def test_matrixexpressions(self): with open(os.path.join(TEST_DIR, 'MatrixExpressions.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'MatrixExpressions') print(casadi_model) ref_model = Model() A = ca.MX.sym("A", 3, 3) b = ca.MX.sym("b", 3) c = ca.MX.sym("c", 3) d = ca.MX.sym("d", 3) C = ca.MX.sym("C", 2, 3) D = ca.MX.sym("D", 3, 2) E = ca.MX.sym("E", 2, 3) I = ca.MX.sym("I", 5, 5) F = ca.MX.sym("F", 3, 3) ref_model.alg_states = list(map(Variable, [A, b, c, d])) ref_model.constants = list(map(Variable, [C, D, E, I, F])) constant_values = [ 1.7 * ca.DM.ones(2, 3), ca.DM.zeros(3, 2), ca.DM.ones(2, 3), ca.DM.eye(5), ca.DM.triplet([0, 1, 2], [0, 1, 2], [1, 2, 3], 3, 3) ] for const, val in zip(ref_model.constants, constant_values): const.value = val ref_model.equations = [ ca.mtimes(A, b) - c, ca.mtimes(A.T, b) - d, F[1, 2] ] self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_simplify_all(self): # Create model, cache it, and load the cache compiler_options = \ {'expand_vectors': True, 'replace_constant_values': True, 'replace_constant_expressions': True, 'replace_parameter_values': True, 'replace_parameter_expressions': True, 'eliminate_constant_assignments': True, 'detect_aliases': True, 'eliminable_variable_expression': r'_\w+', 'reduce_affine_expression': True} casadi_model = transfer_model(TEST_DIR, 'Simplify', compiler_options) ref_model = Model() p3 = ca.MX.sym('p3') x = ca.MX.sym('x') der_x = ca.MX.sym('der(x)') y = ca.MX.sym('y') ref_model.states = list(map(Variable, [x])) ref_model.states[0].min = 1 ref_model.states[0].max = 2 ref_model.states[0].nominal = 10 ref_model.der_states = list(map(Variable, [der_x])) ref_model.alg_states = list(map(Variable, [y])) ref_model.inputs = list(map(Variable, [])) ref_model.outputs = list(map(Variable, [])) ref_model.constants = list(map(Variable, [])) constant_values = [] for _cst, v in zip(ref_model.constants, constant_values): _cst.value = v ref_model.parameters = list(map(Variable, [p3])) parameter_values = [np.nan] for par, v in zip(ref_model.parameters, parameter_values): par.value = v A = ca.MX(2, 3) A[0, 0] = -1.0 A[0, 1] = 1.0 A[1, 0] = -1.1 A[1, 2] = 1.0 b = ca.MX(2, 1) b[0] = -6 - 3 * p3 b[1] = -7 x = ca.vertcat(x, der_x, y) ref_model.equations = [ca.mtimes(A, x) + b] # Compare self.assert_model_equivalent_numeric(casadi_model, ref_model)
def test_attributes(self): with open(os.path.join(TEST_DIR, 'Attributes.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'Attributes') print(casadi_model) ref_model = Model() nested_p1 = ca.MX.sym('nested.p1') nested_p = ca.MX.sym('nested.p') nested_s = ca.MX.sym('nested.s') i = ca.MX.sym("int") b = ca.MX.sym("bool") r = ca.MX.sym("real") der_r = ca.MX.sym("der(real)") test_state = ca.MX.sym("test_state") i1 = ca.MX.sym("i1") i2 = ca.MX.sym("i2") i3 = ca.MX.sym("i3") i4 = ca.MX.sym("i4") cst = ca.MX.sym("cst") prm = ca.MX.sym("prm") protected_variable = ca.MX.sym("protected_variable") ref_model.states = list(map(Variable, [r])) ref_model.states[0].start = 20 ref_model.der_states = list(map(Variable, [der_r])) ref_model.alg_states = list( map(Variable, [nested_s, i, b, i4, test_state, protected_variable])) ref_model.alg_states[1].min = -5 ref_model.alg_states[1].max = 10 ref_model.inputs = list(map(Variable, [i1, i2, i3])) ref_model.inputs[0].fixed = True ref_model.outputs = list(map(Variable, [i4, protected_variable])) ref_model.constants = list(map(Variable, [cst])) constant_values = [1] for c, v in zip(ref_model.constants, constant_values): c.value = v ref_model.parameters = list(map(Variable, [nested_p1, nested_p, prm])) parameter_values = [1, 2 * nested_p1, 2] for c, v in zip(ref_model.parameters, parameter_values): c.value = v ref_model.equations = [ i4 - ((i1 + i2) + i3), der_r - (i1 + ca.if_else(b, 1, 0, True) * i), protected_variable - (i1 + i2), nested_s - 3 * nested_p, test_state - r ] self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_arrayexpressions(self): with open(os.path.join(TEST_DIR, 'ArrayExpressions.mo'), 'r') as f: txt = f.read() ast_tree = parser.parse(txt) casadi_model = gen_casadi.generate(ast_tree, 'ArrayExpressions') print(casadi_model) ref_model = Model() a = ca.MX.sym("a", 3) b = ca.MX.sym("b", 4) c = ca.MX.sym("c", 3) d = ca.MX.sym("d", 3) e = ca.MX.sym("e", 3) g = ca.MX.sym("g", 1) h = ca.MX.sym("h", 1) i = ca.MX.sym('i', 2, 3) B = ca.MX.sym("B", 3) C = ca.MX.sym("C", 2) D = ca.MX.sym("D", 3) E = ca.MX.sym("E", 2) arx = ca.MX.sym("ar.x", 3) arcy = ca.MX.sym("arc.y", 2) arcw = ca.MX.sym("arc.w", 2) nested1z = ca.MX.sym('nested1.z', 3) nested2z = ca.MX.sym('nested2.z', 2, 3) nested1n = ca.MX.sym('nested1.n', 1) nested2n = ca.MX.sym('nested2.n', 2) scalar_f = ca.MX.sym("scalar_f") c_dim = ca.MX.sym("c_dim") d_dim = ca.MX.sym("d_dim") ref_model.alg_states = list(map(Variable, [arx, arcy, arcw, nested1z, nested2z, a, c, d, e, scalar_f, g, h, i])) ref_model.alg_states[6].min = [0, 0, 0] ref_model.parameters = list(map(Variable, [nested2n, nested1n, d_dim])) parameter_values = [np.array([3, 3]), 3, 3] for const, val in zip(ref_model.parameters, parameter_values): const.value = val ref_model.outputs = list(map(Variable, [h])) ref_model.constants = list(map(Variable, [b, c_dim, B, C, D, E])) constant_values = [np.array([2.7, 3.7, 4.7, 5.7]), 2, ca.linspace(1., 2., 3), 1.7 * ca.DM.ones(2), ca.DM.zeros(3), ca.DM.ones(2)] for const, val in zip(ref_model.constants, constant_values): const.value = val ref_model.equations = [c - (a + b[0:3] * e), d - (ca.sin(a / b[1:4])), e - (d + scalar_f), g - ca.sum1(c), h - B[1], arx[1] - scalar_f, nested1z - ca.DM.ones(3), nested2z[0, :].T - np.array([4, 5, 6]), nested2z[1, 0] - 3, nested2z[1, 1] - 2, nested2z[1, 2] - 1, i[0, :] - ca.transpose(ca.DM.ones(3)), i[1, :] - ca.transpose(ca.DM.ones(3)), arcy[0] - arcy[1], arcw[0] + arcw[1], a - np.array([1, 2, 3]), scalar_f - 1.3] self.assert_model_equivalent_numeric(ref_model, casadi_model)
def test_simplify_eliminate_constant_assignments(self): # Create model, cache it, and load the cache compiler_options = \ {'eliminate_constant_assignments': True} casadi_model = transfer_model(TEST_DIR, 'Simplify', compiler_options) ref_model = Model() c = ca.MX.sym('c') p1 = ca.MX.sym('p1') p2 = ca.MX.sym('p2') p3 = ca.MX.sym('p3') p4 = ca.MX.sym('p4') x = ca.MX.sym('x') der_x = ca.MX.sym('der(x)') alias = ca.MX.sym('alias') y = ca.MX.sym('y') _tmp = ca.MX.sym('_tmp') cst = ca.MX.sym('cst') ref_model.states = list(map(Variable, [x])) ref_model.states[0].min = 0 ref_model.states[0].max = 3 ref_model.states[0].nominal = 10 ref_model.der_states = list(map(Variable, [der_x])) ref_model.alg_states = list(map(Variable, [alias, y, _tmp])) ref_model.alg_states[0].min = 1 ref_model.alg_states[0].max = 2 ref_model.alg_states[0].nominal = 1 ref_model.inputs = list(map(Variable, [])) ref_model.outputs = list(map(Variable, [])) ref_model.constants = list(map(Variable, [c, cst])) constant_values = [3, 4] for _cst, v in zip(ref_model.constants, constant_values): _cst.value = v ref_model.parameters = list(map(Variable, [p1, p2, p3, p4])) parameter_values = [2.0, 2 * p1, np.nan, 2 * p3] for par, v in zip(ref_model.parameters, parameter_values): par.value = v ref_model.equations = [ der_x - x - p1 - p2 - p3 - p4, alias - x, y - x - c - _tmp - cst, _tmp - 0.1 * x ] # Compare self.assert_model_equivalent_numeric(casadi_model, ref_model)
def test_simplify_replace_parameter_values_and_expressions(self): # Create model, cache it, and load the cache compiler_options = \ {'replace_parameter_values': True, 'replace_parameter_expressions': True} casadi_model = transfer_model(TEST_DIR, 'Simplify', compiler_options) ref_model = Model() c = ca.MX.sym('c') p3 = ca.MX.sym('p3') x = ca.MX.sym('x') der_x = ca.MX.sym('der(x)') alias = ca.MX.sym('alias') y = ca.MX.sym('y') _tmp = ca.MX.sym('_tmp') cst = ca.MX.sym('cst') ref_model.states = list(map(Variable, [x])) ref_model.states[0].min = 0 ref_model.states[0].max = 3 ref_model.states[0].nominal = 10 ref_model.der_states = list(map(Variable, [der_x])) ref_model.alg_states = list(map(Variable, [alias, y, _tmp, cst])) ref_model.alg_states[0].min = 1 ref_model.alg_states[0].max = 2 ref_model.alg_states[0].nominal = 1 ref_model.inputs = list(map(Variable, [])) ref_model.outputs = list(map(Variable, [])) ref_model.constants = list(map(Variable, [c])) constant_values = [3] for _cst, v in zip(ref_model.constants, constant_values): _cst.value = v ref_model.parameters = list(map(Variable, [p3])) parameter_values = [np.nan] for par, v in zip(ref_model.parameters, parameter_values): par.value = v ref_model.equations = [ der_x - x - 6 - 3 * p3, alias - x, y - x - c - _tmp - cst, _tmp - 0.1 * x, cst - 4 ] print(casadi_model) print(ref_model) # Compare self.assert_model_equivalent_numeric(casadi_model, ref_model)
def test_simplify_reduce_affine_expression(self): # Create model, cache it, and load the cache compiler_options = \ {'reduce_affine_expression': True} casadi_model = transfer_model(TEST_DIR, 'Simplify', compiler_options) ref_model = Model() c = ca.MX.sym('c') p1 = ca.MX.sym('p1') p2 = ca.MX.sym('p2') p3 = ca.MX.sym('p3') p4 = ca.MX.sym('p4') x = ca.MX.sym('x') der_x = ca.MX.sym('der(x)') alias = ca.MX.sym('alias') y = ca.MX.sym('y') _tmp = ca.MX.sym('_tmp') cst = ca.MX.sym('cst') ref_model.states = list(map(Variable, [x])) ref_model.states[0].min = 0 ref_model.states[0].max = 3 ref_model.states[0].nominal = 10 ref_model.der_states = list(map(Variable, [der_x])) ref_model.alg_states = list(map(Variable, [alias, y, _tmp, cst])) ref_model.alg_states[0].min = 1 ref_model.alg_states[0].max = 2 ref_model.alg_states[0].nominal = 1 ref_model.inputs = list(map(Variable, [])) ref_model.outputs = list(map(Variable, [])) ref_model.constants = list(map(Variable, [c])) constant_values = [3] for _cst, v in zip(ref_model.constants, constant_values): _cst.value = v ref_model.parameters = list(map(Variable, [p1, p2, p3, p4])) parameter_values = [2.0, 2 * p1, np.nan, 2 * p3] for par, v in zip(ref_model.parameters, parameter_values): par.value = v A = ca.MX(5, 6) A[0, 0] = -1.0 A[0, 1] = 1.0 A[1, 2] = 1.0 A[1, 0] = -1.0 A[2, 0] = -1.0 A[2, 3] = 1.0 A[2, 4] = -1.0 A[2, 5] = -1.0 A[3, 0] = -0.1 A[3, 4] = 1.0 A[4, 5] = 1.0 b = ca.MX(5, 1) b[0] = -p1 - p2 - p3 - p4 b[2] = -c b[4] = -4 x = ca.vertcat(x, der_x, alias, y, _tmp, cst) ref_model.equations = [ca.mtimes(A, x) + b] # Compare self.assert_model_equivalent_numeric(casadi_model, ref_model)