num_elites = 3, seed = 12345, simulator = simulator, nogui = nogui, known_target_values = known_target_values) else: simulator = 'jNeuroML_NEURON' cont = NeuroMLController('RunOnePyr', neuroml_file, 'network', sim_time, 0.01, simulator, generate_dir = './temp') sim_vars = OrderedDict(known_target_values) t, v = cont.run_individual(sim_vars, show=(not nogui)) print("Have run individual instance...") peak_threshold = 0 analysis_var = {'peak_delta': 0, 'baseline': 0, 'dvdt_threshold': 0, 'peak_threshold': peak_threshold}
nogui = '-nogui' in sys.argv if '-compare' in sys.argv: compare( 'NT_AllenIzh__s12345_p200_m600_s80_o60_m0.1_e2_Mon_Nov_30_12.30.28_2015/AllenIzh__s12345_p200_m600_s80_o60_m0.1_e2.Pop0.v.dat' ) #### Run simulation with one HH cell elif '-one' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' cont = NeuroMLController('AllenTest', 'prototypes/RS/AllenTest.net.nml', 'network_RS', 1500, 0.01, simulator) sim_vars = OrderedDict(example_vars_hh) t, v = cont.run_individual(sim_vars, show=(not nogui)) #### Run simulation with multiple HH cells elif '-mone' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' dataset = 471141261 ref = 'network_%s_HH' % (dataset) cont = NeuroMLController('AllenTest', 'prototypes/RS/%s.net.nml' % ref,
if __name__ == '__main__': nogui = '-nogui' in sys.argv if '-compare' in sys.argv: compare( 'NT_AllenIzh__s12345_p200_m600_s80_o60_m0.1_e2_Mon_Nov_30_12.30.28_2015/AllenIzh__s12345_p200_m600_s80_o60_m0.1_e2.Pop0.v.dat' ) elif '-one' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' cont = NeuroMLController('AllenTest', 'models/RS/AllenTest.net.nml', 'network_RS', 1500, 0.01, simulator) example_vars = { 'cell:RS/channelDensity:IM_all/mS_per_cm2': 0.7724432400416816, 'cell:RS/channelDensity:Kd_all/mS_per_cm2': 4.643108211145454, 'cell:RS/channelDensity:LeakConductance_all/mS_per_cm2': 0.007883588106567089, 'cell:RS/channelDensity:Na_all/mS_per_cm2': 44.05565568387002, 'cell:RS/erev_id:LeakConductance_all/mV': -95.25485559729064 } sim_vars = OrderedDict(example_vars) t, v = cont.run_individual(sim_vars, show=(not nogui)) elif '-mone' in sys.argv:
mutation_rate=mutation_rate, num_elites=num_elites, simulator=simulator, nogui=nogui) if __name__ == '__main__': nogui = '-nogui' in sys.argv if '-one' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' cont = NeuroMLController(prefix, 'models/RS/SSTest.net.nml', 'network_RS', sim_time, 0.01, simulator) sim_vars = OrderedDict([ ('cell:RS/channelDensity:Na_all/mS_per_cm2', 100), ('cell:RS/channelDensity:Kd_all/mS_per_cm2', 20), ('cell:RS/channelDensity:LeakConductance_all/mS_per_cm2', 1e-5) ]) t, v = cont.run_individual(sim_vars, show=(not nogui)) else: run_one_optimisation(prefix, 123456, population_size=30, max_evaluations=200,
'cell:Granule_98/channelDensity:Gran_NaF_98_all/mS_per_cm2': 55.74495636439219, 'cell:Granule_98/specificCapacitance:all/uF_per_cm2': 1.0808061342038033 } sim_vars = OrderedDict(vars) #sim_vars = OrderedDict([]) if '-one' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' cont = NeuroMLController('TestGran', 'models/GranuleCell.net.nml', 'network_GranuleCell', sim_time, dt, simulator) t, v = cont.run_individual(sim_vars, show=False) analysis = utils.simple_iclamp_analysis(v['Gran/0/Granule_98/v'], t, plot=True) elif '-mone' in sys.argv: simulator = 'jNeuroML_NEURON' #simulator = 'jNeuroML' sim_time = 700 cont = NeuroMLController('TestGranNet',