num_elites = 3, seed = 12345, simulator = simulator, nogui = nogui, known_target_values = known_target_values) else: simulator = 'jNeuroML_NEURON' cont = NeuroMLController('RunOnePyr', neuroml_file, 'network', sim_time, 0.01, simulator, generate_dir = './temp') sim_vars = OrderedDict(known_target_values) t, v = cont.run_individual(sim_vars, show=(not nogui)) print("Have run individual instance...") peak_threshold = 0 analysis_var = {'peak_delta': 0, 'baseline': 0, 'dvdt_threshold': 0, 'peak_threshold': peak_threshold}
max_evaluations=100, num_selected=10, num_offspring=10, mutation_rate=0.5, num_elites=3, seed=12345, simulator=simulator, nogui=nogui, known_target_values=known_target_values, ) else: simulator = "jNeuroML_NEURON" cont = NeuroMLController("RunOnePyr", neuroml_file, "network", sim_time, 0.01, simulator, generate_dir="./temp") sim_vars = OrderedDict(known_target_values) t, v = cont.run_individual(sim_vars, show=(not nogui)) print("Have run individual instance...") peak_threshold = 0 analysis_var = {"peak_delta": 0, "baseline": 0, "dvdt_threshold": 0, "peak_threshold": peak_threshold} example_run_analysis = analysis.NetworkAnalysis(v, t, analysis_var, start_analysis=0, end_analysis=sim_time) analysis = example_run_analysis.analyse() pp.pprint(analysis)
nogui = '-nogui' in sys.argv if '-compare' in sys.argv: compare( 'NT_AllenIzh__s12345_p200_m600_s80_o60_m0.1_e2_Mon_Nov_30_12.30.28_2015/AllenIzh__s12345_p200_m600_s80_o60_m0.1_e2.Pop0.v.dat' ) #### Run simulation with one HH cell elif '-one' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' cont = NeuroMLController('AllenTest', 'prototypes/RS/AllenTest.net.nml', 'network_RS', 1500, 0.01, simulator) sim_vars = OrderedDict(example_vars_hh) t, v = cont.run_individual(sim_vars, show=(not nogui)) #### Run simulation with multiple HH cells elif '-mone' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' dataset = 471141261 ref = 'network_%s_HH' % (dataset) cont = NeuroMLController('AllenTest', 'prototypes/RS/%s.net.nml' % ref,
mutation_rate=mutation_rate, num_elites=num_elites, simulator=simulator, nogui=nogui) if __name__ == '__main__': nogui = '-nogui' in sys.argv if '-one' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' cont = NeuroMLController(prefix, 'models/RS/SSTest.net.nml', 'network_RS', sim_time, 0.01, simulator) sim_vars = OrderedDict([ ('cell:RS/channelDensity:Na_all/mS_per_cm2', 100), ('cell:RS/channelDensity:Kd_all/mS_per_cm2', 20), ('cell:RS/channelDensity:LeakConductance_all/mS_per_cm2', 1e-5) ]) t, v = cont.run_individual(sim_vars, show=(not nogui)) else: run_one_optimisation(prefix, 123456, population_size=30, max_evaluations=200,
'cell:Granule_98/channelDensity:Gran_NaF_98_all/mS_per_cm2': 55.74495636439219, 'cell:Granule_98/specificCapacitance:all/uF_per_cm2': 1.0808061342038033 } sim_vars = OrderedDict(vars) #sim_vars = OrderedDict([]) if '-one' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' cont = NeuroMLController('TestGran', 'models/GranuleCell.net.nml', 'network_GranuleCell', sim_time, dt, simulator) t, v = cont.run_individual(sim_vars, show=False) analysis = utils.simple_iclamp_analysis(v['Gran/0/Granule_98/v'], t, plot=True) elif '-mone' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' sim_time = 700 cont = NeuroMLController('TestGranNet',
'cell:Granule_98/channelDensity:Gran_H_98_all/mS_per_cm2': 0.03559929171361169, 'cell:Granule_98/channelDensity:Gran_KDr_98_all/mS_per_cm2': 7.016013314649269, 'cell:Granule_98/channelDensity:Gran_NaF_98_all/mS_per_cm2': 55.74495636439219, 'cell:Granule_98/specificCapacitance:all/uF_per_cm2': 1.0808061342038033} sim_vars = OrderedDict(vars) #sim_vars = OrderedDict([]) if '-one' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' cont = NeuroMLController('TestGran', 'models/GranuleCell.net.nml', 'network_GranuleCell', sim_time, dt, simulator) t, v = cont.run_individual(sim_vars, show=False) analysis = utils.simple_iclamp_analysis(v['Gran/0/Granule_98/v'], t, plot=True) elif '-mone' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' sim_time = 700 cont = NeuroMLController('TestGranNet', 'models/GranuleCellMulti.net.nml',