Exemplo n.º 1
0
def FISTA(Op,
          data,
          niter,
          eps=0.1,
          alpha=None,
          eigsiter=None,
          eigstol=0,
          tol=1e-10,
          returninfo=False,
          show=False,
          threshkind='soft',
          perc=None,
          callback=None):
    r"""Fast Iterative Shrinkage-Thresholding Algorithm (FISTA).

    Solve an optimization problem with :math:`L1` regularization function given
    the operator ``Op`` and data ``y``. The operator can be real or complex,
    and should ideally be either square :math:`N=M` or underdetermined
    :math:`N<M`.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Operator to invert
    data : :obj:`numpy.ndarray`
        Data
    niter : :obj:`int`
        Number of iterations
    eps : :obj:`float`, optional
        Sparsity damping
    alpha : :obj:`float`, optional
        Step size (:math:`\alpha \le 1/\lambda_{max}(\mathbf{Op}^H\mathbf{Op})`
        guarantees convergence. If ``None``, the maximum eigenvalue is
        estimated and the optimal step size is chosen. If provided, the
        condition will not be checked internally).
    eigsiter : :obj:`int`, optional
        Number of iterations for eigenvalue estimation if ``alpha=None``
    eigstol : :obj:`float`, optional
        Tolerance for eigenvalue estimation if ``alpha=None``
    tol : :obj:`float`, optional
        Tolerance. Stop iterations if difference between inverted model
        at subsequent iterations is smaller than ``tol``
    returninfo : :obj:`bool`, optional
        Return info of FISTA solver
    show : :obj:`bool`, optional
        Display iterations log
    threshkind : :obj:`str`, optional
        Kind of thresholding ('hard', 'soft', 'half', 'soft-percentile', or
        'half-percentile' - 'soft' used as default)
    perc : :obj:`float`, optional
        Percentile, as percentage of values to be kept by thresholding (to be
        provided when thresholding is soft-percentile or half-percentile)
    callback : :obj:`callable`, optional
        Function with signature (``callback(x)``) to call after each iteration
        where ``x`` is the current model vector

    Returns
    -------
    xinv : :obj:`numpy.ndarray`
        Inverted model
    niter : :obj:`int`
        Number of effective iterations
    cost : :obj:`numpy.ndarray`, optional
        History of cost function

    Raises
    ------
    NotImplementedError
        If ``threshkind`` is different from hard, soft, half, soft-percentile,
        or half-percentile
    ValueError
        If ``perc=None`` when ``threshkind`` is soft-percentile or
        half-percentile

    See Also
    --------
    OMP: Orthogonal Matching Pursuit (OMP).
    ISTA: Iterative Shrinkage-Thresholding Algorithm (ISTA).
    SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1).
    SplitBregman: Split Bregman for mixed L2-L1 norms.

    Notes
    -----
    Solves the following optimization problem for the operator
    :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`:

    .. math::
        J = ||\mathbf{d} - \mathbf{Op} \mathbf{x}||_2^2 +
            \epsilon ||\mathbf{x}||_p

    using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [1]_,
    where :math:`p=0, 1, 1/2`. This is a modified version of ISTA solver with
    improved convergence properties and limited additional computational cost.
    Similarly to the ISTA solver, the choice of the thresholding algorithm to
    apply at every iteration is based on the choice of :math:`p`.

    .. [1] Beck, A., and Teboulle, M., “A Fast Iterative Shrinkage-Thresholding
       Algorithm for Linear Inverse Problems”, SIAM Journal on
       Imaging Sciences, vol. 2, pp. 183-202. 2009.

    """
    if not threshkind in [
            'hard', 'soft', 'half', 'hard-percentile', 'soft-percentile',
            'half-percentile'
    ]:
        raise NotImplementedError('threshkind should be hard, soft, half,'
                                  'hard-percentile, soft-percentile, '
                                  'or half-percentile')
    if threshkind in ['hard-percentile', 'soft-percentile', 'half-percentile'
                      ] and perc is None:
        raise ValueError('Provide a percentile when choosing hard-percentile,'
                         'soft-percentile, or half-percentile thresholding')

    # choose thresholding function
    if threshkind == 'soft':
        threshf = _softthreshold
    elif threshkind == 'hard':
        threshf = _hardthreshold
    elif threshkind == 'half':
        threshf = _halfthreshold
    elif threshkind == 'hard-percentile':
        threshf = _hardthreshold_percentile
    elif threshkind == 'soft-percentile':
        threshf = _softthreshold_percentile
    else:
        threshf = _halfthreshold_percentile

    if show:
        tstart = time.time()
        print('FISTA optimization (%s thresholding)\n'
              '-----------------------------------------------------------\n'
              'The Operator Op has %d rows and %d cols\n'
              'eps = %10e\ttol = %10e\tniter = %d' %
              (threshkind, Op.shape[0], Op.shape[1], eps, tol, niter))
    # step size
    if alpha is None:
        if not isinstance(Op, LinearOperator):
            Op = LinearOperator(Op, explicit=False)
        # compute largest eigenvalues of Op^H * Op
        Op1 = LinearOperator(Op.H * Op, explicit=False)
        maxeig = np.abs(
            Op1.eigs(neigs=1,
                     symmetric=True,
                     niter=eigsiter,
                     **dict(tol=eigstol, which='LM')))[0]
        alpha = 1. / maxeig

    # define threshold
    thresh = eps * alpha * 0.5

    if show:
        if perc is None:
            print('alpha = %10e\tthresh = %10e' % (alpha, thresh))
        else:
            print('alpha = %10e\tperc = %.1f' % (alpha, perc))
        print('-----------------------------------------------------------\n')
        head1 = '   Itn       x[0]        r2norm     r12norm     xupdate'
        print(head1)

    # initialize model and cost function
    xinv = np.zeros(Op.shape[1], dtype=Op.dtype)
    zinv = xinv.copy()
    t = 1
    if returninfo:
        cost = np.zeros(niter + 1)

    # iterate
    for iiter in range(niter):
        xinvold = xinv.copy()

        # compute residual
        resz = data - Op.matvec(zinv)

        # compute gradient
        grad = alpha * Op.rmatvec(resz)

        # update inverted model
        xinv_unthesh = zinv + grad
        if perc is None:
            xinv = threshf(xinv_unthesh, thresh)
        else:
            xinv = threshf(xinv_unthesh, 100 - perc)

        # update auxiliary coefficients
        told = t
        t = (1. + np.sqrt(1. + 4. * t**2)) / 2.
        zinv = xinv + ((told - 1.) / t) * (xinv - xinvold)

        # model update
        xupdate = np.linalg.norm(xinv - xinvold)

        if returninfo or show:
            costdata = 0.5 * np.linalg.norm(data - Op.matvec(xinv))**2
            costreg = eps * np.linalg.norm(xinv, ord=1)
        if returninfo:
            cost[iiter] = costdata + costreg

        # run callback
        if callback is not None:
            callback(xinv)

        if show:
            if iiter < 10 or niter - iiter < 10 or iiter % 10 == 0:
                msg = '%6g  %12.5e  %10.3e   %9.3e  %10.3e' % \
                      (iiter+1, xinv[0], costdata, costdata+costreg, xupdate)
                print(msg)

        # check tolerance
        if xupdate < tol:
            niter = iiter
            break

    # get values pre-threshold  at locations where xinv is different from zero
    # xinv = np.where(xinv != 0, xinv_unthesh, xinv)

    if show:
        print('\nIterations = %d        Total time (s) = %.2f' %
              (niter, time.time() - tstart))
        print('---------------------------------------------------------\n')
    if returninfo:
        return xinv, niter, cost[:niter]
    else:
        return xinv, niter
Exemplo n.º 2
0
def ISTA(Op,
         data,
         niter,
         eps=0.1,
         alpha=None,
         eigsiter=None,
         eigstol=0,
         tol=1e-10,
         monitorres=False,
         returninfo=False,
         show=False,
         threshkind='soft',
         perc=None,
         callback=None):
    r"""Iterative Shrinkage-Thresholding Algorithm (ISTA).

    Solve an optimization problem with :math:`Lp, \quad p=0, 1/2, 1`
    regularization, given the operator ``Op`` and data ``y``. The operator
    can be real or complex, and should ideally be either square :math:`N=M`
    or underdetermined :math:`N<M`.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Operator to invert
    data : :obj:`numpy.ndarray`
        Data
    niter : :obj:`int`
        Number of iterations
    eps : :obj:`float`, optional
        Sparsity damping
    alpha : :obj:`float`, optional
        Step size (:math:`\alpha \le 1/\lambda_{max}(\mathbf{Op}^H\mathbf{Op})`
        guarantees convergence. If ``None``, the maximum eigenvalue is
        estimated and the optimal step size is chosen. If provided, the
        condition will not be checked internally).
    eigsiter : :obj:`float`, optional
        Number of iterations for eigenvalue estimation if ``alpha=None``
    eigstol : :obj:`float`, optional
        Tolerance for eigenvalue estimation if ``alpha=None``
    tol : :obj:`float`, optional
        Tolerance. Stop iterations if difference between inverted model
        at subsequent iterations is smaller than ``tol``
    monitorres : :obj:`bool`, optional
        Monitor that residual is decreasing
    returninfo : :obj:`bool`, optional
        Return info of CG solver
    show : :obj:`bool`, optional
        Display iterations log
    threshkind : :obj:`str`, optional
        Kind of thresholding ('hard', 'soft', 'half', 'hard-percentile',
        'soft-percentile', or 'half-percentile' - 'soft' used as default)
    perc : :obj:`float`, optional
        Percentile, as percentage of values to be kept by thresholding (to be
        provided when thresholding is soft-percentile or half-percentile)
    callback : :obj:`callable`, optional
        Function with signature (``callback(x)``) to call after each iteration
        where ``x`` is the current model vector

    Returns
    -------
    xinv : :obj:`numpy.ndarray`
        Inverted model
    niter : :obj:`int`
        Number of effective iterations
    cost : :obj:`numpy.ndarray`, optional
        History of cost function

    Raises
    ------
    NotImplementedError
        If ``threshkind`` is different from hard, soft, half, soft-percentile,
        or half-percentile
    ValueError
        If ``perc=None`` when ``threshkind`` is soft-percentile or
        half-percentile
    ValueError
        If ``monitorres=True`` and residual increases

    See Also
    --------
    OMP: Orthogonal Matching Pursuit (OMP).
    FISTA: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA).
    SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1).
    SplitBregman: Split Bregman for mixed L2-L1 norms.

    Notes
    -----
    Solves the following optimization problem for the operator
    :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`:

    .. math::
        J = ||\mathbf{d} - \mathbf{Op} \mathbf{x}||_2^2 +
            \epsilon ||\mathbf{x}||_p

    using the Iterative Shrinkage-Thresholding Algorithms (ISTA) [1]_, where
    :math:`p=0, 1, 1/2`. This is a very simple iterative algorithm which
    applies the following step:

    .. math::
        \mathbf{x}^{(i+1)} = T_{(\epsilon \alpha /2, p)} (\mathbf{x}^{(i)} +
        \alpha \mathbf{Op}^H (\mathbf{d} - \mathbf{Op} \mathbf{x}^{(i)}))

    where :math:`\epsilon \alpha /2` is the threshold and :math:`T_{(\tau, p)}`
    is the thresholding rule. The most common variant of ISTA uses the
    so-called soft-thresholding rule :math:`T(\tau, p=1)`. Alternatively an
    hard-thresholding rule is used in the case of `p=0` or a half-thresholding
    rule is used in the case of `p=1/2`. Finally, percentile bases thresholds
    are also implemented: the damping factor is not used anymore an the
    threshold changes at every iteration based on the computed percentile.

    .. [1] Daubechies, I., Defrise, M., and De Mol, C., “An iterative
       thresholding algorithm for linear inverse problems with a sparsity
       constraint”, Communications on pure and applied mathematics, vol. 57,
       pp. 1413-1457. 2004.

    """
    if not threshkind in [
            'hard', 'soft', 'half', 'hard-percentile', 'soft-percentile',
            'half-percentile'
    ]:
        raise NotImplementedError('threshkind should be hard, soft, half,'
                                  'hard-percentile, soft-percentile, '
                                  'or half-percentile')
    if threshkind in ['hard-percentile', 'soft-percentile', 'half-percentile'
                      ] and perc is None:
        raise ValueError('Provide a percentile when choosing hard-percentile,'
                         'soft-percentile, or half-percentile thresholding')

    # choose thresholding function
    if threshkind == 'soft':
        threshf = _softthreshold
    elif threshkind == 'hard':
        threshf = _hardthreshold
    elif threshkind == 'half':
        threshf = _halfthreshold
    elif threshkind == 'hard-percentile':
        threshf = _hardthreshold_percentile
    elif threshkind == 'soft-percentile':
        threshf = _softthreshold_percentile
    else:
        threshf = _halfthreshold_percentile

    if show:
        tstart = time.time()
        print('ISTA optimization (%s thresholding)\n'
              '-----------------------------------------------------------\n'
              'The Operator Op has %d rows and %d cols\n'
              'eps = %10e\ttol = %10e\tniter = %d' %
              (threshkind, Op.shape[0], Op.shape[1], eps, tol, niter))
    # step size
    if alpha is None:
        if not isinstance(Op, LinearOperator):
            Op = LinearOperator(Op, explicit=False)
        # compute largest eigenvalues of Op^H * Op
        Op1 = LinearOperator(Op.H * Op, explicit=False)
        maxeig = np.abs(
            Op1.eigs(neigs=1,
                     symmetric=True,
                     niter=eigsiter,
                     **dict(tol=eigstol, which='LM')))[0]
        alpha = 1. / maxeig

    # define threshold
    thresh = eps * alpha * 0.5

    if show:
        if perc is None:
            print('alpha = %10e\tthresh = %10e' % (alpha, thresh))
        else:
            print('alpha = %10e\tperc = %.1f' % (alpha, perc))
        print('-----------------------------------------------------------\n')
        head1 = '   Itn       x[0]        r2norm     r12norm     xupdate'
        print(head1)

    # initialize model and cost function
    xinv = np.zeros(Op.shape[1], dtype=Op.dtype)
    if monitorres:
        normresold = np.inf
    if returninfo:
        cost = np.zeros(niter + 1)

    # iterate
    for iiter in range(niter):
        xinvold = xinv.copy()

        # compute residual
        res = data - Op.matvec(xinv)
        if monitorres:
            normres = np.linalg.norm(res)
            if normres > normresold:
                raise ValueError('ISTA stopped at iteration %d due to '
                                 'residual increasing, consider modifying '
                                 'eps and/or alpha...' % iiter)
            else:
                normresold = normres

        # compute gradient
        grad = alpha * Op.rmatvec(res)

        # update inverted model
        xinv_unthesh = xinv + grad
        if perc is None:
            xinv = threshf(xinv_unthesh, thresh)
        else:
            xinv = threshf(xinv_unthesh, 100 - perc)

        # model update
        xupdate = np.linalg.norm(xinv - xinvold)

        if returninfo or show:
            costdata = 0.5 * np.linalg.norm(res)**2
            costreg = eps * np.linalg.norm(xinv, ord=1)
        if returninfo:
            cost[iiter] = costdata + costreg

        # run callback
        if callback is not None:
            callback(xinv)

        if show:
            if iiter < 10 or niter - iiter < 10 or iiter % 10 == 0:
                msg = '%6g  %12.5e  %10.3e   %9.3e  %10.3e' % \
                      (iiter+1, xinv[0], costdata, costdata+costreg, xupdate)
                print(msg)

        # check tolerance
        if xupdate < tol:
            logging.warning('update smaller that tolerance for '
                            'iteration %d' % iiter)
            niter = iiter
            break

    # get values pre-threshold at locations where xinv is different from zero
    # xinv = np.where(xinv != 0, xinv_unthesh, xinv)

    if show:
        print('\nIterations = %d        Total time (s) = %.2f' %
              (niter, time.time() - tstart))
        print('---------------------------------------------------------\n')
    if returninfo:
        return xinv, niter, cost[:niter]
    else:
        return xinv, niter
Exemplo n.º 3
0
def OMP(Op,
        data,
        niter_outer=10,
        niter_inner=40,
        sigma=1e-4,
        normalizecols=False,
        show=False):
    r"""Orthogonal Matching Pursuit (OMP).

    Solve an optimization problem with :math:`L0` regularization function given
    the operator ``Op`` and data ``y``. The operator can be real or complex,
    and should ideally be either square :math:`N=M` or underdetermined
    :math:`N<M`.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Operator to invert
    data : :obj:`numpy.ndarray`
        Data
    niter_outer : :obj:`int`
        Number of iterations of outer loop
    niter_inner : :obj:`int`
        Number of iterations of inner loop
    sigma : :obj:`list`
        Maximum L2 norm of residual. When smaller stop iterations.
    normalizecols : :obj:`list`
        Normalize columns (``True``) or not (``False``). Note that this can be
        expensive as it requires applying the forward operator
        :math:`n_{cols}` times to unit vectors (i.e., containing 1 at
        position j and zero otherwise); use only when the columns of the
        operator are expected to have highly varying norms.
    show : :obj:`bool`, optional
        Display iterations log

    Returns
    -------
    xinv : :obj:`numpy.ndarray`
        Inverted model
    iiter : :obj:`int`
        Number of effective outer iterations
    cost : :obj:`numpy.ndarray`, optional
        History of cost function

    See Also
    --------
    ISTA: Iterative Shrinkage-Thresholding Algorithm (ISTA).
    FISTA: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA).
    SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1).
    SplitBregman: Split Bregman for mixed L2-L1 norms.

    Notes
    -----
    Solves the following optimization problem for the operator
    :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`:

    .. math::
            ||\mathbf{x}||_0 \quad  subj. to \quad
            ||\mathbf{Op}\mathbf{x}-\mathbf{b}||_2 <= \sigma,

    using Orthogonal Matching Pursuit (OMP). This is a very
    simple iterative algorithm which applies the following step:

    .. math::
        \Lambda_k = \Lambda_{k-1} \cup \{ arg max_j
        |\mathbf{Op}_j^H \mathbf{r}_k| \} \\
        \mathbf{x}_k =  \{ arg min_{\mathbf{x}}
        ||\mathbf{Op}_{\Lambda_k} \mathbf{x} - \mathbf{b}||_2

    """
    Op = LinearOperator(Op)
    if show:
        tstart = time.time()
        print(
            'OMP optimization\n'
            '-----------------------------------------------------------------\n'
            'The Operator Op has %d rows and %d cols\n'
            'sigma = %.2e\tniter_outer = %d\tniter_inner = %d\n'
            'normalization=%s' % (Op.shape[0], Op.shape[1], sigma, niter_outer,
                                  niter_inner, normalizecols))
    # find normalization factor for each column
    if normalizecols:
        ncols = Op.shape[1]
        norms = np.zeros(ncols)
        for icol in range(ncols):
            unit = np.zeros(ncols)
            unit[icol] = 1
            norms[icol] = np.linalg.norm(Op.matvec(unit))
    if show:
        print(
            '-----------------------------------------------------------------'
        )
        head1 = '    Itn           r2norm'
        print(head1)

    cols = []
    res = data.copy()
    cost = np.zeros(niter_outer + 1)
    cost[0] = np.linalg.norm(data)
    iiter = 0
    while iiter < niter_outer and cost[iiter] > sigma:
        cres = np.abs(Op.rmatvec(res))
        if normalizecols:
            cres = cres / norms
        # exclude columns already chosen by putting them negative
        if iiter > 0:
            cres[cols] = -1
        # choose column with max cres
        imax = np.argwhere(cres == np.max(cres)).ravel()
        nimax = len(imax)
        if nimax > 0:
            imax = imax[np.random.permutation(nimax)[0]]
        else:
            imax = imax[0]
        cols.append(imax)

        # estimate model for current set of columns
        Opcol = Op.apply_columns(cols)
        x = lsqr(Opcol, data, iter_lim=niter_inner)[0]
        res = data - Opcol.matvec(x)
        iiter += 1
        cost[iiter] = np.linalg.norm(res)
        if show:
            if iiter < 10 or niter_outer - iiter < 10 or iiter % 10 == 0:
                msg = '%6g        %12.5e' % (iiter + 1, cost[iiter])
                print(msg)
    xinv = np.zeros(Op.shape[1], dtype=Op.dtype)
    xinv[cols] = x
    if show:
        print('\nIterations = %d        Total time (s) = %.2f' %
              (iiter, time.time() - tstart))
        print(
            '-----------------------------------------------------------------\n'
        )
    return xinv, iiter, cost
Exemplo n.º 4
0
def OMP(Op, data, niter_outer=10, niter_inner=40, sigma=1e-4,
        normalizecols=False, show=False):
    r"""Orthogonal Matching Pursuit (OMP).

    Solve an optimization problem with :math:`L0` regularization function given
    the operator ``Op`` and data ``y``. The operator can be real or complex,
    and should ideally be either square :math:`N=M` or underdetermined
    :math:`N<M`.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Operator to invert
    data : :obj:`numpy.ndarray`
        Data
    niter_outer : :obj:`int`, optional
        Number of iterations of outer loop
    niter_inner : :obj:`int`, optional
        Number of iterations of inner loop. By choosing ``niter_inner=0``, the
        Matching Pursuit (MP) algorithm is implemented.
    sigma : :obj:`list`
        Maximum L2 norm of residual. When smaller stop iterations.
    normalizecols : :obj:`list`, optional
        Normalize columns (``True``) or not (``False``). Note that this can be
        expensive as it requires applying the forward operator
        :math:`n_{cols}` times to unit vectors (i.e., containing 1 at
        position j and zero otherwise); use only when the columns of the
        operator are expected to have highly varying norms.
    show : :obj:`bool`, optional
        Display iterations log

    Returns
    -------
    xinv : :obj:`numpy.ndarray`
        Inverted model
    iiter : :obj:`int`
        Number of effective outer iterations
    cost : :obj:`numpy.ndarray`, optional
        History of cost function

    See Also
    --------
    ISTA: Iterative Shrinkage-Thresholding Algorithm (ISTA).
    FISTA: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA).
    SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1).
    SplitBregman: Split Bregman for mixed L2-L1 norms.

    Notes
    -----
    Solves the following optimization problem for the operator
    :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`:

    .. math::
            ||\mathbf{x}||_0 \quad  subj. to \quad
            ||\mathbf{Op}\mathbf{x}-\mathbf{b}||_2^2 <= \sigma,

    using Orthogonal Matching Pursuit (OMP). This is a very
    simple iterative algorithm which applies the following step:

    .. math::
        \Lambda_k = \Lambda_{k-1} \cup \{ arg max_j
        |\mathbf{Op}_j^H \mathbf{r}_k| \} \\
        \mathbf{x}_k =  \{ arg min_{\mathbf{x}}
        ||\mathbf{Op}_{\Lambda_k} \mathbf{x} - \mathbf{b}||_2^2

    Note that by choosing ``niter_inner=0`` the basic Matching Pursuit (MP)
    algorithm is implemented instead. In other words, instead of solving an
    optimization at each iteration to find the best :math:`\mathbf{x}` for the
    currently selected basis functions, the vector :math:`\mathbf{x}` is just
    updated at the new basis function by taking directly the value from
    the inner product :math:`\mathbf{Op}_j^H \mathbf{r}_k`.

    In this case it is highly reccomended to provide a normalized basis
    function. If different basis have different norms, the solver is likely
    to diverge. Similar observations apply to OMP, even though mild unbalancing
    between the basis is generally properly handled.

    """
    ncp = get_array_module(data)

    Op = LinearOperator(Op)
    if show:
        tstart = time.time()
        algname = 'OMP optimization\n' if niter_inner > 0 else 'MP optimization\n'
        print(algname +
              '-----------------------------------------------------------------\n'
              'The Operator Op has %d rows and %d cols\n'
              'sigma = %.2e\tniter_outer = %d\tniter_inner = %d\n'
              'normalization=%s' %
              (Op.shape[0], Op.shape[1], sigma, niter_outer,
               niter_inner, normalizecols))
    # find normalization factor for each column
    if normalizecols:
        ncols = Op.shape[1]
        norms = ncp.zeros(ncols)
        for icol in range(ncols):
            unit = ncp.zeros(ncols, dtype=Op.dtype)
            unit[icol] = 1
            norms[icol] = np.linalg.norm(Op.matvec(unit))
    if show:
        print('-----------------------------------------------------------------')
        head1 = '    Itn           r2norm'
        print(head1)

    if niter_inner == 0:
        x = []
    cols = []
    res = data.copy()
    cost = ncp.zeros(niter_outer + 1)
    cost[0] = np.linalg.norm(data)
    iiter = 0
    while iiter < niter_outer and cost[iiter] > sigma:
        # compute inner products
        cres = Op.rmatvec(res)
        cres_abs = np.abs(cres)
        if normalizecols:
            cres_abs = cres_abs / norms
        # choose column with max cres
        cres_max = np.max(cres_abs)
        imax = np.argwhere(cres_abs == cres_max).ravel()
        nimax = len(imax)
        if nimax > 0:
            imax = imax[np.random.permutation(nimax)[0]]
        else:
            imax = imax[0]
        # update active set
        if imax not in cols:
            addnew = True
            cols.append(int(imax))
        else:
            addnew = False
            imax_in_cols = cols.index(imax)

        # estimate model for current set of columns
        if niter_inner == 0:
            # MP update
            Opcol = Op.apply_columns([int(imax), ])
            res -= Opcol.matvec(cres[imax] * ncp.ones(1))
            if addnew:
                x.append(cres[imax])
            else:
                x[imax_in_cols] += cres[imax]
        else:
            # OMP update
            Opcol = Op.apply_columns(cols)
            if ncp == np:
                x = lsqr(Opcol, data, iter_lim=niter_inner)[0]
            else:
                x = cgls(Opcol, data, ncp.zeros(int(Opcol.shape[1]),
                                                dtype=Opcol.dtype),
                         niter=niter_inner)[0]
            res = data - Opcol.matvec(x)
        iiter += 1
        cost[iiter] = np.linalg.norm(res)
        if show:
            if iiter < 10 or niter_outer - iiter < 10 or iiter % 10 == 0:
                msg = '%6g        %12.5e' % (iiter + 1, cost[iiter])
                print(msg)
    xinv = ncp.zeros(int(Op.shape[1]), dtype=Op.dtype)
    xinv[cols] = ncp.array(x)
    if show:
        print('\nIterations = %d        Total time (s) = %.2f'
              % (iiter, time.time() - tstart))
        print(
            '-----------------------------------------------------------------\n')
    return xinv, iiter, cost
Exemplo n.º 5
0
def FISTA(Op,
          data,
          niter,
          eps=0.1,
          alpha=None,
          eigsiter=None,
          eigstol=0,
          tol=1e-10,
          returninfo=False,
          show=False):
    r"""Fast Iterative Soft Thresholding Algorithm (FISTA).

    Solve an optimization problem with :math:`L1` regularization function given
    the operator ``Op`` and data ``y``. The operator can be real or complex,
    and should ideally be either square :math:`N=M` or underdetermined
    :math:`N<M`.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Operator to invert
    data : :obj:`numpy.ndarray`
        Data
    niter : :obj:`int`
        Number of iterations
    eps : :obj:`float`, optional
        Sparsity damping
    alpha : :obj:`float`, optional
        Step size (:math:`\alpha \le 1/\lambda_{max}(\mathbf{Op}^H\mathbf{Op})`
        guarantees convergence. If ``None``, estimated to satisfy the
        condition, otherwise the condition will not be checked)
    eigsiter : :obj:`int`, optional
        Number of iterations for eigenvalue estimation if ``alpha=None``
    eigstol : :obj:`float`, optional
        Tolerance for eigenvalue estimation if ``alpha=None``
    tol : :obj:`float`, optional
        Tolerance. Stop iterations if difference between inverted model
        at subsequent iterations is smaller than ``tol``
    returninfo : :obj:`bool`, optional
        Return info of FISTA solver
    show : :obj:`bool`, optional
        Display iterations log

    Returns
    -------
    xinv : :obj:`numpy.ndarray`
        Inverted model
    niter : :obj:`int`
        Number of effective iterations
    cost : :obj:`numpy.ndarray`, optional
        History of cost function

    See Also
    --------
    OMP: Orthogonal Matching Pursuit (OMP).
    ISTA: Iterative Soft Thresholding Algorithm (FISTA).
    SPGL1: Spectral Projected-Gradient for L1 norm (SPGL1).
    SplitBregman: Split Bregman for mixed L2-L1 norms.

    Notes
    -----
    Solves the following optimization problem for the operator
    :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`:

    .. math::
        J = ||\mathbf{d} - \mathbf{Op} \mathbf{x}||_2^2 +
            \epsilon ||\mathbf{x}||_1

    using the Fast Iterative Soft Thresholding Algorithm (FISTA) [1]_. This is
    a modified version of ISTA solver with improved convergence properties and
    limitied additional computational cost.

    .. [1] Beck, A., and Teboulle, M., “A Fast Iterative Shrinkage-Thresholding
       Algorithm for Linear Inverse Problems”, SIAM Journal on
       Imaging Sciences, vol. 2, pp. 183-202. 2009.

    """
    if show:
        tstart = time.time()
        print('FISTA optimization\n'
              '-----------------------------------------------------------\n'
              'The Operator Op has %d rows and %d cols\n'
              'eps = %10e\ttol = %10e\tniter = %d' %
              (Op.shape[0], Op.shape[1], eps, tol, niter))
    # step size
    if alpha is None:
        if not isinstance(Op, LinearOperator):
            Op = LinearOperator(Op, explicit=False)
        # compute largest eigenvalues of Op^H * Op
        Op1 = LinearOperator(Op.H * Op, explicit=False)
        maxeig = np.abs(
            Op1.eigs(neigs=1,
                     symmetric=True,
                     niter=eigsiter,
                     **dict(tol=eigstol, which='LM')))[0]
        alpha = 1. / maxeig

    # define threshold
    thresh = eps * alpha * 0.5

    if show:
        print('alpha = %10e\tthresh = %10e' % (alpha, thresh))
        print('-----------------------------------------------------------\n')
        head1 = '   Itn       x[0]        r2norm     r12norm     xupdate'
        print(head1)

    # initialize model and cost function
    xinv = np.zeros(Op.shape[1], dtype=Op.dtype)
    zinv = xinv.copy()
    t = 1
    if returninfo:
        cost = np.zeros(niter + 1)

    # iterate
    for iiter in range(niter):
        xinvold = xinv.copy()

        # compute residual
        resz = data - Op.matvec(zinv)

        # compute gradient
        grad = alpha * Op.rmatvec(resz)

        # update inverted model
        xinv_unthesh = zinv + grad
        xinv = _softthreshold(xinv_unthesh, thresh)

        # update auxiliary coefficients
        told = t
        t = (1. + np.sqrt(1. + 4. * t**2)) / 2.
        zinv = xinv + ((told - 1.) / t) * (xinv - xinvold)

        # model update
        xupdate = np.linalg.norm(xinv - xinvold)

        if returninfo or show:
            costdata = 0.5 * np.linalg.norm(data - Op.matvec(xinv))**2
            costreg = eps * np.linalg.norm(xinv, ord=1)
        if returninfo:
            cost[iiter] = costdata + costreg

        if show:
            if iiter < 10 or niter - iiter < 10 or iiter % 10 == 0:
                msg = '%6g  %12.5e  %10.3e   %9.3e  %10.3e' % \
                      (iiter+1, xinv[0], costdata, costdata+costreg, xupdate)
                print(msg)

        # check tolerance
        if xupdate < tol:
            niter = iiter
            break

    # get values pre-threshold  at locations where xinv is different from zero
    #xinv = np.where(xinv != 0, xinv_unthesh, xinv)
    if show:
        print('\nIterations = %d        Total time (s) = %.2f' %
              (niter, time.time() - tstart))
        print('---------------------------------------------------------\n')
    if returninfo:
        return xinv, niter, cost[:niter]
    else:
        return xinv, niter
Exemplo n.º 6
0
def ISTA(Op, data, niter, eps=0.1, alpha=None, eigsiter=None, eigstol=0,
         tol=1e-10, monitorres=False, returninfo=False, show=False):
    r"""Iterative Soft Thresholding Algorithm (ISTA).

    Solve an optimization problem with :math:`L1` regularization function given
    the operator ``Op`` and data ``y``. The operator can be real or complex,
    and should ideally be either square :math:`N=M` or underdetermined
    :math:`N<M`.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Operator to invert
    data : :obj:`numpy.ndarray`
        Data
    niter : :obj:`int`
        Number of iterations
    eps : :obj:`float`, optional
        Sparsity damping
    alpha : :obj:`float`, optional
        Step size (:math:`\alpha \le 1/\lambda_{max}(\mathbf{Op}^H\mathbf{Op})`
        guarantees convergence. If ``None``, estimated to satisfy the
        condition, otherwise the condition will not be checked)
    eigsiter : :obj:`float`, optional
        Number of iterations for eigenvalue estimation if ``alpha=None``
    eigstol : :obj:`float`, optional
        Tolerance for eigenvalue estimation if ``alpha=None``
    tol : :obj:`float`, optional
        Tolerance. Stop iterations if difference between inverted model
        at subsequent iterations is smaller than ``tol``
    monitorres : :obj:`bool`, optional
        Monitor that residual is decreasing
    returninfo : :obj:`bool`, optional
        Return info of CG solver
    show : :obj:`bool`, optional
        Display iterations log

    Returns
    -------
    xinv : :obj:`numpy.ndarray`
        Inverted model
    niter : :obj:`int`
        Number of effective iterations
    cost : :obj:`numpy.ndarray`, optional
        History of cost function

    Raises
    ------
    ValueError
        If ``monitorres=True`` and residual increases

    See Also
    --------
    FISTA: Fast Iterative Soft Thresholding Algorithm (FISTA).

    Notes
    -----
    Solves the following optimization problem for the operator
    :math:`\mathbf{Op}` and the data :math:`\mathbf{d}`:

    .. math::
        J = ||\mathbf{d} - \mathbf{Op} \mathbf{x}||_2^2 +
            \epsilon ||\mathbf{x}||_1

    using the Iterative Soft Thresholding Algorithm (ISTA) [1]_. This is a very
    simple iterative algorithm which applies the following step:

    .. math::
        \mathbf{x}^{(i+1)} = soft (\mathbf{x}^{(i)} + \alpha \mathbf{Op}^H
        (\mathbf{d} - \mathbf{Op} \mathbf{x}^{(i)})), \epsilon \alpha /2)

    where :math:`\epsilon \alpha /2` is the
    threshold and :math:`soft()` is the so-called soft-thresholding rule.

    .. [1] Beck, A., and Teboulle, M., “A Fast Iterative Shrinkage-Thresholding
       Algorithm for Linear Inverse Problems”, SIAM Journal on
       Imaging Sciences, vol. 2, pp. 183-202. 2009.

    """
    if show:
        tstart = time.time()
        print('ISTA optimization\n'
              '-----------------------------------------------------------\n'
              'The Operator Op has %d rows and %d cols\n'
              'eps = %10e\ttol = %10e\tniter = %d' % (Op.shape[0],
                                                      Op.shape[1],
                                                      eps, tol, niter))
    # step size
    if alpha is None:
        if not isinstance(Op, LinearOperator):
            Op = LinearOperator(Op, explicit=False)
        # compute largest eigenvalues of Op^H * Op
        Op1 = LinearOperator(Op.H * Op, explicit=False)
        maxeig = np.abs(Op1.eigs(neigs=1, symmetric=True, niter=eigsiter,
                                 **dict(tol=eigstol, which='LM')))[0]
        alpha = 1./maxeig

    # define threshold
    thresh = eps*alpha*0.5

    if show:
        print('alpha = %10e\tthresh = %10e' % (alpha, thresh))
        print('-----------------------------------------------------------\n')
        head1 = '   Itn       x[0]        r2norm     r12norm     xupdate'
        print(head1)

    # initialize model and cost function
    xinv = np.zeros(Op.shape[1], dtype=Op.dtype)
    if monitorres:
        normresold = np.inf
    if returninfo:
        cost = np.zeros(niter+1)

    # iterate
    for iiter in range(niter):
        xinvold = xinv.copy()

        # compute residual
        res = data - Op.matvec(xinv)
        if monitorres:
            normres = np.linalg.norm(res)
            if  normres > normresold:
                raise ValueError('ISTA stopped at iteration %d due to '
                                 'residual increasing, consider modyfing '
                                 'eps and/or alpha...' % iiter)
            else:
                normresold = normres

        # compute gradient
        grad = alpha*Op.rmatvec(res)

        # update inverted model
        xinv_unthesh = xinv + grad
        xinv = _softthreshold(xinv_unthesh, thresh)

        # model update
        xupdate = np.linalg.norm(xinv - xinvold)

        if returninfo or show:
            costdata = 0.5 * np.linalg.norm(res) ** 2
            costreg = eps * np.linalg.norm(xinv, ord=1)
        if returninfo:
            cost[iiter] = costdata + costreg

        if show:
            if iiter < 10 or niter - iiter < 10 or iiter % 10 == 0:
                msg = '%6g  %12.5e  %10.3e   %9.3e  %10.3e' % \
                      (iiter+1, xinv[0], costdata, costdata+costreg, xupdate)
                print(msg)

        # check tolerance
        if xupdate < tol:
            niter = iiter
            break

    # get values pre-threshold at locations where xinv is different from zero
    #xinv = np.where(xinv != 0, xinv_unthesh, xinv)
    if show:
        print('\nIterations = %d        Total time (s) = %.2f'
              % (niter, time.time() - tstart))
        print('---------------------------------------------------------\n')
    if returninfo:
        return xinv, niter, cost[:niter]
    else:
        return xinv, niter