satisfy the condition, otherwise the condition will not be checked) eigsiter : :obj:`int`, optional Number of iterations for eigenvalue estimation if ``alpha=None`` eigstol : :obj:`float`, optional Tolerance for eigenvalue estimation if ``alpha=None`` tol : :obj:`float`, optional Tolerance. Stop iterations if difference between inverted model at subsequent iterations is smaller than ``tol`` returninfo : :obj:`bool`, optional Return info of FISTA solver show : :obj:`bool`, optional Display iterations log Returns ------- xinv : :obj:`numpy.ndarray` Inverted model niter : :obj:`int` Number of effective iterations cost : :obj:`numpy.ndarray`, optional History of cost function See Also -------- OMP: Orthogonal Matching Pursuit (OMP). ISTA: Iterative Soft Thresholding Algorithm (FISTA). SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1). SplitBregman: Split Bregman for mixed L2-L1 norms. Notes ----- Solves the following optimization problem for the operator :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`: .. math:: J = ||\mathbf{d} - \mathbf{Op} \mathbf{x}||_2^2 + \epsilon ||\mathbf{x}||_1 using the Fast Iterative Soft Thresholding Algorithm (FISTA) [1]_. This is a modified version of ISTA solver with improved convergence properties and limitied additional computational cost. .. [1] Beck, A., and Teboulle, M., “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems”, SIAM Journal on Imaging Sciences, vol. 2, pp. 183-202. 2009. """ if show: tstart = time.time() print('FISTA optimization\n' '-----------------------------------------------------------\n' 'The Operator Op has %d rows and %d cols\n' 'eps = %10e\ttol = %10e\tniter = %d' % (Op.shape[0], Op.shape[1], eps, tol, niter)) # step size if alpha is None: if not isinstance(Op, LinearOperator): Op = LinearOperator(Op, explicit=False) # compute largest eigenvalues of Op^H * Op Op1 = LinearOperator(Op.H * Op, explicit=False) maxeig = np.abs( Op1.eigs(neigs=1, symmetric=True, niter=eigsiter, **dict(tol=eigstol, which='LM')))[0] alpha = 1. / maxeig # define threshold thresh = eps * alpha * 0.5 if show: print('alpha = %10e\tthresh = %10e' % (alpha, thresh)) print('-----------------------------------------------------------\n') head1 = ' Itn x[0] r2norm r12norm xupdate' print(head1) # initialize model and cost function xinv = np.zeros(Op.shape[1], dtype=Op.dtype) zinv = xinv.copy() t = 1 if returninfo: cost = np.zeros(niter + 1) # iterate for iiter in range(niter): xinvold = xinv.copy() # compute residual resz = data - Op.matvec(zinv) # compute gradient grad = alpha * Op.rmatvec(resz) # update inverted model xinv_unthesh = zinv + grad xinv = _softthreshold(xinv_unthesh, thresh) # update auxiliary coefficients told = t t = (1. + np.sqrt(1. + 4. * t**2)) / 2. zinv = xinv + ((told - 1.) / t) * (xinv - xinvold) # model update xupdate = np.linalg.norm(xinv - xinvold) if returninfo or show: costdata = 0.5 * np.linalg.norm(data - Op.matvec(xinv))**2 costreg = eps * np.linalg.norm(xinv, ord=1) if returninfo: cost[iiter] = costdata + costreg if show: if iiter < 10 or niter - iiter < 10 or iiter % 10 == 0: msg = '%6g %12.5e %10.3e %9.3e %10.3e' % \ (iiter+1, xinv[0], costdata, costdata+costreg, xupdate) print(msg) # check tolerance if xupdate < tol: niter = iiter break # get values pre-threshold at locations where xinv is different from zero #xinv = np.where(xinv != 0, xinv_unthesh, xinv) if show: print('\nIterations = %d Total time (s) = %.2f' % (niter, time.time() - tstart)) print('---------------------------------------------------------\n') if returninfo: return xinv, niter, cost[:niter] else: return xinv, niter
def ISTA(Op, data, niter, eps=0.1, alpha=None, eigsiter=None, eigstol=0, tol=1e-10, monitorres=False, returninfo=False, show=False): r"""Iterative Soft Thresholding Algorithm (ISTA). Solve an optimization problem with :math:`L1` regularization function given the operator ``Op`` and data ``y``. The operator can be real or complex, and should ideally be either square :math:`N=M` or underdetermined :math:`N<M`. Parameters ---------- Op : :obj:`pylops.LinearOperator` Operator to invert data : :obj:`numpy.ndarray` Data niter : :obj:`int` Number of iterations eps : :obj:`float`, optional Sparsity damping alpha : :obj:`float`, optional Step size (:math:`\alpha \le 1/\lambda_{max}(\mathbf{Op}^H\mathbf{Op})` guarantees convergence. If ``None``, estimated to satisfy the condition, otherwise the condition will not be checked) eigsiter : :obj:`float`, optional Number of iterations for eigenvalue estimation if ``alpha=None`` eigstol : :obj:`float`, optional Tolerance for eigenvalue estimation if ``alpha=None`` tol : :obj:`float`, optional Tolerance. Stop iterations if difference between inverted model at subsequent iterations is smaller than ``tol`` monitorres : :obj:`bool`, optional Monitor that residual is decreasing returninfo : :obj:`bool`, optional Return info of CG solver show : :obj:`bool`, optional Display iterations log Returns ------- xinv : :obj:`numpy.ndarray` Inverted model niter : :obj:`int` Number of effective iterations cost : :obj:`numpy.ndarray`, optional History of cost function Raises ------ ValueError If ``monitorres=True`` and residual increases See Also -------- FISTA: Fast Iterative Soft Thresholding Algorithm (FISTA). Notes ----- Solves the following optimization problem for the operator :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`: .. math:: J = ||\mathbf{d} - \mathbf{Op} \mathbf{x}||_2^2 + \epsilon ||\mathbf{x}||_1 using the Iterative Soft Thresholding Algorithm (ISTA) [1]_. This is a very simple iterative algorithm which applies the following step: .. math:: \mathbf{x}^{(i+1)} = soft (\mathbf{x}^{(i)} + \alpha \mathbf{Op}^H (\mathbf{d} - \mathbf{Op} \mathbf{x}^{(i)})), \epsilon \alpha /2) where :math:`\epsilon \alpha /2` is the threshold and :math:`soft()` is the so-called soft-thresholding rule. .. [1] Beck, A., and Teboulle, M., “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems”, SIAM Journal on Imaging Sciences, vol. 2, pp. 183-202. 2009. """ if show: tstart = time.time() print('ISTA optimization\n' '-----------------------------------------------------------\n' 'The Operator Op has %d rows and %d cols\n' 'eps = %10e\ttol = %10e\tniter = %d' % (Op.shape[0], Op.shape[1], eps, tol, niter)) # step size if alpha is None: if not isinstance(Op, LinearOperator): Op = LinearOperator(Op, explicit=False) # compute largest eigenvalues of Op^H * Op Op1 = LinearOperator(Op.H * Op, explicit=False) maxeig = np.abs(Op1.eigs(neigs=1, symmetric=True, niter=eigsiter, **dict(tol=eigstol, which='LM')))[0] alpha = 1./maxeig # define threshold thresh = eps*alpha*0.5 if show: print('alpha = %10e\tthresh = %10e' % (alpha, thresh)) print('-----------------------------------------------------------\n') head1 = ' Itn x[0] r2norm r12norm xupdate' print(head1) # initialize model and cost function xinv = np.zeros(Op.shape[1], dtype=Op.dtype) if monitorres: normresold = np.inf if returninfo: cost = np.zeros(niter+1) # iterate for iiter in range(niter): xinvold = xinv.copy() # compute residual res = data - Op.matvec(xinv) if monitorres: normres = np.linalg.norm(res) if normres > normresold: raise ValueError('ISTA stopped at iteration %d due to ' 'residual increasing, consider modyfing ' 'eps and/or alpha...' % iiter) else: normresold = normres # compute gradient grad = alpha*Op.rmatvec(res) # update inverted model xinv_unthesh = xinv + grad xinv = _softthreshold(xinv_unthesh, thresh) # model update xupdate = np.linalg.norm(xinv - xinvold) if returninfo or show: costdata = 0.5 * np.linalg.norm(res) ** 2 costreg = eps * np.linalg.norm(xinv, ord=1) if returninfo: cost[iiter] = costdata + costreg if show: if iiter < 10 or niter - iiter < 10 or iiter % 10 == 0: msg = '%6g %12.5e %10.3e %9.3e %10.3e' % \ (iiter+1, xinv[0], costdata, costdata+costreg, xupdate) print(msg) # check tolerance if xupdate < tol: niter = iiter break # get values pre-threshold at locations where xinv is different from zero #xinv = np.where(xinv != 0, xinv_unthesh, xinv) if show: print('\nIterations = %d Total time (s) = %.2f' % (niter, time.time() - tstart)) print('---------------------------------------------------------\n') if returninfo: return xinv, niter, cost[:niter] else: return xinv, niter