def misc_operator_with_arrays_and_products_factory(n): if n == 0: from pymor.operators.constructions import ComponentProjection _, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(100, 10, 4, 3, n) op = ComponentProjection(np.random.randint(0, 100, 10), U.space) return op, _, U, V, sp, rp elif n == 1: from pymor.operators.constructions import ComponentProjection _, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(100, 0, 4, 3, n) op = ComponentProjection([], U.space) return op, _, U, V, sp, rp elif n == 2: from pymor.operators.constructions import ComponentProjection _, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(100, 3, 4, 3, n) op = ComponentProjection([3, 3, 3], U.space) return op, _, U, V, sp, rp elif n == 3: from pymor.operators.constructions import AdjointOperator op, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(100, 20, 4, 3, n) op = AdjointOperator(op, with_apply_inverse=True) return op, _, V, U, rp, sp elif n == 4: from pymor.operators.constructions import AdjointOperator op, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(100, 20, 4, 3, n) op = AdjointOperator(op, with_apply_inverse=False) return op, _, V, U, rp, sp elif 5 <= n <= 7: from pymor.operators.constructions import SelectionOperator from pymor.parameters.functionals import ProjectionParameterFunctional op0, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(30, 30, 4, 3, n) op1 = NumpyMatrixOperator(np.random.random((30, 30))) op2 = NumpyMatrixOperator(np.random.random((30, 30))) op = SelectionOperator([op0, op1, op2], ProjectionParameterFunctional('x', ()), [0.3, 0.6]) return op, op.parse_parameter((n-5)/2), V, U, rp, sp elif n == 8: from pymor.operators.block import BlockDiagonalOperator op0, _, U0, V0, sp0, rp0 = numpy_matrix_operator_with_arrays_and_products_factory(10, 10, 4, 3, n) op1, _, U1, V1, sp1, rp1 = numpy_matrix_operator_with_arrays_and_products_factory(20, 20, 4, 3, n+1) op2, _, U2, V2, sp2, rp2 = numpy_matrix_operator_with_arrays_and_products_factory(30, 30, 4, 3, n+2) op = BlockDiagonalOperator([op0, op1, op2]) sp = BlockDiagonalOperator([sp0, sp1, sp2]) rp = BlockDiagonalOperator([rp0, rp1, rp2]) U = op.source.make_array([U0, U1, U2]) V = op.range.make_array([V0, V1, V2]) return op, _, U, V, sp, rp elif n == 9: from pymor.operators.block import BlockDiagonalOperator, BlockOperator op0, _, U0, V0, sp0, rp0 = numpy_matrix_operator_with_arrays_and_products_factory(10, 10, 4, 3, n) op1, _, U1, V1, sp1, rp1 = numpy_matrix_operator_with_arrays_and_products_factory(20, 20, 4, 3, n+1) op2, _, U2, V2, sp2, rp2 = numpy_matrix_operator_with_arrays_and_products_factory(20, 10, 4, 3, n+2) op = BlockOperator([[op0, op2], [None, op1]]) sp = BlockDiagonalOperator([sp0, sp1]) rp = BlockDiagonalOperator([rp0, rp1]) U = op.source.make_array([U0, U1]) V = op.range.make_array([V0, V1]) return op, None, U, V, sp, rp else: assert False
def jacobian(self, U, mu=None): mu = self.parse_parameter(mu) if len(self.interpolation_dofs) == 0: if self.source.type == self.range.type == NumpyVectorArray: return NumpyMatrixOperator(np.zeros((0, self.source.dim)), name=self.name + '_jacobian') else: return ZeroOperator(self.source, self.range, name=self.name + '_jacobian') elif hasattr(self, 'operator'): return EmpiricalInterpolatedOperator(self.operator.jacobian(U, mu=mu), self.interpolation_dofs, self.collateral_basis, self.triangular, self.name + '_jacobian') else: U_components = NumpyVectorArray(U.components(self.source_dofs), copy=False) JU = self.restricted_operator.jacobian(U_components, mu=mu) \ .apply(NumpyVectorArray(np.eye(len(self.source_dofs)), copy=False)) try: if self.triangular: interpolation_coefficients = solve_triangular(self.interpolation_matrix, JU.data.T, lower=True, unit_diagonal=True).T else: interpolation_coefficients = np.linalg.solve(self.interpolation_matrix, JU._array.T).T except ValueError: # this exception occurs when AU contains NaNs ... interpolation_coefficients = np.empty((len(JU), len(self.collateral_basis))) + np.nan J = self.collateral_basis.lincomb(interpolation_coefficients) if isinstance(J, NumpyVectorArray): J = NumpyMatrixOperator(J.data.T) else: J = VectorArrayOperator(J, copy=False) return Concatenation(J, ComponentProjection(self.source_dofs, self.source), name=self.name + '_jacobian')
def jacobian(self, U, mu=None): mu = self.parse_parameter(mu) options = self.solver_options.get('jacobian') if self.solver_options else None if len(self.interpolation_dofs) == 0: if isinstance(self.source, NumpyVectorSpace) and isinstance(self.range, NumpyVectorSpace): return NumpyMatrixOperator(np.zeros((self.range.dim, self.source.dim)), solver_options=options, source_id=self.source.id, range_id=self.range.id, name=self.name + '_jacobian') else: return ZeroOperator(self.range, self.source, name=self.name + '_jacobian') elif hasattr(self, 'operator'): return EmpiricalInterpolatedOperator(self.operator.jacobian(U, mu=mu), self.interpolation_dofs, self.collateral_basis, self.triangular, solver_options=options, name=self.name + '_jacobian') else: restricted_source = self.restricted_operator.source U_dofs = restricted_source.make_array(U.dofs(self.source_dofs)) JU = self.restricted_operator.jacobian(U_dofs, mu=mu) \ .apply(restricted_source.make_array(np.eye(len(self.source_dofs)))) try: if self.triangular: interpolation_coefficients = solve_triangular(self.interpolation_matrix, JU.to_numpy().T, lower=True, unit_diagonal=True).T else: interpolation_coefficients = solve(self.interpolation_matrix, JU.to_numpy().T).T except ValueError: # this exception occurs when AU contains NaNs ... interpolation_coefficients = np.empty((len(JU), len(self.collateral_basis))) + np.nan J = self.collateral_basis.lincomb(interpolation_coefficients) if isinstance(J.space, NumpyVectorSpace): J = NumpyMatrixOperator(J.to_numpy().T, range_id=self.range.id) else: J = VectorArrayOperator(J) return Concatenation([J, ComponentProjection(self.source_dofs, self.source)], solver_options=options, name=self.name + '_jacobian')
def test_to_matrix_ComponentProjection(): dofs = np.array([0, 1, 2, 4, 8]) n = 10 A = np.zeros((len(dofs), n)) A[range(len(dofs)), dofs] = 1 source = NumpyVectorSpace(n) Aop = ComponentProjection(dofs, source) assert_type_and_allclose(A, Aop, 'sparse')
def restricted(self, dofs): source_dofs = np.setdiff1d(np.union1d(self.grid.neighbours(0, 0)[dofs].ravel(), dofs), np.array([-1], dtype=np.int32), assume_unique=True) sub_grid = SubGrid(self.grid, entities=source_dofs) sub_boundary_info = SubGridBoundaryInfo(sub_grid, self.grid, self.boundary_info) op = self.with_(grid=sub_grid, boundary_info=sub_boundary_info, name='{}_restricted'.format(self.name)) sub_grid_indices = sub_grid.indices_from_parent_indices(dofs, codim=0) proj = ComponentProjection(sub_grid_indices, op.range) return Concatenation(proj, op), sub_grid.parent_indices(0)
def restricted(self, dofs): source_dofs = np.setdiff1d(np.union1d(self.grid.neighbours(0, 0)[dofs].ravel(), dofs), np.array([-1], dtype=np.int32), assume_unique=True) sub_grid = SubGrid(self.grid, source_dofs) sub_boundary_info = make_sub_grid_boundary_info(sub_grid, self.grid, self.boundary_info) op = self.with_(grid=sub_grid, boundary_info=sub_boundary_info, space_id=None, name=f'{self.name}_restricted') sub_grid_indices = sub_grid.indices_from_parent_indices(dofs, codim=0) proj = ComponentProjection(sub_grid_indices, op.range) return proj @ op, sub_grid.parent_indices(0)
def misc_operator_with_arrays_and_products_factory(n): if n == 0: from pymor.operators.constructions import ComponentProjection _, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory( 100, 10, 4, 3, n) op = ComponentProjection(np.random.randint(0, 100, 10), U.space) return op, _, U, V, sp, rp elif n == 1: from pymor.operators.constructions import ComponentProjection _, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory( 100, 0, 4, 3, n) op = ComponentProjection([], U.space) return op, _, U, V, sp, rp elif n == 2: from pymor.operators.constructions import ComponentProjection _, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory( 100, 3, 4, 3, n) op = ComponentProjection([3, 3, 3], U.space) return op, _, U, V, sp, rp elif n == 3: from pymor.operators.constructions import AdjointOperator op, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory( 100, 20, 4, 3, n) op = AdjointOperator(op, with_apply_inverse=True) return op, _, V, U, rp, sp elif n == 4: from pymor.operators.constructions import AdjointOperator op, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory( 100, 20, 4, 3, n) op = AdjointOperator(op, with_apply_inverse=False) return op, _, V, U, rp, sp elif 5 <= n <= 7: from pymor.operators.constructions import SelectionOperator from pymor.parameters.functionals import ProjectionParameterFunctional op0, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory( 30, 30, 4, 3, n) op1 = NumpyMatrixOperator(np.random.random((30, 30))) op2 = NumpyMatrixOperator(np.random.random((30, 30))) op = SelectionOperator([op0, op1, op2], ProjectionParameterFunctional('x'), [0.3, 0.6]) return op, op.parameters.parse((n - 5) / 2), V, U, rp, sp elif n == 8: from pymor.operators.block import BlockDiagonalOperator op0, _, U0, V0, sp0, rp0 = numpy_matrix_operator_with_arrays_and_products_factory( 10, 10, 4, 3, n) op1, _, U1, V1, sp1, rp1 = numpy_matrix_operator_with_arrays_and_products_factory( 20, 20, 4, 3, n + 1) op2, _, U2, V2, sp2, rp2 = numpy_matrix_operator_with_arrays_and_products_factory( 30, 30, 4, 3, n + 2) op = BlockDiagonalOperator([op0, op1, op2]) sp = BlockDiagonalOperator([sp0, sp1, sp2]) rp = BlockDiagonalOperator([rp0, rp1, rp2]) U = op.source.make_array([U0, U1, U2]) V = op.range.make_array([V0, V1, V2]) return op, _, U, V, sp, rp elif n == 9: from pymor.operators.block import BlockDiagonalOperator, BlockOperator from pymor.parameters.functionals import ProjectionParameterFunctional op0a, _, U0, V0, sp0, rp0 = numpy_matrix_operator_with_arrays_and_products_factory( 10, 10, 4, 3, n) op0b, _, _, _, _, _ = numpy_matrix_operator_with_arrays_and_products_factory( 10, 10, 4, 3, n) op0c, _, _, _, _, _ = numpy_matrix_operator_with_arrays_and_products_factory( 10, 10, 4, 3, n) op1, _, U1, V1, sp1, rp1 = numpy_matrix_operator_with_arrays_and_products_factory( 20, 20, 4, 3, n + 1) op2a, _, _, _, _, _ = numpy_matrix_operator_with_arrays_and_products_factory( 20, 10, 4, 3, n + 2) op2b, _, _, _, _, _ = numpy_matrix_operator_with_arrays_and_products_factory( 20, 10, 4, 3, n + 2) op0 = (op0a * ProjectionParameterFunctional('p', 3, 0) + op0b * ProjectionParameterFunctional('p', 3, 1) + op0c * ProjectionParameterFunctional('p', 3, 1)) op2 = (op2a * ProjectionParameterFunctional('p', 3, 0) + op2b * ProjectionParameterFunctional('q', 1)) op = BlockOperator([[op0, op2], [None, op1]]) mu = op.parameters.parse({'p': [1, 2, 3], 'q': 4}) sp = BlockDiagonalOperator([sp0, sp1]) rp = BlockDiagonalOperator([rp0, rp1]) U = op.source.make_array([U0, U1]) V = op.range.make_array([V0, V1]) return op, mu, U, V, sp, rp elif n == 10: from pymor.operators.block import BlockDiagonalOperator, BlockColumnOperator from pymor.parameters.functionals import ProjectionParameterFunctional op0, _, U0, V0, sp0, rp0 = numpy_matrix_operator_with_arrays_and_products_factory( 10, 10, 4, 3, n) op1, _, U1, V1, sp1, rp1 = numpy_matrix_operator_with_arrays_and_products_factory( 20, 20, 4, 3, n + 1) op2a, _, _, _, _, _ = numpy_matrix_operator_with_arrays_and_products_factory( 20, 10, 4, 3, n + 2) op2b, _, _, _, _, _ = numpy_matrix_operator_with_arrays_and_products_factory( 20, 10, 4, 3, n + 2) op2 = (op2a * ProjectionParameterFunctional('p', 3, 0) + op2b * ProjectionParameterFunctional('q', 1)) op = BlockColumnOperator([op2, op1]) mu = op.parameters.parse({'p': [1, 2, 3], 'q': 4}) sp = sp1 rp = BlockDiagonalOperator([rp0, rp1]) U = U1 V = op.range.make_array([V0, V1]) return op, mu, U, V, sp, rp elif n == 11: from pymor.operators.block import BlockDiagonalOperator, BlockRowOperator from pymor.parameters.functionals import ProjectionParameterFunctional op0, _, U0, V0, sp0, rp0 = numpy_matrix_operator_with_arrays_and_products_factory( 10, 10, 4, 3, n) op1, _, U1, V1, sp1, rp1 = numpy_matrix_operator_with_arrays_and_products_factory( 20, 20, 4, 3, n + 1) op2a, _, _, _, _, _ = numpy_matrix_operator_with_arrays_and_products_factory( 20, 10, 4, 3, n + 2) op2b, _, _, _, _, _ = numpy_matrix_operator_with_arrays_and_products_factory( 20, 10, 4, 3, n + 2) op2 = (op2a * ProjectionParameterFunctional('p', 3, 0) + op2b * ProjectionParameterFunctional('q', 1)) op = BlockRowOperator([op0, op2]) mu = op.parameters.parse({'p': [1, 2, 3], 'q': 4}) sp = BlockDiagonalOperator([sp0, sp1]) rp = rp0 U = op.source.make_array([U0, U1]) V = V0 return op, mu, U, V, sp, rp else: assert False
def misc_operator_with_arrays_and_products_factory(n): if n == 0: from pymor.operators.constructions import ComponentProjection _, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(100, 10, 4, 3, n) op = ComponentProjection(np.random.randint(0, 100, 10), U.space) return op, _, U, V, sp, rp elif n == 1: from pymor.operators.constructions import ComponentProjection _, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(100, 0, 4, 3, n) op = ComponentProjection([], U.space) return op, _, U, V, sp, rp elif n == 2: from pymor.operators.constructions import ComponentProjection _, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(100, 3, 4, 3, n) op = ComponentProjection([3, 3, 3], U.space) return op, _, U, V, sp, rp elif n == 3: from pymor.operators.constructions import AdjointOperator op, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(100, 20, 4, 3, n) op = AdjointOperator(op, with_apply_inverse=True) return op, _, V, U, rp, sp elif n == 4: from pymor.operators.constructions import AdjointOperator op, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(100, 20, 4, 3, n) op = AdjointOperator(op, with_apply_inverse=False) return op, _, V, U, rp, sp elif 5 <= n <= 7: from pymor.operators.constructions import SelectionOperator from pymor.parameters.functionals import ProjectionParameterFunctional op0, _, U, V, sp, rp = numpy_matrix_operator_with_arrays_and_products_factory(30, 30, 4, 3, n) op1 = NumpyMatrixOperator(np.random.random((30, 30))) op2 = NumpyMatrixOperator(np.random.random((30, 30))) op = SelectionOperator([op0, op1, op2], ProjectionParameterFunctional('x', ()), [0.3, 0.6]) return op, op.parse_parameter((n-5)/2), V, U, rp, sp elif n == 8: from pymor.operators.block import BlockDiagonalOperator from pymor.vectorarrays.block import BlockVectorArray op0, _, U0, V0, sp0, rp0 = numpy_matrix_operator_with_arrays_and_products_factory(10, 10, 4, 3, n) op1, _, U1, V1, sp1, rp1 = numpy_matrix_operator_with_arrays_and_products_factory(20, 20, 4, 3, n+1) op2, _, U2, V2, sp2, rp2 = numpy_matrix_operator_with_arrays_and_products_factory(30, 30, 4, 3, n+2) op = BlockDiagonalOperator([op0, op1, op2]) sp = BlockDiagonalOperator([sp0, sp1, sp2]) rp = BlockDiagonalOperator([rp0, rp1, rp2]) U = BlockVectorArray([U0, U1, U2]) V = BlockVectorArray([V0, V1, V2]) return op, _, U, V, sp, rp elif n == 9: from pymor.operators.block import BlockDiagonalOperator, BlockOperator from pymor.vectorarrays.block import BlockVectorArray op0, _, U0, V0, sp0, rp0 = numpy_matrix_operator_with_arrays_and_products_factory(10, 10, 4, 3, n) op1, _, U1, V1, sp1, rp1 = numpy_matrix_operator_with_arrays_and_products_factory(20, 20, 4, 3, n+1) op2, _, U2, V2, sp2, rp2 = numpy_matrix_operator_with_arrays_and_products_factory(20, 10, 4, 3, n+2) op = BlockOperator([[op0, op2], [None, op1]]) sp = BlockDiagonalOperator([sp0, sp1]) rp = BlockDiagonalOperator([rp0, rp1]) U = BlockVectorArray([U0, U1]) V = BlockVectorArray([V0, V1]) return op, None, U, V, sp, rp else: assert False