def test_simplify_detect_negative_alias(self): # Create model, cache it, and load the cache compiler_options = \ {'detect_aliases': True} casadi_model = transfer_model(TEST_DIR, 'NegativeAlias', compiler_options) ref_model = Model() x = ca.MX.sym('x') der_x = ca.MX.sym('der(x)') ref_model.states = list(map(Variable, [x])) ref_model.states[0].min = 1 ref_model.states[0].max = 2 ref_model.states[0].nominal = 10 ref_model.der_states = list(map(Variable, [der_x])) ref_model.alg_states = list(map(Variable, [])) ref_model.inputs = list(map(Variable, [])) ref_model.outputs = list(map(Variable, [])) ref_model.equations = [der_x - x] # Compare self.assert_model_equivalent_numeric(casadi_model, ref_model) self.assertEquals(casadi_model.states[0].aliases, ['-alias'])
def test_forloop(self): with open(os.path.join(TEST_DIR, 'ForLoop.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'ForLoop') print(casadi_model) ref_model = Model() x = ca.MX.sym("x", 10) y = ca.MX.sym("y", 10) z = ca.MX.sym("z", 10) u = ca.MX.sym('u', 10, 2) v = ca.MX.sym('v', 2, 10) w = ca.MX.sym('w', 2, 10) b = ca.MX.sym("b") n = ca.MX.sym("n") s = ca.MX.sym('s', 10) Arr = ca.MX.sym('Arr', 2, 2) der_s = ca.MX.sym('der(s)', 10) ref_model.states = list(map(Variable, [s])) ref_model.der_states = list(map(Variable, [der_s])) ref_model.alg_states = list(map(Variable, [x, y, z, u, v, w, b, Arr])) ref_model.parameters = list(map(Variable, [n])) ref_model.parameters[0].value = 10 ref_model.equations = [ ca.horzcat(x - (np.arange(1, 11) + b), w[0, :].T - np.arange(1, 11), w[1, :].T - np.arange(2, 21, 2), u - np.ones((10, 2)), v.T - np.ones((10, 2))), y[0:5] - np.zeros(5), y[5:] - np.ones(5), ca.horzcat(z[0:5] - np.array([2, 2, 2, 2, 2]), z[5:10] - np.array([1, 1, 1, 1, 1])), der_s - np.ones(10), ca.horzcat(Arr[:, 1], Arr[:, 0]) - np.array([[2, 1], [2, 1]])] self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_inheritance_instantiation(self): with open(os.path.join(TEST_DIR, 'InheritanceInstantiation.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'C2') ref_model = Model() print(casadi_model) bcomp1_a = ca.MX.sym('bcomp1.a') bcomp1_b = ca.MX.sym('bcomp1.b') bcomp2_a = ca.MX.sym('bcomp2.a') bcomp2_b = ca.MX.sym('bcomp2.b') bcomp3_a = ca.MX.sym('bcomp3.a') bcomp3_b = ca.MX.sym('bcomp3.b') bcomp1_v = ca.MX.sym('bcomp1.v', 3) bcomp2_v = ca.MX.sym('bcomp2.v', 4) bcomp3_v = ca.MX.sym('bcomp3.v', 2) ref_model.states = [] ref_model.der_states = [] ref_model.alg_states = list(map(Variable, [bcomp1_v, bcomp2_v, bcomp3_v])) ref_model.parameters = list(map(Variable, [bcomp1_a, bcomp2_a, bcomp3_a, bcomp1_b, bcomp2_b, bcomp3_b])) ref_model.parameters[0].value = 0 ref_model.parameters[1].value = 0 ref_model.parameters[2].value = 1 ref_model.parameters[3].value = 3 ref_model.parameters[4].value = 4 ref_model.parameters[5].value = 2 ref_model.equations = [] self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_simplify_all(self): # Create model, cache it, and load the cache compiler_options = \ {'expand_vectors': True, 'replace_constant_values': True, 'replace_constant_expressions': True, 'replace_parameter_values': True, 'replace_parameter_expressions': True, 'eliminate_constant_assignments': True, 'detect_aliases': True, 'eliminable_variable_expression': r'_\w+', 'reduce_affine_expression': True} casadi_model = transfer_model(TEST_DIR, 'Simplify', compiler_options) ref_model = Model() p3 = ca.MX.sym('p3') x = ca.MX.sym('x') der_x = ca.MX.sym('der(x)') y = ca.MX.sym('y') ref_model.states = list(map(Variable, [x])) ref_model.states[0].min = 1 ref_model.states[0].max = 2 ref_model.states[0].nominal = 10 ref_model.der_states = list(map(Variable, [der_x])) ref_model.alg_states = list(map(Variable, [y])) ref_model.inputs = list(map(Variable, [])) ref_model.outputs = list(map(Variable, [])) ref_model.constants = list(map(Variable, [])) constant_values = [] for _cst, v in zip(ref_model.constants, constant_values): _cst.value = v ref_model.parameters = list(map(Variable, [p3])) parameter_values = [np.nan] for par, v in zip(ref_model.parameters, parameter_values): par.value = v A = ca.MX(2, 3) A[0, 0] = -1.0 A[0, 1] = 1.0 A[1, 0] = -1.1 A[1, 2] = 1.0 b = ca.MX(2, 1) b[0] = -6 - 3 * p3 b[1] = -7 x = ca.vertcat(x, der_x, y) ref_model.equations = [ca.mtimes(A, x) + b] # Compare self.assert_model_equivalent_numeric(casadi_model, ref_model)
def test_attributes(self): with open(os.path.join(TEST_DIR, 'Attributes.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'Attributes') print(casadi_model) ref_model = Model() nested_p1 = ca.MX.sym('nested.p1') nested_p = ca.MX.sym('nested.p') nested_s = ca.MX.sym('nested.s') i = ca.MX.sym("int") b = ca.MX.sym("bool") r = ca.MX.sym("real") der_r = ca.MX.sym("der(real)") test_state = ca.MX.sym("test_state") i1 = ca.MX.sym("i1") i2 = ca.MX.sym("i2") i3 = ca.MX.sym("i3") i4 = ca.MX.sym("i4") cst = ca.MX.sym("cst") prm = ca.MX.sym("prm") protected_variable = ca.MX.sym("protected_variable") ref_model.states = list(map(Variable, [r])) ref_model.states[0].start = 20 ref_model.der_states = list(map(Variable, [der_r])) ref_model.alg_states = list( map(Variable, [nested_s, i, b, i4, test_state, protected_variable])) ref_model.alg_states[1].min = -5 ref_model.alg_states[1].max = 10 ref_model.inputs = list(map(Variable, [i1, i2, i3])) ref_model.inputs[0].fixed = True ref_model.outputs = list(map(Variable, [i4, protected_variable])) ref_model.constants = list(map(Variable, [cst])) constant_values = [1] for c, v in zip(ref_model.constants, constant_values): c.value = v ref_model.parameters = list(map(Variable, [nested_p1, nested_p, prm])) parameter_values = [1, 2 * nested_p1, 2] for c, v in zip(ref_model.parameters, parameter_values): c.value = v ref_model.equations = [ i4 - ((i1 + i2) + i3), der_r - (i1 + ca.if_else(b, 1, 0, True) * i), protected_variable - (i1 + i2), nested_s - 3 * nested_p, test_state - r ] self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_simplify_eliminate_constant_assignments(self): # Create model, cache it, and load the cache compiler_options = \ {'eliminate_constant_assignments': True} casadi_model = transfer_model(TEST_DIR, 'Simplify', compiler_options) ref_model = Model() c = ca.MX.sym('c') p1 = ca.MX.sym('p1') p2 = ca.MX.sym('p2') p3 = ca.MX.sym('p3') p4 = ca.MX.sym('p4') x = ca.MX.sym('x') der_x = ca.MX.sym('der(x)') alias = ca.MX.sym('alias') y = ca.MX.sym('y') _tmp = ca.MX.sym('_tmp') cst = ca.MX.sym('cst') ref_model.states = list(map(Variable, [x])) ref_model.states[0].min = 0 ref_model.states[0].max = 3 ref_model.states[0].nominal = 10 ref_model.der_states = list(map(Variable, [der_x])) ref_model.alg_states = list(map(Variable, [alias, y, _tmp])) ref_model.alg_states[0].min = 1 ref_model.alg_states[0].max = 2 ref_model.alg_states[0].nominal = 1 ref_model.inputs = list(map(Variable, [])) ref_model.outputs = list(map(Variable, [])) ref_model.constants = list(map(Variable, [c, cst])) constant_values = [3, 4] for _cst, v in zip(ref_model.constants, constant_values): _cst.value = v ref_model.parameters = list(map(Variable, [p1, p2, p3, p4])) parameter_values = [2.0, 2 * p1, np.nan, 2 * p3] for par, v in zip(ref_model.parameters, parameter_values): par.value = v ref_model.equations = [ der_x - x - p1 - p2 - p3 - p4, alias - x, y - x - c - _tmp - cst, _tmp - 0.1 * x ] # Compare self.assert_model_equivalent_numeric(casadi_model, ref_model)
def test_simplify_replace_parameter_values_and_expressions(self): # Create model, cache it, and load the cache compiler_options = \ {'replace_parameter_values': True, 'replace_parameter_expressions': True} casadi_model = transfer_model(TEST_DIR, 'Simplify', compiler_options) ref_model = Model() c = ca.MX.sym('c') p3 = ca.MX.sym('p3') x = ca.MX.sym('x') der_x = ca.MX.sym('der(x)') alias = ca.MX.sym('alias') y = ca.MX.sym('y') _tmp = ca.MX.sym('_tmp') cst = ca.MX.sym('cst') ref_model.states = list(map(Variable, [x])) ref_model.states[0].min = 0 ref_model.states[0].max = 3 ref_model.states[0].nominal = 10 ref_model.der_states = list(map(Variable, [der_x])) ref_model.alg_states = list(map(Variable, [alias, y, _tmp, cst])) ref_model.alg_states[0].min = 1 ref_model.alg_states[0].max = 2 ref_model.alg_states[0].nominal = 1 ref_model.inputs = list(map(Variable, [])) ref_model.outputs = list(map(Variable, [])) ref_model.constants = list(map(Variable, [c])) constant_values = [3] for _cst, v in zip(ref_model.constants, constant_values): _cst.value = v ref_model.parameters = list(map(Variable, [p3])) parameter_values = [np.nan] for par, v in zip(ref_model.parameters, parameter_values): par.value = v ref_model.equations = [ der_x - x - 6 - 3 * p3, alias - x, y - x - c - _tmp - cst, _tmp - 0.1 * x, cst - 4 ] print(casadi_model) print(ref_model) # Compare self.assert_model_equivalent_numeric(casadi_model, ref_model)
def test_duplicate(self): with open(os.path.join(TEST_DIR, 'DuplicateState.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'DuplicateState') print(casadi_model) ref_model = Model() x = ca.MX.sym("x") der_x = ca.MX.sym("der(x)") y = ca.MX.sym("y") der_y = ca.MX.sym("der(y)") ref_model.states = list(map(Variable, [x, y])) ref_model.der_states = list(map(Variable, [der_x, der_y])) ref_model.equations = [der_x + der_y - 1, der_x - 2] self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_nested_classes(self): with open(os.path.join(TEST_DIR, 'NestedClasses.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'C2') ref_model = Model() print(casadi_model) v1 = ca.MX.sym('v1') v2 = ca.MX.sym('v2') ref_model.states = [] ref_model.der_states = [] ref_model.alg_states = list(map(Variable, [v1, v2])) ref_model.equations = [] ref_model.alg_states[0].nominal = 1000.0 ref_model.alg_states[1].nominal = 1000.0 self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_estimator(self): with open(os.path.join(TEST_DIR, 'Estimator.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'Estimator') ref_model = Model() print(casadi_model) x = ca.MX.sym("x") der_x = ca.MX.sym("der(x)") y = ca.MX.sym("y") ref_model.states = list(map(Variable, [x])) ref_model.der_states = list(map(Variable, [der_x])) ref_model.alg_states = list(map(Variable, [y])) ref_model.outputs = list(map(Variable, [y])) ref_model.equations = [der_x + x, y - x] self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_state_annotator(self): with open(os.path.join(TEST_DIR, 'StateAnnotator.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'StateAnnotator') print(casadi_model) ref_model = Model() x = ca.MX.sym('x') y = ca.MX.sym('y') z = ca.MX.sym('z') der_x = ca.MX.sym('der(x)') der_y = ca.MX.sym('der(y)') der_z = ca.MX.sym('der(z)') ref_model.states = list(map(Variable, [x, y, z])) ref_model.der_states = list(map(Variable, [der_x, der_y, der_z])) ref_model.equations = [der_x + der_y - 1, der_x * y + x * der_y - 2, (der_x * y - x * der_y) / (y**2) - 3, 2 * x * der_x - 4, der_z - 5, der_x * z + x * der_z + der_y * z + y * der_z - 4, 0] self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_simplify_reduce_affine_expression_loop(self): # Create model, cache it, and load the cache compiler_options = \ {'expand_vectors': True, 'detect_aliases': True, 'reduce_affine_expression': True, 'replace_constant_expressions': True, 'replace_constant_values': True, 'replace_parameter_expressions': True, 'replace_parameter_values': True} casadi_model = transfer_model(TEST_DIR, 'SimplifyLoop', compiler_options) ref_model = Model() x = ca.MX.sym('x') y0 = ca.MX.sym('y[0]') y1 = ca.MX.sym('y[1]') A = ca.MX(2, 3) A[0, 0] = -1 A[0, 1] = 1 A[0, 2] = 0 A[1, 0] = -2 A[1, 1] = 0 A[1, 2] = 1 b = ca.MX(2, 1) b[0, 0] = 0 b[1, 0] = 0 ref_model.states = list(map(Variable, [])) ref_model.der_states = list(map(Variable, [])) ref_model.alg_states = list(map(Variable, [x, y0, y1])) ref_model.inputs = list(map(Variable, [])) ref_model.outputs = list(map(Variable, [])) x = ca.vertcat(x, y0, y1) ref_model.equations = [ca.mtimes(A, x) + b] # Compare self.assert_model_equivalent_numeric(casadi_model, ref_model)
def test_spring(self): with open(os.path.join(TEST_DIR, 'Spring.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'Spring') ref_model = Model() print(casadi_model) x = ca.MX.sym("x") v_x = ca.MX.sym("v_x") der_x = ca.MX.sym("der(x)") der_v_x = ca.MX.sym("der(v_x)") k = ca.MX.sym("k") c = ca.MX.sym("c") ref_model.states = list(map(Variable, [x, v_x])) ref_model.der_states = list(map(Variable, [der_x, der_v_x])) ref_model.parameters = list(map(Variable, [c, k])) ref_model.parameters[0].value = 0.1 ref_model.parameters[1].value = 2 ref_model.equations = [der_x - v_x, der_v_x - (-k * x - c * v_x)] self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_inheritance(self): with open(os.path.join(TEST_DIR, 'Inheritance.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'Sub') ref_model = Model() x = ca.MX.sym("x") der_x = ca.MX.sym("der(x)") y = ca.MX.sym("y") # noinspection PyUnusedLocal der_y = ca.MX.sym("y") k = ca.MX.sym("k") ref_model.states = list(map(Variable, [x])) ref_model.states[0].max = 30.0 ref_model.der_states = list(map(Variable, [der_x])) ref_model.alg_states = list(map(Variable, [y])) ref_model.parameters = list(map(Variable, [k])) ref_model.parameters[0].value = -1.0 ref_model.equations = [der_x - k * x, x + y - 3] self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_simplify_expand_vectors(self): # Create model, cache it, and load the cache compiler_options = \ {'expand_vectors': True} casadi_model = transfer_model(TEST_DIR, 'SimplifyVector', compiler_options) ref_model = Model() x0 = ca.MX.sym('x[0]') x1 = ca.MX.sym('x[1]') der_x0 = ca.MX.sym('der(x)[0]') der_x1 = ca.MX.sym('der(x)[1]') ref_model.states = list(map(Variable, [x0, x1])) ref_model.der_states = list(map(Variable, [der_x0, der_x1])) ref_model.alg_states = list(map(Variable, [])) ref_model.inputs = list(map(Variable, [])) ref_model.outputs = list(map(Variable, [])) ref_model.equations = [der_x0 - x0, der_x1 - x1] # Compare self.assert_model_equivalent_numeric(casadi_model, ref_model)
def test_simplify_reduce_affine_expression(self): # Create model, cache it, and load the cache compiler_options = \ {'reduce_affine_expression': True} casadi_model = transfer_model(TEST_DIR, 'Simplify', compiler_options) ref_model = Model() c = ca.MX.sym('c') p1 = ca.MX.sym('p1') p2 = ca.MX.sym('p2') p3 = ca.MX.sym('p3') p4 = ca.MX.sym('p4') x = ca.MX.sym('x') der_x = ca.MX.sym('der(x)') alias = ca.MX.sym('alias') y = ca.MX.sym('y') _tmp = ca.MX.sym('_tmp') cst = ca.MX.sym('cst') ref_model.states = list(map(Variable, [x])) ref_model.states[0].min = 0 ref_model.states[0].max = 3 ref_model.states[0].nominal = 10 ref_model.der_states = list(map(Variable, [der_x])) ref_model.alg_states = list(map(Variable, [alias, y, _tmp, cst])) ref_model.alg_states[0].min = 1 ref_model.alg_states[0].max = 2 ref_model.alg_states[0].nominal = 1 ref_model.inputs = list(map(Variable, [])) ref_model.outputs = list(map(Variable, [])) ref_model.constants = list(map(Variable, [c])) constant_values = [3] for _cst, v in zip(ref_model.constants, constant_values): _cst.value = v ref_model.parameters = list(map(Variable, [p1, p2, p3, p4])) parameter_values = [2.0, 2 * p1, np.nan, 2 * p3] for par, v in zip(ref_model.parameters, parameter_values): par.value = v A = ca.MX(5, 6) A[0, 0] = -1.0 A[0, 1] = 1.0 A[1, 2] = 1.0 A[1, 0] = -1.0 A[2, 0] = -1.0 A[2, 3] = 1.0 A[2, 4] = -1.0 A[2, 5] = -1.0 A[3, 0] = -0.1 A[3, 4] = 1.0 A[4, 5] = 1.0 b = ca.MX(5, 1) b[0] = -p1 - p2 - p3 - p4 b[2] = -c b[4] = -4 x = ca.vertcat(x, der_x, alias, y, _tmp, cst) ref_model.equations = [ca.mtimes(A, x) + b] # Compare self.assert_model_equivalent_numeric(casadi_model, ref_model)