def test_2D(): import pkg_resources DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/') # PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt') import numpy import matplotlib.pyplot from pynufft import NUFFT_cpu # load example image # image = numpy.loadtxt(DATA_PATH +'phantom_256_256.txt') image = scipy.misc.ascent() image = scipy.misc.imresize(image, (256, 256)) image = image.astype(numpy.float) / numpy.max(image[...]) #numpy.save('phantom_256_256',image) matplotlib.pyplot.imshow(image, cmap=matplotlib.cm.gray) matplotlib.pyplot.show() print('loading image...') Nd = (256, 256) # image size print('setting image dimension Nd...', Nd) Kd = (512, 512) # k-space size print('setting spectrum dimension Kd...', Kd) Jd = (6, 6) # interpolation size print('setting interpolation size Jd...', Jd) # load k-space points # om = numpy.loadtxt(DATA_PATH+'om.txt') om = numpy.load(DATA_PATH + 'om2D.npz')['arr_0'] print('setting non-uniform coordinates...') matplotlib.pyplot.plot(om[::10, 0], om[::10, 1], 'o') matplotlib.pyplot.title('non-uniform coordinates') matplotlib.pyplot.xlabel('axis 0') matplotlib.pyplot.ylabel('axis 1') matplotlib.pyplot.show() NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) y = NufftObj.forward(image) print('setting non-uniform data') print('y is an (M,) list', type(y), y.shape) W = numpy.ones(Kd, dtype=numpy.complex64) for pp in range(0, 200): W2 = NufftObj.xx2k(NufftObj.adjoint(NufftObj.forward( NufftObj.k2xx(W)))) W2 = W2 * W2.conj() W2 = W2**0.5 W = (W + 0.9) / (W2 + 0.9) matplotlib.pyplot.subplot(1, 2, 1) matplotlib.pyplot.imshow(W2.real) matplotlib.pyplot.subplot(1, 2, 2) matplotlib.pyplot.imshow((W / W2).real) matplotlib.pyplot.show() # kspectrum = NufftObj.xx2k( NufftObj.solve(y,solver='bicgstab',maxiter = 100)) image_restore = NufftObj.solve(y, solver='cg', maxiter=10) shifted_kspectrum = numpy.fft.fftshift( numpy.fft.fftn(numpy.fft.fftshift(image_restore))) print('getting the k-space spectrum, shape =', shifted_kspectrum.shape) print('Showing the shifted k-space spectrum') matplotlib.pyplot.imshow(shifted_kspectrum.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=-100, vmax=100)) matplotlib.pyplot.title('shifted k-space spectrum') matplotlib.pyplot.show() image2 = NufftObj.solve(y, 'dc', maxiter=25) # image3 = NufftObj.solve(y, 'L1TVLAD',maxiter=100, rho= 1) image3 = NufftObj.k2xx(NufftObj.xx2k(NufftObj.adjoint(y)) * W) print(image3.shape) image4 = NufftObj.solve(y, 'L1TVOLS', maxiter=100, rho=1) matplotlib.pyplot.subplot(1, 3, 1) matplotlib.pyplot.imshow(image, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.subplot(1, 3, 2) matplotlib.pyplot.imshow(image3.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.subplot(1, 3, 3) matplotlib.pyplot.imshow(image4.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.show() # matplotlib.pyplot.imshow(image2.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) # matplotlib.pyplot.show() maxiter = 25 counter = 1 for solver in ('dc', 'bicg', 'bicgstab', 'cg', 'gmres', 'lgmres', 'lsmr', 'lsqr'): print(counter, solver) if 'lsqr' == solver: image2 = NufftObj.solve(y, solver, iter_lim=maxiter) else: image2 = NufftObj.solve(y, solver, maxiter=maxiter) # image2 = NufftObj.solve(y, solver='bicgstab',maxiter=30) matplotlib.pyplot.subplot(2, 4, counter) matplotlib.pyplot.imshow(image2.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.title(solver) # print(counter, solver) counter += 1 matplotlib.pyplot.show()
shifted_kspectrum = numpy.fft.fftshift( numpy.fft.fftn(numpy.fft.fftshift(image0))) # print('getting the k-space spectrum, shape =',shifted_kspectrum.shape) print('Showing the shifted k-space spectrum') matplotlib.pyplot.imshow(shifted_kspectrum.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=-100, vmax=100)) matplotlib.pyplot.title('shifted k-space spectrum') matplotlib.pyplot.show() W0 = numpy.ones((NufftObj.st['M'], )) # W_x = NufftObj.xx2k( NufftObj.adjoint(NufftObj.forward(NufftObj.k2xx(W0)))) # W_y = NufftObj.xx2k(NufftObj.x2xx(NufftObj.adjoint(NufftObj.k2y(W0)))) W = NufftObj.xx2k(NufftObj.adjoint(W0)) # W = NufftObj.y2k(W0) # matplotlib.pyplot.subplot(1,) matplotlib.pyplot.imshow(numpy.real((W * W.conj())**0.5)) matplotlib.pyplot.title('Ueckers inverse function (real)') # matplotlib.pyplot.subplot(1,2,2) # matplotlib.pyplot.imshow(W.imag) # matplotlib.pyplot.title('Ueckers inverse function (imaginary)') matplotlib.pyplot.show() p0 = NufftObj.adjoint(NufftObj.forward(image)) p1 = NufftObj.k2xx((W.conj() * W)**0.5 * NufftObj.xx2k(image)) print('error between Toeplitz and Inverse reconstruction', numpy.linalg.norm(p1 - p0) / numpy.linalg.norm(p0))
def test_init(): # cm = matplotlib.cm.gray # load example image import pkg_resources DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/') # PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt') import numpy # import matplotlib.pyplot import scipy image = scipy.misc.ascent()[::2,::2] image=image.astype(numpy.float)/numpy.max(image[...]) Nd = (256, 256) # image space size Kd = (512, 512) # k-space size Jd = (6,6) # interpolation size # load k-space points om = numpy.load(DATA_PATH+'om2D.npz')['arr_0'] nfft = NUFFT_cpu() # CPU nfft.plan(om, Nd, Kd, Jd) try: NufftObj = NUFFT_hsa('cuda',0,0) except: NufftObj = NUFFT_hsa('ocl',0,0) # NufftObj2 = NUFFT_hsa('cuda',0,0) NufftObj.debug = 1 NufftObj.plan(om, Nd, Kd, Jd, radix=2) # NufftObj2.plan(om, Nd, Kd, Jd) # NufftObj.offload(API = 'cuda', platform_number = 0, device_number = 0) # NufftObj2.offload(API = 'cuda', platform_number = 0, device_number = 0) # NufftObj2.offload('cuda') # NufftObj.offload(API = 'cuda', platform_number = 0, device_number = 0) # print('api=', NufftObj.thr.api_name()) # NufftObj.offload(API = 'ocl', platform_number = 0, device_number = 0) y = nfft.k2y(nfft.xx2k(nfft.x2xx(image))) NufftObj.x_Nd = NufftObj.thr.to_device( image.astype(dtype)) gx = NufftObj.thr.copy_array(NufftObj.x_Nd) print('x close? = ', numpy.allclose(image, gx.get() , atol=1e-4)) gxx = NufftObj.x2xx(gx) print('xx close? = ', numpy.allclose(nfft.x2xx(image), gxx.get() , atol=1e-4)) gk = NufftObj.xx2k(gxx) k = nfft.xx2k(nfft.x2xx(image)) print('k close? = ', numpy.allclose(nfft.xx2k(nfft.x2xx(image)), gk.get(), atol=1e-3*numpy.linalg.norm(k))) gy = NufftObj.k2y(gk) k2 = NufftObj.y2k(gy) print('y close? = ', numpy.allclose(y, gy.get() , atol=1e-3*numpy.linalg.norm(y)), numpy.linalg.norm((y - gy.get())/numpy.linalg.norm(y))) y2 = y print('k2 close? = ', numpy.allclose(nfft.y2k(y2), k2.get(), atol=1e-3*numpy.linalg.norm(nfft.y2k(y2)) ), numpy.linalg.norm(( nfft.y2k(y2)- k2.get())/numpy.linalg.norm(nfft.y2k(y2)))) gxx2 = NufftObj.k2xx(k2) # print('xx close? = ', numpy.allclose(nfft.k2xx(nfft.y2k(y2)), NufftObj.xx_Nd.get(queue=NufftObj.queue, async=False) , atol=0.1)) gx2 = NufftObj.xx2x(gxx2) print('x close? = ', numpy.allclose(nfft.adjoint(y2), gx2.get() , atol=1e-3*numpy.linalg.norm(nfft.adjoint(y2)))) image3 = gx2.get() import time t0 = time.time() # k = nfft.xx2k(nfft.x2xx(image)) for pp in range(0,50): # y = nfft.k2y(nfft.xx2k(nfft.x2xx(image))) y = nfft.forward(image) # y = nfft.k2y(k) # k = nfft.y2k(y) # x = nfft.adjoint(y) # y = nfft.forward(image) # y2 = NufftObj.y.get( NufftObj.queue, async=False) t_cpu = (time.time() - t0)/50.0 print(t_cpu) # del nfft gy2=NufftObj.forward(gx) # gk = NufftObj.xx2k(NufftObj.x2xx(gx)) t0= time.time() for pp in range(0,20): # pass gy2 = NufftObj.forward(gx) # gy2 = NufftObj.k2y(gk) # gx2 = NufftObj.adjoint(gy2) # gk2 = NufftObj.y2k(gy2) # del gy2 # c = gx2.get() # gy=NufftObj.forward(gx) NufftObj.thr.synchronize() t_cl = (time.time() - t0)/20 print(t_cl) print('gy close? = ', numpy.allclose(y, gy.get(), atol=numpy.linalg.norm(y)*1e-3)) print("acceleration=", t_cpu/t_cl) maxiter =100 import time t0= time.time() # x2 = nfft.solve(y2, 'cg',maxiter=maxiter) x2 = nfft.solve(y2, 'L1TVOLS',maxiter=maxiter, rho = 2) t1 = time.time()-t0 # gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2)) t0= time.time() # x = NufftObj.solve(gy,'cg', maxiter=maxiter) x = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2) t2 = time.time() - t0 print(t1, t2) print('acceleration=', t1/t2 ) # k = x.get() # x = nfft.k2xx(k)/nfft.st['sn'] # return try: import matplotlib.pyplot matplotlib.pyplot.subplot(1, 2, 1) matplotlib.pyplot.imshow( x.get().real, cmap= matplotlib.cm.gray, vmin = 0, vmax = 1) matplotlib.pyplot.title("HSA reconstruction") matplotlib.pyplot.subplot(1, 2,2) matplotlib.pyplot.imshow(x2.real, cmap= matplotlib.cm.gray) matplotlib.pyplot.title("CPU reconstruction") matplotlib.pyplot.show(block = False) matplotlib.pyplot.pause(3) matplotlib.pyplot.close() # del NufftObj.thr # del NufftObj except: print("no graphics")