def example_3D(): import pkg_resources DATA_PATH = pkg_resources.resource_filename('pynufft', './src/data/') image = numpy.load(DATA_PATH + 'phantom_3D_128_128_128.npz')['arr_0'][0::2, 0::2, 0::2] pyplot.imshow(numpy.abs(image[:, :, 32]), label='original signal', cmap=gray) pyplot.show() Nd = (64, 64, 64) # time grid, tuple Kd = (64, 64, 64) # frequency grid, tuple Jd = (1, 1, 1) # interpolator # om= numpy.load(DATA_PATH+'om3D.npz')['arr_0'] om = numpy.random.randn(15120, 3) print(om.shape) from pynufft import NUFFT_cpu, NUFFT_hsa NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) kspace = NufftObj.forward(image) restore_image = NufftObj.solve(kspace, 'cg', maxiter=200) # restore_image1 = NufftObj.solve(kspace,'L1TVLAD', maxiter=200,rho=0.1) # restore_image2 = NufftObj.solve(kspace, 'L1TVOLS', maxiter=200, rho=0.1) pyplot.subplot(2, 2, 1) pyplot.imshow(numpy.abs(image[:, :, 32]), label='original signal', cmap=gray) pyplot.title('original') # pyplot.subplot(2,2,2) # pyplot.imshow(numpy.abs(restore_image1[:,:,32]), label='L1TVLAD',cmap=gray) # pyplot.title('L1TVLAD') pyplot.subplot(2, 2, 3) pyplot.imshow(numpy.abs(restore_image2[:, :, 32]), label='L1TVOLS', cmap=gray) pyplot.title('L1TVOLS') pyplot.subplot(2, 2, 4) pyplot.imshow(numpy.abs(restore_image[:, :, 32]), label='CG', cmap=gray) pyplot.title('CG') # pyplot.legend([im1, im im4]) pyplot.show()
def example_1D(): om = numpy.random.randn(1512, 1) # print(om) # print(om.shape) # pyplot.hist(om) # pyplot.show() Nd = (256, ) # time grid, tuple Kd = (512, ) # frequency grid, tuple Jd = (7, ) # interpolator from pynufft import NUFFT_cpu, NUFFT_hsa NufftObj = NUFFT_cpu() batch = 4 NufftObj.plan(om, Nd, Kd, Jd, batch=batch) time_data = numpy.zeros((256, batch)) time_data[64:192, :] = 1.0 pyplot.plot(time_data) pyplot.ylim(-1, 2) pyplot.show() nufft_freq_data = NufftObj.forward(time_data) print('shape of y = ', nufft_freq_data.shape) x2 = NufftObj.adjoint(nufft_freq_data) restore_time = NufftObj.solve(nufft_freq_data, 'cg', maxiter=30) restore_time1 = NufftObj.solve(nufft_freq_data, 'L1TVOLS', maxiter=30, rho=1) # # restore_time2 = NufftObj.solve(nufft_freq_data,'L1TVOLS', maxiter=30,rho=1) # # im1,=pyplot.plot(numpy.abs(time_data),'r',label='original signal') # im3,=pyplot.plot(numpy.abs(restore_time2),'k--',label='L1TVOLS') # im4,=pyplot.plot(numpy.abs(restore_time),'r:',label='conjugate_gradient_method') # pyplot.legend([im1, im2, im3,im4]) for slice in range(0, batch): pyplot.plot(numpy.abs(x2[:, slice])) pyplot.plot(numpy.abs(restore_time[:, slice])) pyplot.show()
def performUndersampling(fullImgVol, om=None, dcf=None, interpolationSize4NUFFT=6, complex2real=np.abs, ommatpath=None): #Either send om and dcf, or ommatpath. #path will only be used in om not supplied if om is None: temp_mat = sio.loadmat(ommatpath) om = temp_mat['om'] dcf = temp_mat['dcf'].squeeze() imageSize = fullImgVol.shape[0] baseresolution = imageSize * 2 NufftObj = NUFFT_cpu() Nd = (baseresolution, baseresolution) # image size Kd = (baseresolution * 2, baseresolution * 2) # k-space size Jd = (interpolationSize4NUFFT, interpolationSize4NUFFT ) # interpolation size NufftObj.plan(om, Nd, Kd, Jd) underImgVol = np.zeros(fullImgVol.shape, dtype=fullImgVol.dtype) for i in range(fullImgVol.shape[-1]): oversam_fully = np.zeros((baseresolution, baseresolution), dtype=fullImgVol.dtype) oversam_fully[imageSize // 2:imageSize + imageSize // 2, imageSize // 2:imageSize + imageSize // 2] = fullImgVol[..., i] y = NufftObj.forward(oversam_fully) y = np.multiply(dcf, y) oversam_under = NufftObj.adjoint(y) underImgVol[..., i] = complex2real( oversam_under[imageSize // 2:imageSize + imageSize // 2, imageSize // 2:imageSize + imageSize // 2]) return underImgVol
def non_uniform_fft(pos_stack,pos_wavefun,solver,interp_size): assert len(pos_wavefun.shape) == 2 NufftObj = NUFFT_cpu() om = pos_stack Nd = (len(pos_stack[0]),len(pos_stack[1])) Kd = Nd Jd = (interp_size,interp_size) NufftObj.plan(om,Nd,Kd,Jd) y = NufftObj.forward(pos_wavefun) mom_wavefun_1 = NufftObj.solve(y,solver=solver ) #mom_wavefun_2 = NufftObj.adjoint(y) return mom_wavefun_1 #, mom_wavefun_2
def example_1D(): om = numpy.random.randn(1512,1) # print(om) # print(om.shape) # pyplot.hist(om) # pyplot.show() Nd = (256,) # time grid, tuple Kd = (512,) # frequency grid, tuple Jd = (7,) # interpolator from pynufft import NUFFT_cpu, NUFFT_hsa NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) time_data = numpy.zeros(256, ) time_data[64:192] = 1.0 pyplot.plot(time_data) pyplot.ylim(-1,2) pyplot.show() nufft_freq_data =NufftObj.forward(time_data) restore_time = NufftObj.solve(nufft_freq_data,'cg', maxiter=30) restore_time2 = NufftObj.solve(nufft_freq_data,'L1TVOLS', maxiter=30,rho=1) im1,=pyplot.plot(numpy.abs(time_data),'r',label='original signal') # im2,=pyplot.plot(numpy.abs(restore_time1),'b:',label='L1TVLAD') im3,=pyplot.plot(numpy.abs(restore_time2),'k--',label='L1TVOLS') im4,=pyplot.plot(numpy.abs(restore_time),'r:',label='conjugate_gradient_method') pyplot.legend([im1, im3,im4]) pyplot.show()
def test_cuda(): import numpy import matplotlib.pyplot # load example image import pkg_resources ## Define the source of data DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/') # PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt') import scipy image = scipy.misc.ascent() image = scipy.misc.imresize(image, (256, 256)) image = image.astype(numpy.float) / numpy.max(image[...]) Nd = (256, 256) # image space size Kd = (512, 512) # k-space size Jd = (6, 6) # interpolation size # load k-space points as M * 2 array om = numpy.load(DATA_PATH + 'om2D.npz')['arr_0'] # Show the shape of om print('the shape of om = ', om.shape) # initiating NUFFT_cpu object nfft = NUFFT_cpu() # CPU NUFFT class # Plan the nfft object nfft.plan(om, Nd, Kd, Jd) # initiating NUFFT_hsa object NufftObj = NUFFT_hsa('cuda', 0, 0) # Plan the NufftObj (similar to NUFFT_cpu) NufftObj.plan(om, Nd, Kd, Jd) import time t0 = time.time() for pp in range(0, 10): y = nfft.forward(image) t_cpu = (time.time() - t0) / 10.0 ## Moving image to gpu ## gx is an gpu array, dtype = complex64 gx = NufftObj.to_device(image) t0 = time.time() for pp in range(0, 100): gy = NufftObj.forward(gx) t_cu = (time.time() - t0) / 100 print('t_cpu = ', t_cpu) print('t_cuda =, ', t_cu) print('gy close? = ', numpy.allclose(y, gy.get(), atol=numpy.linalg.norm(y) * 1e-3)) print("acceleration=", t_cpu / t_cu) maxiter = 100 import time t0 = time.time() x_cpu_cg = nfft.solve(y, 'cg', maxiter=maxiter) # x2 = nfft.solve(y2, 'L1TVLAD',maxiter=maxiter, rho = 2) t1 = time.time() - t0 # gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2)) t0 = time.time() x_cuda_cg = NufftObj.solve(gy, 'cg', maxiter=maxiter) # x = NufftObj.solve(gy,'L1TVLAD', maxiter=maxiter, rho=2) t2 = time.time() - t0 print(t1, t2) print('acceleration of cg=', t1 / t2) t0 = time.time() x_cpu_TV = nfft.solve(y, 'L1TVOLS', maxiter=maxiter, rho=2) t1 = time.time() - t0 t0 = time.time() x_cuda_TV = NufftObj.solve(gy, 'L1TVOLS', maxiter=maxiter, rho=2) t2 = time.time() - t0 print(t1, t2) print('acceleration of TV=', t1 / t2) matplotlib.pyplot.subplot(2, 2, 1) matplotlib.pyplot.imshow(x_cpu_cg.real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('CG_cpu') matplotlib.pyplot.subplot(2, 2, 2) matplotlib.pyplot.imshow(x_cuda_cg.get().real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('CG_cuda') matplotlib.pyplot.subplot(2, 2, 3) matplotlib.pyplot.imshow(x_cpu_TV.real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('TV_cpu') matplotlib.pyplot.subplot(2, 2, 4) matplotlib.pyplot.imshow(x_cuda_TV.get().real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('TV_cuda') matplotlib.pyplot.show() NufftObj.release() del NufftObj
Jd = (6,6) # interpolator size NufftObj.plan(om, Nd, Kd, Jd) # load image from scipy.misc.face() import scipy.misc import matplotlib.cm as cm image = scipy.misc.face(gray=True) image = scipy.misc.imresize(image, (256,256)) image=image.astype(numpy.float)/numpy.max(image[...]) pyplot.imshow(image, cmap=cm.gray) pyplot.show() # Forward NUFFT transform y = NufftObj.forward(image) # Adjoint NUFFT k = NufftObj.y2k(y) import matplotlib.colors k_show = numpy.fft.fftshift(k) pyplot.imshow(numpy.abs(k_show), cmap=cm.gray, norm=matplotlib.colors.Normalize(0, 1e+3)) pyplot.show() # Inverse transform using density compensation inverse_DC() x3 = NufftObj.inverse_DC(y) x3_display = x3*1.0/numpy.max(x3[...].real) pyplot.imshow(x3_display.real,cmap=cm.gray) pyplot.show()
Nd = (256, ) # time grid, tuple Kd = (512, ) # frequency grid, tuple Jd = (7, ) # interpolator NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) time_data = numpy.zeros(256, ) time_data[64:192] = 1.0 pyplot.plot(time_data) pyplot.ylim(-1, 2) pyplot.show() nufft_freq_data = NufftObj.forward(time_data) pyplot.plot(om, nufft_freq_data.real, '.', label='real') pyplot.plot(om, nufft_freq_data.imag, 'r.', label='imag') pyplot.legend() pyplot.show() restore_time = NufftObj.solve(nufft_freq_data, 'cg', maxiter=30) restore_time1 = NufftObj.solve(nufft_freq_data, 'L1TVLAD', maxiter=30, rho=1) restore_time2 = NufftObj.solve(nufft_freq_data, 'L1TVOLS', maxiter=30, rho=1) im1, = pyplot.plot(numpy.abs(time_data), 'r', label='original signal') im2, = pyplot.plot(numpy.abs(restore_time1), 'b:', label='L1TVLAD') im3, = pyplot.plot(numpy.abs(restore_time2), 'k--', label='L1TVOLS') im4, = pyplot.plot(numpy.abs(restore_time), 'r:', label='conjugate_gradient_method')
results.append(result) # Now enter the second process # This is the standard multiprocessing Pool D = atomic_NUFFT(om2, Nd, Kd, Jd, 'cuda', 0) # Non-obstructive result = pool.apply_async(D.run, args = (x, 1)) results.append(result) # closing the pool pool.close() pool.join() # results are appended # Now print the outputs result1 = results[0].get() result2 = results[1].get() # check CPU results NUFFT_cpu1 = NUFFT_cpu() NUFFT_cpu1.plan(om1, Nd, Kd, Jd) y1 = NUFFT_cpu1.forward(x) print('norm = ', numpy.linalg.norm(y1 - result1) / numpy.linalg.norm(y1)) NUFFT_cpu2 = NUFFT_cpu() NUFFT_cpu2.plan(om2, Nd, Kd, Jd) y2 = NUFFT_cpu2.forward(x) print('norm = ', numpy.linalg.norm(y2 - result2) / numpy.linalg.norm(y2))
import numpy from pynufft import NUFFT_cpu import scipy.misc import matplotlib Nd = (256, 256) Kd = (512, 512) Jd = (6, 6) om = numpy.random.randn(65536, 2) x = scipy.misc.imresize(scipy.misc.ascent(), Nd) om1 = om[om[:, 0] > 0, :] om2 = om[om[:, 0] <= 0, :] NufftObj1 = NUFFT_cpu() NufftObj1.plan(om1, Nd, Kd, Jd) NufftObj2 = NUFFT_cpu() NufftObj2.plan(om2, Nd, Kd, Jd) y1 = NufftObj1.forward(x) y2 = NufftObj2.forward(x)
pyplot.imshow(numpy.abs(image[:, :, 32]), label='original signal', cmap=gray) pyplot.show() Nd = (64, 64, 64) # time grid, tuple Kd = (64, 64, 64) # frequency grid, tuple Jd = (1, 1, 1) # interpolator # om= numpy.load(DATA_PATH+'om3D.npz')['arr_0'] om = numpy.random.randn(151200, 3) * 2 print(om.shape) from pynufft import NUFFT_cpu, NUFFT_hsa NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) kspace = NufftObj.forward(image) restore_image = NufftObj.solve(kspace, 'cg', maxiter=500) restore_image1 = NufftObj.solve(kspace, 'L1TVLAD', maxiter=500, rho=0.1) # restore_image2 = NufftObj.solve(kspace, 'L1TVOLS', maxiter=500, rho=0.1) pyplot.subplot(2, 2, 1) pyplot.imshow(numpy.real(image[:, :, 32]), label='original signal', cmap=gray) pyplot.title('original') pyplot.subplot(2, 2, 2) pyplot.imshow(numpy.real(restore_image1[:, :, 32]), label='L1TVLAD', cmap=gray) pyplot.title('L1TVLAD') pyplot.subplot(2, 2, 3) pyplot.imshow(numpy.real(restore_image2[:, :, 32]), label='L1TVOLS', cmap=gray)
fake_coil = create_fake_coils(Nd[0], Nc) H = numpy.ones(Nd + (Nc, ), dtype=numpy.complex) for pp in range(0, Nc): H[..., pp] = fake_coil[pp] H2 = H * numpy.reshape(M0, (256, 256, 1)) H = Nd_sense(H2, maxiter=20, sigma=100) H = H - numpy.min(abs(H.ravel())) # matplotlib.pyplot.imshow(H[:,:,0].real) # matplotlib.pyplot.show() # H = H*numpy.reshape(M0, Nd+(1,))*(1.0+0.0j)/256 NufftObj_coil.plan1(om2, Nd, (512, 512), (5, 5), ft_axes=(0, 1), coil_sense=H) y = NufftObj.forward(M0) y2 = numpy.fft.fftshift( numpy.fft.ifft2(numpy.fft.fftshift(y.reshape(Nd, order='C')))) y3 = NufftObj_coil.forward((M0) * (1.0 + 0.0j)) print(y3.shape, y3) # y3 = y3.reshape((Nc, 256, 256), order='C') # y4 = numpy.einsum('ijk -> jki', y3) y4 = y3.reshape((256, 256, Nc), order='C') # y4 = numpy.fft.fftshift(numpy.fft.ifftn(numpy.fft.fftshift(y3, axes = (1,2)), axes = (1,2)), axes = (1,2)) y4 = numpy.fft.fftshift(numpy.fft.ifftn(numpy.fft.fftshift(y4, axes=(0, 1)), axes=(0, 1)), axes=(0, 1)) # y2 = NufftObj.adjoint(y) / 512
def test_init(): # cm = matplotlib.cm.gray # load example image import pkg_resources DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/') # PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt') import numpy # import matplotlib.pyplot import scipy image = scipy.misc.ascent()[::2,::2] image=image.astype(numpy.float)/numpy.max(image[...]) Nd = (256, 256) # image space size Kd = (512, 512) # k-space size Jd = (6,6) # interpolation size # load k-space points om = numpy.load(DATA_PATH+'om2D.npz')['arr_0'] nfft = NUFFT_cpu() # CPU nfft.plan(om, Nd, Kd, Jd) try: NufftObj = NUFFT_hsa('cuda',0,0) except: NufftObj = NUFFT_hsa('ocl',0,0) # NufftObj2 = NUFFT_hsa('cuda',0,0) NufftObj.debug = 1 NufftObj.plan(om, Nd, Kd, Jd, radix=2) # NufftObj2.plan(om, Nd, Kd, Jd) # NufftObj.offload(API = 'cuda', platform_number = 0, device_number = 0) # NufftObj2.offload(API = 'cuda', platform_number = 0, device_number = 0) # NufftObj2.offload('cuda') # NufftObj.offload(API = 'cuda', platform_number = 0, device_number = 0) # print('api=', NufftObj.thr.api_name()) # NufftObj.offload(API = 'ocl', platform_number = 0, device_number = 0) y = nfft.k2y(nfft.xx2k(nfft.x2xx(image))) NufftObj.x_Nd = NufftObj.thr.to_device( image.astype(dtype)) gx = NufftObj.thr.copy_array(NufftObj.x_Nd) print('x close? = ', numpy.allclose(image, gx.get() , atol=1e-4)) gxx = NufftObj.x2xx(gx) print('xx close? = ', numpy.allclose(nfft.x2xx(image), gxx.get() , atol=1e-4)) gk = NufftObj.xx2k(gxx) k = nfft.xx2k(nfft.x2xx(image)) print('k close? = ', numpy.allclose(nfft.xx2k(nfft.x2xx(image)), gk.get(), atol=1e-3*numpy.linalg.norm(k))) gy = NufftObj.k2y(gk) k2 = NufftObj.y2k(gy) print('y close? = ', numpy.allclose(y, gy.get() , atol=1e-3*numpy.linalg.norm(y)), numpy.linalg.norm((y - gy.get())/numpy.linalg.norm(y))) y2 = y print('k2 close? = ', numpy.allclose(nfft.y2k(y2), k2.get(), atol=1e-3*numpy.linalg.norm(nfft.y2k(y2)) ), numpy.linalg.norm(( nfft.y2k(y2)- k2.get())/numpy.linalg.norm(nfft.y2k(y2)))) gxx2 = NufftObj.k2xx(k2) # print('xx close? = ', numpy.allclose(nfft.k2xx(nfft.y2k(y2)), NufftObj.xx_Nd.get(queue=NufftObj.queue, async=False) , atol=0.1)) gx2 = NufftObj.xx2x(gxx2) print('x close? = ', numpy.allclose(nfft.adjoint(y2), gx2.get() , atol=1e-3*numpy.linalg.norm(nfft.adjoint(y2)))) image3 = gx2.get() import time t0 = time.time() # k = nfft.xx2k(nfft.x2xx(image)) for pp in range(0,50): # y = nfft.k2y(nfft.xx2k(nfft.x2xx(image))) y = nfft.forward(image) # y = nfft.k2y(k) # k = nfft.y2k(y) # x = nfft.adjoint(y) # y = nfft.forward(image) # y2 = NufftObj.y.get( NufftObj.queue, async=False) t_cpu = (time.time() - t0)/50.0 print(t_cpu) # del nfft gy2=NufftObj.forward(gx) # gk = NufftObj.xx2k(NufftObj.x2xx(gx)) t0= time.time() for pp in range(0,20): # pass gy2 = NufftObj.forward(gx) # gy2 = NufftObj.k2y(gk) # gx2 = NufftObj.adjoint(gy2) # gk2 = NufftObj.y2k(gy2) # del gy2 # c = gx2.get() # gy=NufftObj.forward(gx) NufftObj.thr.synchronize() t_cl = (time.time() - t0)/20 print(t_cl) print('gy close? = ', numpy.allclose(y, gy.get(), atol=numpy.linalg.norm(y)*1e-3)) print("acceleration=", t_cpu/t_cl) maxiter =100 import time t0= time.time() # x2 = nfft.solve(y2, 'cg',maxiter=maxiter) x2 = nfft.solve(y2, 'L1TVOLS',maxiter=maxiter, rho = 2) t1 = time.time()-t0 # gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2)) t0= time.time() # x = NufftObj.solve(gy,'cg', maxiter=maxiter) x = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2) t2 = time.time() - t0 print(t1, t2) print('acceleration=', t1/t2 ) # k = x.get() # x = nfft.k2xx(k)/nfft.st['sn'] # return try: import matplotlib.pyplot matplotlib.pyplot.subplot(1, 2, 1) matplotlib.pyplot.imshow( x.get().real, cmap= matplotlib.cm.gray, vmin = 0, vmax = 1) matplotlib.pyplot.title("HSA reconstruction") matplotlib.pyplot.subplot(1, 2,2) matplotlib.pyplot.imshow(x2.real, cmap= matplotlib.cm.gray) matplotlib.pyplot.title("CPU reconstruction") matplotlib.pyplot.show(block = False) matplotlib.pyplot.pause(3) matplotlib.pyplot.close() # del NufftObj.thr # del NufftObj except: print("no graphics")
NufftObj.plan(om, Nd, Kd, Jd) # Now test 1D case import matplotlib.pyplot as pyplot # Now build a box function time_data = numpy.zeros(256, ) time_data[96:128 + 32] = 1.0 # Now display the function pyplot.plot(time_data) pyplot.ylim(-1, 2) pyplot.show() # Forward NUFFT y = NufftObj.forward(time_data) # Display the nonuniform spectrum pyplot.plot(om, y.real, '.', label='real') pyplot.plot(om, y.imag, 'r.', label='imag') pyplot.legend() pyplot.show() # Adjoint NUFFT x2 = NufftObj.adjoint(y) pyplot.plot(x2.real, '.-', label='real') pyplot.plot(x2.imag, 'r.-', label='imag') pyplot.plot(time_data, 'k', label='original signal') pyplot.ylim(-1, 2) pyplot.legend() pyplot.show()
def test_2D(): import pkg_resources DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/') # PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt') import numpy import matplotlib.pyplot from pynufft import NUFFT_cpu # load example image # image = numpy.loadtxt(DATA_PATH +'phantom_256_256.txt') image = scipy.misc.ascent()[::2, ::2] image = image.astype(numpy.float) / numpy.max(image[...]) #numpy.save('phantom_256_256',image) matplotlib.pyplot.imshow(image, cmap=matplotlib.cm.gray) matplotlib.pyplot.show() print('loading image...') Nd = (256, 256) # image size print('setting image dimension Nd...', Nd) Kd = (512, 512) # k-space size print('setting spectrum dimension Kd...', Kd) Jd = (6, 6) # interpolation size print('setting interpolation size Jd...', Jd) # load k-space points # om = numpy.loadtxt(DATA_PATH+'om.txt') om = numpy.load(DATA_PATH + 'om2D.npz')['arr_0'] print('setting non-uniform coordinates...') matplotlib.pyplot.plot(om[::10, 0], om[::10, 1], 'o') matplotlib.pyplot.title('non-uniform coordinates') matplotlib.pyplot.xlabel('axis 0') matplotlib.pyplot.ylabel('axis 1') matplotlib.pyplot.show() NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) y = NufftObj.forward(image) print('setting non-uniform data') print('y is an (M,) list', type(y), y.shape) # kspectrum = NufftObj.xx2k( NufftObj.solve(y,solver='bicgstab',maxiter = 100)) image_restore = NufftObj.solve(y, solver='cg', maxiter=10) shifted_kspectrum = numpy.fft.fftshift( numpy.fft.fftn(numpy.fft.fftshift(image_restore))) print('getting the k-space spectrum, shape =', shifted_kspectrum.shape) print('Showing the shifted k-space spectrum') matplotlib.pyplot.imshow(shifted_kspectrum.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=-100, vmax=100)) matplotlib.pyplot.title('shifted k-space spectrum') matplotlib.pyplot.show() image4 = NufftObj.solve(y, 'L1TVOLS', maxiter=100, rho=1) image2 = NufftObj.solve(y, 'dc', maxiter=25) image3 = NufftObj.solve(y, 'cg', maxiter=25) matplotlib.pyplot.subplot(1, 3, 1) matplotlib.pyplot.imshow(image2.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.title('dc') matplotlib.pyplot.subplot(1, 3, 2) matplotlib.pyplot.imshow(image3.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.title('cg') matplotlib.pyplot.subplot(1, 3, 3) matplotlib.pyplot.imshow(image4.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.title('L1TVOLS') matplotlib.pyplot.show() # matplotlib.pyplot.imshow(image2.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) # matplotlib.pyplot.show() maxiter = 25 counter = 1 for solver in ('dc', 'bicg', 'bicgstab', 'cg', 'gmres', 'lgmres', 'lsqr'): print(counter, solver) if 'lsqr' == solver: image2 = NufftObj.solve(y, solver, iter_lim=maxiter) else: image2 = NufftObj.solve(y, solver, maxiter=maxiter) # image2 = NufftObj.solve(y, solver='bicgstab',maxiter=30) matplotlib.pyplot.subplot(2, 4, counter) matplotlib.pyplot.imshow(image2.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.title(solver) # print(counter, solver) counter += 1 matplotlib.pyplot.show()
print('setting spectrum dimension Kd...', Kd) Jd = (6, 6) # interpolation size print('setting interpolation size Jd...', Jd) NufftObj.plan(om, Nd, Kd, Jd) image = scipy.misc.ascent() image = scipy.misc.imresize(image, (256, 256)) image = image * 1.0 / numpy.max(image[...]) print('loading image...') matplotlib.pyplot.imshow(image.real, cmap=matplotlib.cm.gray) matplotlib.pyplot.show() y = NufftObj.forward(image) print('setting non-uniform data') print('y is an (M,) list', type(y), y.shape) matplotlib.pyplot.subplot(2, 2, 1) image0 = NufftObj.solve(y, solver='cg', maxiter=50) matplotlib.pyplot.title('Restored image (cg)') matplotlib.pyplot.imshow(image0.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.subplot(2, 2, 2) image2 = NufftObj.adjoint(y) matplotlib.pyplot.imshow(image2.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=5))
def FFTgridDSGfile(netCDFfiles): ds = Dataset(netCDFfiles[1], 'a') vs = ds.get_variables_by_attributes(standard_name='sea_water_pressure_due_to_sea_water') vs = ds.get_variables_by_attributes(long_name='actual depth') pres_var = vs[0] pres = pres_var[:] #plt.plot(pres) #plt.show() temp_var = ds.variables["TEMP"] print("Read and convert time") time_var = ds.variables["TIME"] #time = num2date(time_var[:], units=time_var.units, calendar=time_var.calendar) #first_hour = time[0].replace(minute=0, second=0, microsecond=0) t = time_var[:] * 24 hours = t # scale time to -pi to pi hours_min = np.min(hours) hours_max = np.max(hours) mid_hours = (hours_max + hours_min)/2 print("time min, max", hours_min, hours_max, num2date(hours_max/24, units=time_var.units, calendar=time_var.calendar), num2date(hours_min/24, units=time_var.units, calendar=time_var.calendar), num2date(mid_hours/24, units=time_var.units, calendar=time_var.calendar)) t2pi = 2*np.pi * (hours - mid_hours) / (hours_max - hours_min) # scale pressure to -pi to pi pres_min = np.min(pres) pres_max = np.max(pres) pres_mid = (pres_max + pres_min)/2 print("pres min, max", pres_min, pres_max, pres_mid) d2pi = 2*np.pi * (pres - pres_mid) / (pres_max - pres_min) #plt.plot(t2pi) #plt.show() nt_points = int(hours_max - hours_min) nd_points = 20 print(nt_points, nd_points) print("Calc FFT") x = t2pi y = d2pi c = np.array(temp_var[:]) #c.real = temp_var[:] #c.imag = 0 print(c) print("size ", len(x), len(y), len(c)) # Provided om, the size of time series (Nd), oversampled grid (Kd), and interpolatro size (Jd) om = [x, y] Nd = (256, 256) # image size Kd = (512, 512) # k-space size Jd = (6, 6) # interpolation size NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) fft = NufftObj.forward(c) print("fft ") print(fft) for x in range(0, nd_points): plt.plot(10*np.log10(abs(fft[:,x]))) plt.grid(True) plt.show() F1 = np.fft.ifft2(fft) f2 = np.fft.fftshift(F1) print("inverted ", f2.shape, len(hours)) first_hour = num2date(hours_min/24, units=time_var.units, calendar=time_var.calendar).replace(minute=0, second=0, microsecond=0) td = [first_hour + timedelta(hours=x) for x in range(nt_points)] for x in range(0, nd_points): plt.plot(td, abs(f2[:,x])/(len(hours)/(nt_points))) plt.grid(True) plt.xticks(fontsize=6) plt.show() index_var = ds.variables["instrument_index"] idx = index_var[:] instrument_id_var = ds.variables["instrument_id"] #time = num2date(time_var[:], units=time_var.units, calendar=time_var.calendar) #print(idx) i = 0 for x in chartostring(instrument_id_var[:]): #print (i, x, time[idx == 1], pres[idx == i]) #plt.plot(time[idx == i], pres[idx == i]) # , marker='.' i += 1 #plt.gca().invert_yaxis() #plt.grid(True) # close the netCDF file ds.close() plt.show() ncOut = Dataset("fft-bin.nc", 'w', format='NETCDF4') # add time tDim = ncOut.createDimension("TIME", nt_points) ncTimesOut = ncOut.createVariable("TIME", "d", ("TIME",), zlib=True) ncTimesOut.long_name = "time" ncTimesOut.units = "days since 1950-01-01 00:00:00 UTC" ncTimesOut.calendar = "gregorian" ncTimesOut.axis = "T" ncTimesOut[:] = hours_min / 24 bin_dim = ncOut.createDimension("BIN", nd_points) bin_var = ncOut.createVariable("BIN", "d", ("BIN",), zlib=True) bin_var[:] = range(0, nd_points) # add variables nc_var_out = ncOut.createVariable("TEMP", "f4", ("TIME", "BIN"), fill_value=np.nan, zlib=True) print("shape ", f2.shape, nc_var_out.shape) nc_var_out[:] = abs(f2) # add some summary metadata ncTimeFormat = "%Y-%m-%dT%H:%M:%SZ" # add creating and history entry ncOut.setncattr("date_created", datetime.utcnow().strftime(ncTimeFormat)) ncOut.setncattr("history", datetime.utcnow().strftime("%Y-%m-%d") + " created from file " + netCDFfiles[1]) ncOut.close()