예제 #1
0
    def test_quicksum(self):
        m = ConcreteModel()
        m.y = Var(domain=Binary)
        m.c = Constraint(expr=quicksum([m.y, m.y], linear=True) == 1)

        lbl = NumericLabeler('x')
        smap = SymbolMap(lbl)
        tc = StorageTreeChecker(m)
        self.assertEqual(("x1 + x1", False),
                         expression_to_string(m.c.body, tc, smap=smap))
        m.x = Var()
        m.c2 = Constraint(expr=quicksum([m.x, m.y], linear=True) == 1)
        self.assertEqual(("x2 + x1", False),
                         expression_to_string(m.c2.body, tc, smap=smap))

        m.y.fix(1)
        lbl = NumericLabeler('x')
        smap = SymbolMap(lbl)
        tc = StorageTreeChecker(m)
        self.assertEqual(("1 + 1", False),
                         expression_to_string(m.c.body, tc, smap=smap))
        m.x = Var()
        m.c2 = Constraint(expr=quicksum([m.x, m.y], linear=True) == 1)
        self.assertEqual(("x1 + 1", False),
                         expression_to_string(m.c2.body, tc, smap=smap))
예제 #2
0
def expression_to_string(expr, treechecker, labeler=None, smap=None):
    if labeler is not None:
        if smap is None:
            smap = SymbolMap()
        smap.default_labeler = labeler
    visitor = ToGamsVisitor(smap, treechecker)
    return visitor.dfs_postorder_stack(expr)
예제 #3
0
파일: gams_writer.py 프로젝트: Pyomo/pyomo
def expression_to_string(expr, treechecker, labeler=None, smap=None):
    if labeler is not None:
        if smap is None:
            smap = SymbolMap()
        smap.default_labeler = labeler
    visitor = ToGamsVisitor(smap, treechecker)
    return visitor.dfs_postorder_stack(expr)
예제 #4
0
def expression_to_string(expr, variables, labeler=None, smap=None):
    if labeler is not None:
        if smap is None:
            smap = SymbolMap()
        smap.default_labeler = labeler
    visitor = ToBaronVisitor(variables, smap)
    return visitor.dfs_postorder_stack(expr)
예제 #5
0
파일: baron_writer.py 프로젝트: Pyomo/pyomo
def expression_to_string(expr, variables, labeler=None, smap=None):
    if labeler is not None:
        if smap is None:
            smap = SymbolMap()
        smap.default_labeler = labeler
    visitor = ToBaronVisitor(variables, smap)
    return visitor.dfs_postorder_stack(expr)
예제 #6
0
def expression_to_string(expr, treechecker, labeler=None, smap=None,
                         output_fixed_variables=False):
    if labeler is not None:
        if smap is None:
            smap = SymbolMap()
        smap.default_labeler = labeler
    visitor = ToGamsVisitor(smap, treechecker, output_fixed_variables)
    expr_str = visitor.dfs_postorder_stack(expr)
    return expr_str, visitor.is_discontinuous
예제 #7
0
def Pyomo2FuncDesigner(instance):
    if not FD_available:
        return None

    ipoint = {}
    vars = {}
    sense = None
    nobj = 0
    smap = SymbolMap()

    _f_name = []
    _f = []
    _c = []
    for con in instance.component_data_objects(Constraint, active=True):
        body = Pyomo2FD_expression(con.body, ipoint, vars, smap)
        if not con.lower is None:
            lower = Pyomo2FD_expression(con.lower, ipoint, vars, smap)
            _c.append( body > lower )
        if not con.upper is None:
            upper = Pyomo2FD_expression(con.upper, ipoint, vars, smap)
            _c.append( body < upper )

    for var in instance.component_data_objects(Var, active=True):
        body = Pyomo2FD_expression(var, ipoint, vars, smap)
        if not var.lb is None:
            lower = Pyomo2FD_expression(var.lb, ipoint, vars, smap)
            _c.append( body > lower )
        if not var.ub is None:
            upper = Pyomo2FD_expression(var.ub, ipoint, vars, smap)
            _c.append( body < upper )


    for obj in instance.component_data_objects(Objective, active=True):
        nobj += 1
        if obj.is_minimizing():
            _f.append( Pyomo2FD_expression(obj.expr, ipoint, vars, smap) )
        else:
            _f.append( - Pyomo2FD_expression(obj.expr, ipoint, vars, smap) )
        _f_name.append(obj.name)
        smap.getSymbol(obj, lambda objective: objective.name)

    # TODO - use 0.0 for default values???
    # TODO - create results map
    S = FuncDesigner.oosystem()
    S._symbol_map = smap
    S.f = _f[0]
    S._f_name = _f_name
    S.constraints.update(_c)
    S.initial_point = ipoint
    S.sense = sense
    return S
예제 #8
0
def Pyomo2FuncDesigner(instance):
    if not FD_available:
        return None

    ipoint = {}
    vars = {}
    sense = None
    nobj = 0
    smap = SymbolMap()

    _f_name = []
    _f = []
    _c = []
    for con in instance.component_data_objects(Constraint, active=True):
        body = Pyomo2FD_expression(con.body, ipoint, vars, smap)
        if not con.lower is None:
            lower = Pyomo2FD_expression(con.lower, ipoint, vars, smap)
            _c.append( body > lower )
        if not con.upper is None:
            upper = Pyomo2FD_expression(con.upper, ipoint, vars, smap)
            _c.append( body < upper )

    for var in instance.component_data_objects(Var, active=True):
        body = Pyomo2FD_expression(var, ipoint, vars, smap)
        if not var.lb is None:
            lower = Pyomo2FD_expression(var.lb, ipoint, vars, smap)
            _c.append( body > lower )
        if not var.ub is None:
            upper = Pyomo2FD_expression(var.ub, ipoint, vars, smap)
            _c.append( body < upper )


    for obj in instance.component_data_objects(Objective, active=True):
        nobj += 1
        if obj.is_minimizing():
            _f.append( Pyomo2FD_expression(obj.expr, ipoint, vars, smap) )
        else:
            _f.append( - Pyomo2FD_expression(obj.expr, ipoint, vars, smap) )
        _f_name.append( obj.cname(True) )
        smap.getSymbol(obj, lambda objective: objective.cname(True))

    # TODO - use 0.0 for default values???
    # TODO - create results map
    S = FuncDesigner.oosystem()
    S._symbol_map = smap
    S.f = _f[0]
    S._f_name = _f_name
    S.constraints.update(_c)
    S.initial_point = ipoint
    S.sense = sense
    return S
예제 #9
0
파일: nl_writer.py 프로젝트: jsiirola/pyomo
 def __init__(self):
     super(NLWriter, self).__init__()
     self._config = WriterConfig()
     self._writer = None
     self._symbol_map = SymbolMap()
     self._var_labeler = None
     self._con_labeler = None
     self._param_labeler = None
     self._pyomo_var_to_solver_var_map = dict()
     self._pyomo_con_to_solver_con_map = dict()
     self._solver_var_to_pyomo_var_map = dict()
     self._solver_con_to_pyomo_con_map = dict()
     self._pyomo_param_to_solver_param_map = dict()
     self._walker = PyomoToCModelWalker(self._pyomo_var_to_solver_var_map, self._pyomo_param_to_solver_param_map)
예제 #10
0
 def __init__(self):
     super(LPWriter, self).__init__()
     self._config = WriterConfig()
     self._writer = None
     self._symbol_map = SymbolMap()
     self._var_labeler = None
     self._con_labeler = None
     self._param_labeler = None
     self._obj_labeler = None
     self._pyomo_var_to_solver_var_map = dict()
     self._pyomo_con_to_solver_con_map = dict()
     self._solver_var_to_pyomo_var_map = dict()
     self._solver_con_to_pyomo_con_map = dict()
     self._pyomo_param_to_solver_param_map = dict()
     self._expr_types = None
예제 #11
0
    def _set_instance(self, model, kwds={}):
        if not isinstance(model, (Model, IBlockStorage)):
            msg = "The problem instance supplied to the {0} plugin " \
                  "'_presolve' method must be of type 'Model'".format(type(self))
            raise ValueError(msg)
        self._pyomo_model = model
        self._symbolic_solver_labels = kwds.pop('symbolic_solver_labels',
                                                self._symbolic_solver_labels)
        self._skip_trivial_constraints = kwds.pop(
            'skip_trivial_constraints', self._skip_trivial_constraints)
        self._output_fixed_variable_bounds = kwds.pop(
            'output_fixed_variable_bounds', self._output_fixed_variable_bounds)
        self._pyomo_var_to_solver_var_map = ComponentMap()
        self._pyomo_con_to_solver_con_map = ComponentMap()
        self._vars_referenced_by_con = ComponentMap()
        self._vars_referenced_by_obj = ComponentSet()
        self._referenced_variables = ComponentMap()
        self._objective_label = None
        self._objective = None

        self._symbol_map = SymbolMap()

        if self._symbolic_solver_labels:
            self._labeler = TextLabeler()
        else:
            self._labeler = NumericLabeler('x')
예제 #12
0
 def __init__(self):
     super(IntervalTightener, self).__init__()
     self._config = IntervalConfig()
     self._cmodel = None
     self._var_map = dict()
     self._con_map = dict()
     self._param_map = dict()
     self._rvar_map = dict()
     self._rcon_map = dict()
     self._pyomo_expr_types = cmodel.PyomoExprTypes()
     self._symbolic_solver_labels: bool = False
     self._symbol_map = SymbolMap()
     self._var_labeler = None
     self._con_labeler = None
     self._param_labeler = None
     self._obj_labeler = None
     self._objective = None
예제 #13
0
파일: test_gams.py 프로젝트: pazochoa/pyomo
 def test_power_function_to_string(self):
     m = ConcreteModel()
     m.x = Var()
     lbl = NumericLabeler('x')
     smap = SymbolMap(lbl)
     self.assertEquals(expression_to_string(m.x**-3, lbl, smap=smap),
                       "power(x1, -3)")
     self.assertEquals(expression_to_string(m.x**0.33, smap=smap),
                       "x1 ** 0.33")
     self.assertEquals(expression_to_string(pow(m.x, 2), smap=smap),
                       "power(x1, 2)")
예제 #14
0
 def test_power_function_to_string(self):
     m = ConcreteModel()
     m.x = Var()
     lbl = NumericLabeler('x')
     smap = SymbolMap(lbl)
     tc = StorageTreeChecker(m)
     self.assertEqual(expression_to_string(m.x**-3, tc, lbl, smap=smap),
                      ("power(x1, (-3))", False))
     self.assertEqual(expression_to_string(m.x**0.33, tc, smap=smap),
                      ("x1 ** 0.33", False))
     self.assertEqual(expression_to_string(pow(m.x, 2), tc, smap=smap),
                      ("power(x1, 2)", False))
예제 #15
0
 def test_dnlp_to_string(self):
     m = ConcreteModel()
     m.x = Var()
     m.y = Var()
     m.z = Var()
     lbl = NumericLabeler('x')
     smap = SymbolMap(lbl)
     tc = StorageTreeChecker(m)
     self.assertEqual(expression_to_string(ceil(m.x), tc, lbl, smap=smap),
                      ("ceil(x1)", True))
     self.assertEqual(expression_to_string(floor(m.x), tc, lbl, smap=smap),
                      ("floor(x1)", True))
     self.assertEqual(expression_to_string(abs(m.x), tc, lbl, smap=smap),
                      ("abs(x1)", True))
예제 #16
0
 def test_negative_float_double_operator(self):
     m = ConcreteModel()
     m.x = Var()
     m.y = Var()
     m.z = Var(bounds=(0, 6))
     m.c = Constraint(expr=(m.x * m.y * -2) == 0)
     m.c2 = Constraint(expr=m.z**-1.5 == 0)
     m.o = Objective(expr=m.z)
     m.y.fix(-7)
     m.x.fix(4)
     lbl = NumericLabeler('x')
     smap = SymbolMap(lbl)
     tc = StorageTreeChecker(m)
     self.assertEqual(expression_to_string(m.c.body, tc, smap=smap),
                      ("4*(-7)*(-2)", False))
     self.assertEqual(expression_to_string(m.c2.body, tc, smap=smap),
                      ("x1 ** (-1.5)", False))
예제 #17
0
 def test_fixed_var_to_string(self):
     m = ConcreteModel()
     m.x = Var()
     m.y = Var()
     m.z = Var()
     m.z.fix(-3)
     lbl = NumericLabeler('x')
     smap = SymbolMap(lbl)
     tc = StorageTreeChecker(m)
     self.assertEqual(expression_to_string(
         m.x + m.y - m.z, tc, lbl, smap=smap), ("x1 + x2 + 3", False))
     m.z.fix(-400)
     self.assertEqual(expression_to_string(
         m.z + m.y - m.z, tc, smap=smap), ("(-400) + x2 + 400", False))
     m.z.fix(8.8)
     self.assertEqual(expression_to_string(
         m.x + m.z - m.y, tc, smap=smap), ("x1 + 8.8 - x2", False))
     m.z.fix(-8.8)
     self.assertEqual(expression_to_string(
         m.x * m.z - m.y, tc, smap=smap), ("x1*(-8.8) - x2", False))
예제 #18
0
파일: test_gams.py 프로젝트: pazochoa/pyomo
 def test_fixed_var_to_string(self):
     m = ConcreteModel()
     m.x = Var()
     m.y = Var()
     m.z = Var()
     m.z.fix(-3)
     lbl = NumericLabeler('x')
     smap = SymbolMap(lbl)
     self.assertEquals(
         expression_to_string(m.x + m.y - m.z, lbl, smap=smap),
         "x1 + x2 - (-3)")
     m.z.fix(-400)
     self.assertEquals(expression_to_string(m.z + m.y - m.z, smap=smap),
                       "(-400) + x2 - (-400)")
     m.z.fix(8.8)
     self.assertEquals(expression_to_string(m.x + m.z - m.y, smap=smap),
                       "x1 + (8.8) - x2")
     m.z.fix(-8.8)
     self.assertEquals(expression_to_string(m.x * m.z - m.y, smap=smap),
                       "x1*(-8.8) - x2")
예제 #19
0
    def test_expr_xfrm(self):
        from pyomo.repn.plugins.gams_writer import (expression_to_string,
                                                    StorageTreeChecker)
        from pyomo.core.expr.symbol_map import SymbolMap
        M = ConcreteModel()
        M.abc = Var()

        smap = SymbolMap()
        tc = StorageTreeChecker(M)

        expr = M.abc**2.0
        self.assertEqual(str(expr), "abc**2.0")
        self.assertEqual(expression_to_string(expr, tc, smap=smap),
                         ("power(abc, 2.0)", False))

        expr = log(M.abc**2.0)
        self.assertEqual(str(expr), "log(abc**2.0)")
        self.assertEqual(expression_to_string(expr, tc, smap=smap),
                         ("log(power(abc, 2.0))", False))

        expr = log(M.abc**2.0) + 5
        self.assertEqual(str(expr), "log(abc**2.0) + 5")
        self.assertEqual(expression_to_string(expr, tc, smap=smap),
                         ("log(power(abc, 2.0)) + 5", False))

        expr = exp(M.abc**2.0) + 5
        self.assertEqual(str(expr), "exp(abc**2.0) + 5")
        self.assertEqual(expression_to_string(expr, tc, smap=smap),
                         ("exp(power(abc, 2.0)) + 5", False))

        expr = log(M.abc**2.0)**4
        self.assertEqual(str(expr), "log(abc**2.0)**4")
        self.assertEqual(expression_to_string(expr, tc, smap=smap),
                         ("power(log(power(abc, 2.0)), 4)", False))

        expr = log(M.abc**2.0)**4.5
        self.assertEqual(str(expr), "log(abc**2.0)**4.5")
        self.assertEqual(expression_to_string(expr, tc, smap=smap),
                         ("log(power(abc, 2.0)) ** 4.5", False))
예제 #20
0
 def test_arcfcn_to_string(self):
     m = ConcreteModel()
     m.x = Var()
     lbl = NumericLabeler('x')
     smap = SymbolMap(lbl)
     tc = StorageTreeChecker(m)
     self.assertEqual(expression_to_string(asin(m.x), tc, lbl, smap=smap),
                      ("arcsin(x1)", False))
     self.assertEqual(expression_to_string(acos(m.x), tc, lbl, smap=smap),
                      ("arccos(x1)", False))
     self.assertEqual(expression_to_string(atan(m.x), tc, lbl, smap=smap),
                      ("arctan(x1)", False))
     with self.assertRaisesRegexp(
             RuntimeError,
             "GAMS files cannot represent the unary function asinh"):
         expression_to_string(asinh(m.x), tc, lbl, smap=smap)
     with self.assertRaisesRegexp(
             RuntimeError,
             "GAMS files cannot represent the unary function acosh"):
         expression_to_string(acosh(m.x), tc, lbl, smap=smap)
     with self.assertRaisesRegexp(
             RuntimeError,
             "GAMS files cannot represent the unary function atanh"):
         expression_to_string(atanh(m.x), tc, lbl, smap=smap)
예제 #21
0
class CPLEXPersistent(CPLEXDirect, PersistentSolver):
    """The CPLEX LP/MIP solver
    """

    pyomo.util.plugin.alias('_cplex_persistent',
                            doc='Persistent Python interface to the CPLEX LP/MIP solver')

    def __init__(self, **kwds):
        #
        # Call base class constructor
        #
        kwds['type'] = 'cplexpersistent'
        CPLEXDirect.__init__(self, **kwds)

        # maps pyomo var data labels to the corresponding CPLEX variable id.
        self._cplex_variable_ids = {}
        self._cplex_variable_names = None

    #
    # updates all variable bounds in the compiled model - handles
    # fixed variables and related issues.  re-does everything from
    # scratch by default, ignoring whatever was specified
    # previously. if the value associated with the keyword
    # vars_to_update is a non-empty list (assumed to be variable name
    # / index pairs), then only the bounds for those variables are
    # updated.  this function assumes that the variables themselves
    # already exist in the compiled model.
    #
    def compile_variable_bounds(self, pyomo_instance, vars_to_update):

        from pyomo.core.base import Var

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin "
                               "cannot compile variable bounds - no "
                               "instance is presently compiled")

        # the bound update entries should be name-value pairs
        new_lower_bounds = []
        new_upper_bounds = []

        # operates through side effects on the above lists!
        def update_bounds_lists(var_name):

            var_lb = None
            var_ub = None

            if var_data.fixed and self._output_fixed_variable_bounds:
                var_lb = var_ub = var_data.value
            elif var_data.fixed:
                # if we've been directed to not deal with fixed
                # variables, then skip - they should have been
                # compiled out of any description of the constraints
                return
            else:
                if not var_data.has_lb():
                    var_lb = -CPLEXDirect._cplex_module.infinity
                else:
                    var_lb = value(var_data.lb)

                if not var_data.has_ub():
                    var_ub = CPLEXDirect._cplex_module.infinity
                else:
                    var_ub= value(var_data.ub)

            var_cplex_id = self._cplex_variable_ids[var_name]

            new_lower_bounds.append((var_cplex_id, var_lb))
            new_upper_bounds.append((var_cplex_id, var_ub))

        if len(vars_to_update) == 0:
            for var_data in pyomo_instance.component_data_objects(Var, active=True):
                var_name = self._symbol_map.getSymbol(var_data, self._labeler)
                update_bounds_lists(var_name)
        else:
            for var_name, var_index in vars_to_update:
                var = pyomo_instance.find_component(var_name)
                # TBD - do some error checking!
                var_data = var[var_index]
                var_name = self._symbol_map.getSymbol(var_data, self._labeler)
                update_bounds_lists(var_name)

        self._active_cplex_instance.variables.set_lower_bounds(new_lower_bounds)
        self._active_cplex_instance.variables.set_upper_bounds(new_upper_bounds)

    #
    # method to compile objective of the input pyomo instance.
    # TBD:
    #   it may be smarter just to track the associated pyomo instance,
    #   and re-compile it automatically from a cached local attribute.
    #   this would ensure consistency, among other things!
    #
    def compile_objective(self, pyomo_instance):

        from pyomo.core.base import Objective
        from pyomo.repn import canonical_is_constant, LinearCanonicalRepn, canonical_degree

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin "
                               "cannot compile objective - no "
                               "instance is presently compiled")

        cplex_instance = self._active_cplex_instance

        self._has_quadratic_objective = False

        cntr = 0
        for block in pyomo_instance.block_data_objects(active=True):
            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for obj_data in block.component_data_objects(Objective,
                                                         active=True,
                                                         descend_into=False):

                cntr += 1
                if cntr > 1:
                    raise ValueError(
                        "Multiple active objectives found on Pyomo instance '%s'. "
                        "Solver '%s' will only handle a single active objective" \
                        % (pyomo_instance.name, self.type))

                if obj_data.is_minimizing():
                    cplex_instance.objective.set_sense(
                        cplex_instance.objective.sense.minimize)
                else:
                    cplex_instance.objective.set_sense(
                        cplex_instance.objective.sense.maximize)

                cplex_instance.objective.set_name(
                    self._symbol_map.getSymbol(obj_data,
                                               self._labeler))

                if gen_obj_canonical_repn:
                    obj_repn = generate_canonical_repn(obj_data.expr)
                    block_canonical_repn[obj_data] = obj_repn
                else:
                    obj_repn = block_canonical_repn[obj_data]

                if (isinstance(obj_repn, LinearCanonicalRepn) and \
                    ((obj_repn.linear == None) or \
                     (len(obj_repn.linear) == 0))) or \
                    canonical_is_constant(obj_repn):
                    print("Warning: Constant objective detected, replacing "
                          "with a placeholder to prevent solver failure.")
                    offset = obj_repn.constant
                    if offset is None:
                        offset = 0.0
                    objective_expression = [("ONE_VAR_CONSTANT",offset)]
                    cplex_instance.objective.set_linear(objective_expression)

                else:

                    if isinstance(obj_repn, LinearCanonicalRepn):
                        objective_expression, offset = \
                            self._encode_constraint_body_linear_specialized(
                                    obj_repn,
                                    self._labeler,
                                    use_variable_names=False,
                                    cplex_variable_name_index_map=self._cplex_variable_ids,
                                    as_pairs=True)
                        if offset != 0.0:
                            objective_expression.append((self._cplex_variable_ids["ONE_VAR_CONSTANT"],offset))
                        cplex_instance.objective.set_linear(objective_expression)

                    else:
                        #Linear terms
                        if 1 in obj_repn:
                            objective_expression, offset = \
                                self._encode_constraint_body_linear(
                                    obj_repn,
                                    self._labeler,
                                    as_pairs=True)
                            if offset != 0.0:
                                objective_expression.append(("ONE_VAR_CONSTANT",offset))
                            cplex_instance.objective.set_linear(objective_expression)

                        #Quadratic terms
                        if 2 in obj_repn:
                            self._has_quadratic_objective = True
                            objective_expression = \
                                self._encode_constraint_body_quadratic(obj_repn,
                                                                       self._labeler,
                                                                       as_triples=True,
                                                                       is_obj=2.0)
                            cplex_instance.objective.\
                                set_quadratic_coefficients(objective_expression)

                        degree = canonical_degree(obj_repn)
                        if (degree is None) or (degree > 2):
                            raise ValueError(
                                "CPLEXPersistent plugin does not support general nonlinear "
                                "objective expressions (only linear or quadratic).\n"
                                "Objective: %s" % (obj_data.name))

    #
    # method to populate the CPLEX problem instance (interface) from
    # the supplied Pyomo problem instance.
    #
    def compile_instance(self,
                         pyomo_instance,
                         symbolic_solver_labels=False,
                         output_fixed_variable_bounds=False,
                         skip_trivial_constraints=False):

        from pyomo.core.base import Var, Constraint, SOSConstraint
        from pyomo.repn import canonical_is_constant, LinearCanonicalRepn, canonical_degree

        self._symbolic_solver_labels = symbolic_solver_labels
        self._output_fixed_variable_bounds = output_fixed_variable_bounds
        self._skip_trivial_constraints = skip_trivial_constraints

        self._has_quadratic_constraints = False
        self._has_quadratic_objective = False

        self._active_cplex_instance = CPLEXDirect._cplex_module.Cplex()

        if self._symbolic_solver_labels:
            labeler = self._labeler = TextLabeler()
        else:
            labeler = self._labeler = NumericLabeler('x')

        self._symbol_map = SymbolMap()
        self._instance = pyomo_instance
        if isinstance(pyomo_instance, IBlockStorage):
            # BIG HACK
            if not hasattr(pyomo_instance, "._symbol_maps"):
                setattr(pyomo_instance, "._symbol_maps", {})
            getattr(pyomo_instance, "._symbol_maps")[id(self._symbol_map)] = \
                self._symbol_map
        else:
            pyomo_instance.solutions.add_symbol_map(self._symbol_map)
        self._smap_id = id(self._symbol_map)

        # we use this when iterating over the constraints because it
        # will have a much smaller hash table, we also use this for
        # the warm start code after it is cleaned to only contain
        # variables referenced in the constraints
        self._variable_symbol_map = SymbolMap()

        # cplex wants the caller to set the problem type, which is (for
        # current purposes) strictly based on variable type counts.
        self._num_binary_variables = 0
        self._num_integer_variables = 0
        self._num_continuous_variables = 0
        self._used_sos_constraints = False

        #############################################
        # populate the variables in the cplex model #
        #############################################

        var_names = []
        var_lbs = []
        var_ubs = []
        var_types = []

        self._referenced_variable_ids.clear()

        # maps pyomo var data labels to the corresponding CPLEX variable id.
        self._cplex_variable_ids.clear()

        # cached in the loop below - used to update the symbol map
        # immediately following loop termination.
        var_label_pairs = []

        for var_data in pyomo_instance.component_data_objects(Var, active=True):

            if var_data.fixed and not self._output_fixed_variable_bounds:
                # if a variable is fixed, and we're preprocessing
                # fixed variables (as in not outputting them), there
                # is no need to add them to the compiled model.
                continue

            var_name = self._symbol_map.getSymbol(var_data, labeler)
            var_names.append(var_name)
            var_label_pairs.append((var_data, var_name))

            self._cplex_variable_ids[var_name] = len(self._cplex_variable_ids)

            if not var_data.has_lb():
                var_lbs.append(-CPLEXDirect._cplex_module.infinity)
            else:
                var_lbs.append(value(var_data.lb))

            if not var_data.has_ub():
                var_ubs.append(CPLEXDirect._cplex_module.infinity)
            else:
                var_ubs.append(value(var_data.ub))

            if var_data.is_integer():
                var_types.append(self._active_cplex_instance.variables.type.integer)
                self._num_integer_variables += 1
            elif var_data.is_binary():
                var_types.append(self._active_cplex_instance.variables.type.binary)
                self._num_binary_variables += 1
            elif var_data.is_continuous():
                var_types.append(self._active_cplex_instance.variables.type.continuous)
                self._num_continuous_variables += 1
            else:
                raise TypeError("Invalid domain type for variable with name '%s'. "
                                "Variable is not continuous, integer, or binary.")

        self._active_cplex_instance.variables.add(names=var_names,
                                                  lb=var_lbs,
                                                  ub=var_ubs,
                                                  types=var_types)

        self._active_cplex_instance.variables.add(lb=[1],
                                                  ub=[1],
                                                  names=["ONE_VAR_CONSTANT"])

        self._cplex_variable_ids["ONE_VAR_CONSTANT"] = len(self._cplex_variable_ids)

        self._variable_symbol_map.addSymbols(var_label_pairs)
        self._cplex_variable_names = self._active_cplex_instance.variables.get_names()

        ########################################################
        # populate the standard constraints in the cplex model #
        ########################################################

        expressions = []
        senses = []
        rhss = []
        range_values = []
        names = []

        qexpressions = []
        qlinears = []
        qsenses = []
        qrhss = []
        qnames = []

        for block in pyomo_instance.block_data_objects(active=True):

            gen_con_canonical_repn = \
                getattr(block, "_gen_con_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for con in block.component_data_objects(Constraint,
                                                    active=True,
                                                    descend_into=False):

                if (not con.has_lb()) and \
                   (not con.has_ub()):
                    assert not con.equality
                    continue  # not binding at all, don't bother

                con_repn = None
                if con._linear_canonical_form:
                    con_repn = con.canonical_form()
                elif isinstance(con, LinearCanonicalRepn):
                    con_repn = con
                else:
                    if gen_con_canonical_repn:
                        con_repn = generate_canonical_repn(con.body)
                        block_canonical_repn[con] = con_repn
                    else:
                        con_repn = block_canonical_repn[con]

                # There are conditions, e.g., when fixing variables, under which
                # a constraint block might be empty.  Ignore these, for both
                # practical reasons and the fact that the CPLEX LP format
                # requires a variable in the constraint body.  It is also
                # possible that the body of the constraint consists of only a
                # constant, in which case the "variable" of
                if isinstance(con_repn, LinearCanonicalRepn):
                    if self._skip_trivial_constraints and \
                       ((con_repn.linear is None) or \
                        (len(con_repn.linear) == 0)):
                       continue
                else:
                    # we shouldn't come across a constant canonical repn
                    # that is not LinearCanonicalRepn
                    assert not canonical_is_constant(con_repn)

                name = self._symbol_map.getSymbol(con, labeler)
                expr = None
                qexpr = None
                quadratic = False
                if isinstance(con_repn, LinearCanonicalRepn):
                    expr, offset = \
                        self._encode_constraint_body_linear_specialized(con_repn,
                                                                        labeler,
                                                                        use_variable_names=False,
                                                                        cplex_variable_name_index_map=self._cplex_variable_ids)
                else:
                    degree = canonical_degree(con_repn)
                    if degree == 2:
                        quadratic = True
                    elif (degree != 0) or (degree != 1):
                        raise ValueError(
                            "CPLEXPersistent plugin does not support general nonlinear "
                            "constraint expression (only linear or quadratic).\n"
                            "Constraint: %s" % (con.name))
                    expr, offset = self._encode_constraint_body_linear(con_repn,
                                                                       labeler)

                if quadratic:
                    if expr is None:
                        expr = CPLEXDirect._cplex_module.SparsePair(ind=[0],val=[0.0])
                    self._has_quadratic_constraints = True

                    qexpr = self._encode_constraint_body_quadratic(con_repn,labeler)
                    qnames.append(name)

                    if con.equality:
                        # equality constraint.
                        qsenses.append('E')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    elif con.has_lb() and con.has_ub():

                        raise RuntimeError(
                            "The CPLEXDirect plugin can not translate range "
                            "constraints containing quadratic expressions.")

                    elif con.has_lb():
                        assert not con.has_ub()
                        qsenses.append('G')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    else:
                        assert con.has_ub()
                        qsenses.append('L')
                        qrhss.append(self._get_bound(con.upper) - offset)

                    qlinears.append(expr)
                    qexpressions.append(qexpr)

                else:
                    names.append(name)
                    expressions.append(expr)

                    if con.equality:
                        # equality constraint.
                        senses.append('E')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    elif con.has_lb() and con.has_ub():
                        # ranged constraint.
                        senses.append('R')
                        lower_bound = self._get_bound(con.lower) - offset
                        upper_bound = self._get_bound(con.upper) - offset
                        rhss.append(lower_bound)
                        range_values.append(upper_bound - lower_bound)

                    elif con.has_lb():
                        senses.append('G')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    else:
                        assert con.has_ub()
                        senses.append('L')
                        rhss.append(self._get_bound(con.upper) - offset)
                        range_values.append(0.0)

        ###################################################
        # populate the SOS constraints in the cplex model #
        ###################################################

        # SOS constraints - largely taken from cpxlp.py so updates there,
        # should be applied here
        # TODO: Allow users to specify the variables coefficients for custom
        # branching/set orders - refer to cpxlp.py
        sosn = self._capabilities.sosn
        sos1 = self._capabilities.sos1
        sos2 = self._capabilities.sos2
        modelSOS = ModelSOS()
        for soscondata in pyomo_instance.component_data_objects(SOSConstraint,
                                                                active=True):
            level = soscondata.level
            if (level == 1 and not sos1) or \
               (level == 2 and not sos2) or \
               (level > 2 and not sosn):
                raise Exception("Solver does not support SOS level %s constraints"
                                % (level,))
            modelSOS.count_constraint(self._symbol_map,
                                      labeler,
                                      self._variable_symbol_map,
                                      soscondata)

        if modelSOS.sosType:
            for key in modelSOS.sosType:
                self._active_cplex_instance.SOS.add(type = modelSOS.sosType[key],
                                       name = modelSOS.sosName[key],
                                       SOS = [modelSOS.varnames[key],
                                              modelSOS.weights[key]])
                self._referenced_variable_ids.update(modelSOS.varids[key])
            self._used_sos_constraints = True

        self._active_cplex_instance.linear_constraints.add(
            lin_expr=expressions,
            senses=senses,
            rhs=rhss,
            range_values=range_values,
            names=names)

        for index in xrange(len(qexpressions)):
            self._active_cplex_instance.quadratic_constraints.add(
                lin_expr=qlinears[index],
                quad_expr=qexpressions[index],
                sense=qsenses[index],
                rhs=qrhss[index],
                name=qnames[index])

        #############################################
        # populate the objective in the cplex model #
        #############################################

        self.compile_objective(pyomo_instance)

    #
    # simple method to query whether a Pyomo instance has already been
    # compiled.
    #
    def instance_compiled(self):

        return self._active_cplex_instance is not None

    #
    # Override base class method to check for compiled instance
    #
    def _warm_start(self, instance):

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin "
                               "cannot warm start - no instance is "
                               "presently compiled")

        # clear any existing warm starts.
        self._active_cplex_instance.MIP_starts.delete()

        # the iteration order is identical to that used in generating
        # the cplex instance, so all should be well.
        variable_ids = []
        variable_values = []

        # IMPT: the var_data returned is a weak ref!
        for label, var_data in iteritems(self._variable_symbol_map.bySymbol):
            cplex_id = self._cplex_variable_ids[label]
            if var_data().fixed and not self._output_fixed_variable_bounds:
                continue
            elif var_data().value is not None:
                variable_ids.append(cplex_id)
                variable_values.append(var_data().value)

        if len(variable_ids):
            self._active_cplex_instance.MIP_starts.add(
                [variable_ids, variable_values],
                self._active_cplex_instance.MIP_starts.effort_level.auto)

    #
    # Override base class method to check for compiled instance
    #

    def _populate_cplex_instance(self, model):
        assert model == self._instance

    def _presolve(self, *args, **kwds):

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin"
                               " cannot presolve - no instance is "
                               "presently compiled")

        # These must be passed in to the compile_instance method,
        # but assert that any values here match those already supplied
        if 'symbolic_solver_labels' in kwds:
            assert self._symbolic_solver_labels == \
                kwds['symbolic_solver_labels']
        if 'output_fixed_variable_bounds' in kwds:
            assert self._output_fixed_variable_bounds == \
                kwds['output_fixed_variable_bounds']
        if 'skip_trivial_constraints' in kwds:
            assert self._skip_trivial_constraints == \
                kwds["skip_trivial_constraints"]

        if isinstance(self._instance, IBlockStorage):
            # BIG HACK
            if not hasattr(self._instance, "._symbol_maps"):
                setattr(self._instance, "._symbol_maps", {})
            getattr(self._instance, "._symbol_maps")[id(self._symbol_map)] = \
                self._symbol_map
        else:
            if self._smap_id not in self._instance.solutions.symbol_map:
                self._instance.solutions.add_symbol_map(self._symbol_map)


        ################################################
        # populate the problem type in the cplex model #
        ################################################

        # This gets rid of the annoying "Freeing MIP data." message.
        def _filter_freeing_mip_data(val):
            if val.strip() == 'Freeing MIP data.':
                return ""
            return val
        self._active_cplex_instance.set_warning_stream(sys.stderr,
                                                       fn=_filter_freeing_mip_data)

        if (self._has_quadratic_objective is True) or \
           (self._has_quadratic_constraints is True):
            if (self._num_integer_variables > 0) or \
               (self._num_binary_variables > 0) or \
               (self._used_sos_constraints):
                if self._has_quadratic_constraints is True:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.MIQCP)
                else:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.MIQP)
            else:
                if self._has_quadratic_constraints is True:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.QCP)
                else:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.QP)
        elif (self._num_integer_variables > 0) or \
             (self._num_binary_variables > 0) or \
             (self._used_sos_constraints):
            self._active_cplex_instance.set_problem_type(
                self._active_cplex_instance.problem_type.MILP)
        else:
            self._active_cplex_instance.set_problem_type(
                self._active_cplex_instance.problem_type.LP)

        # restore the warning stream without our filter function
        self._active_cplex_instance.set_warning_stream(sys.stderr)

        CPLEXDirect._presolve(self, *args, **kwds)

        # like other solver plugins, persistent solver plugins can
        # take an instance as an input argument. the only context in
        # which this instance is used, however, is for warm-starting.
        if len(args) > 2:
            raise ValueError("The CPLEXPersistent plugin method "
                             "'_presolve' can be supplied at most "
                             "one problem instance - %s were "
                             "supplied" % len(args))

            # Re-add the symbol map id if it was cleared
            # after a previous solution load
            if id(self._symbol_map) not in args[0].solutions.symbol_map:
                args[0].solutions.add_symbol_map(self._symbol_map)
                self._smap_id = id(self._symbol_map)

    #
    # invoke the solver on the currently compiled instance!!!
    #
    def _apply_solver(self):

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin cannot "
                               "apply solver - no instance is presently compiled")

        # NOTE:
        # CPLEX maintains the pool of feasible solutions from the
        # prior solve as the set of mip starts for the next solve.
        # and evaluating multiple mip starts (and there can be many)
        # is expensive. so if the warm_start method is not invoked,
        # there will potentially be a lot of time wasted.

        return CPLEXDirect._apply_solver(self)

    def _postsolve(self):

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin "
                               "cannot postsolve - no instance is "
                               "presently compiled")

        active_cplex_instance = self._active_cplex_instance
        variable_symbol_map = self._variable_symbol_map
        instance = self._instance

        ret = CPLEXDirect._postsolve(self)

        #
        # These get reset to None by the base class method
        #
        self._active_cplex_instance = active_cplex_instance
        self._variable_symbol_map = variable_symbol_map
        self._instance = instance

        return ret
예제 #22
0
    def compile_instance(self,
                         pyomo_instance,
                         symbolic_solver_labels=False,
                         output_fixed_variable_bounds=False,
                         skip_trivial_constraints=False):

        from pyomo.core.base import Var, Constraint, SOSConstraint
        from pyomo.repn import canonical_is_constant, LinearCanonicalRepn, canonical_degree

        self._symbolic_solver_labels = symbolic_solver_labels
        self._output_fixed_variable_bounds = output_fixed_variable_bounds
        self._skip_trivial_constraints = skip_trivial_constraints

        self._has_quadratic_constraints = False
        self._has_quadratic_objective = False

        self._active_cplex_instance = CPLEXDirect._cplex_module.Cplex()

        if self._symbolic_solver_labels:
            labeler = self._labeler = TextLabeler()
        else:
            labeler = self._labeler = NumericLabeler('x')

        self._symbol_map = SymbolMap()
        self._instance = pyomo_instance
        if isinstance(pyomo_instance, IBlockStorage):
            # BIG HACK
            if not hasattr(pyomo_instance, "._symbol_maps"):
                setattr(pyomo_instance, "._symbol_maps", {})
            getattr(pyomo_instance, "._symbol_maps")[id(self._symbol_map)] = \
                self._symbol_map
        else:
            pyomo_instance.solutions.add_symbol_map(self._symbol_map)
        self._smap_id = id(self._symbol_map)

        # we use this when iterating over the constraints because it
        # will have a much smaller hash table, we also use this for
        # the warm start code after it is cleaned to only contain
        # variables referenced in the constraints
        self._variable_symbol_map = SymbolMap()

        # cplex wants the caller to set the problem type, which is (for
        # current purposes) strictly based on variable type counts.
        self._num_binary_variables = 0
        self._num_integer_variables = 0
        self._num_continuous_variables = 0
        self._used_sos_constraints = False

        #############################################
        # populate the variables in the cplex model #
        #############################################

        var_names = []
        var_lbs = []
        var_ubs = []
        var_types = []

        self._referenced_variable_ids.clear()

        # maps pyomo var data labels to the corresponding CPLEX variable id.
        self._cplex_variable_ids.clear()

        # cached in the loop below - used to update the symbol map
        # immediately following loop termination.
        var_label_pairs = []

        for var_data in pyomo_instance.component_data_objects(Var, active=True):

            if var_data.fixed and not self._output_fixed_variable_bounds:
                # if a variable is fixed, and we're preprocessing
                # fixed variables (as in not outputting them), there
                # is no need to add them to the compiled model.
                continue

            var_name = self._symbol_map.getSymbol(var_data, labeler)
            var_names.append(var_name)
            var_label_pairs.append((var_data, var_name))

            self._cplex_variable_ids[var_name] = len(self._cplex_variable_ids)

            if not var_data.has_lb():
                var_lbs.append(-CPLEXDirect._cplex_module.infinity)
            else:
                var_lbs.append(value(var_data.lb))

            if not var_data.has_ub():
                var_ubs.append(CPLEXDirect._cplex_module.infinity)
            else:
                var_ubs.append(value(var_data.ub))

            if var_data.is_integer():
                var_types.append(self._active_cplex_instance.variables.type.integer)
                self._num_integer_variables += 1
            elif var_data.is_binary():
                var_types.append(self._active_cplex_instance.variables.type.binary)
                self._num_binary_variables += 1
            elif var_data.is_continuous():
                var_types.append(self._active_cplex_instance.variables.type.continuous)
                self._num_continuous_variables += 1
            else:
                raise TypeError("Invalid domain type for variable with name '%s'. "
                                "Variable is not continuous, integer, or binary.")

        self._active_cplex_instance.variables.add(names=var_names,
                                                  lb=var_lbs,
                                                  ub=var_ubs,
                                                  types=var_types)

        self._active_cplex_instance.variables.add(lb=[1],
                                                  ub=[1],
                                                  names=["ONE_VAR_CONSTANT"])

        self._cplex_variable_ids["ONE_VAR_CONSTANT"] = len(self._cplex_variable_ids)

        self._variable_symbol_map.addSymbols(var_label_pairs)
        self._cplex_variable_names = self._active_cplex_instance.variables.get_names()

        ########################################################
        # populate the standard constraints in the cplex model #
        ########################################################

        expressions = []
        senses = []
        rhss = []
        range_values = []
        names = []

        qexpressions = []
        qlinears = []
        qsenses = []
        qrhss = []
        qnames = []

        for block in pyomo_instance.block_data_objects(active=True):

            gen_con_canonical_repn = \
                getattr(block, "_gen_con_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for con in block.component_data_objects(Constraint,
                                                    active=True,
                                                    descend_into=False):

                if (not con.has_lb()) and \
                   (not con.has_ub()):
                    assert not con.equality
                    continue  # not binding at all, don't bother

                con_repn = None
                if con._linear_canonical_form:
                    con_repn = con.canonical_form()
                elif isinstance(con, LinearCanonicalRepn):
                    con_repn = con
                else:
                    if gen_con_canonical_repn:
                        con_repn = generate_canonical_repn(con.body)
                        block_canonical_repn[con] = con_repn
                    else:
                        con_repn = block_canonical_repn[con]

                # There are conditions, e.g., when fixing variables, under which
                # a constraint block might be empty.  Ignore these, for both
                # practical reasons and the fact that the CPLEX LP format
                # requires a variable in the constraint body.  It is also
                # possible that the body of the constraint consists of only a
                # constant, in which case the "variable" of
                if isinstance(con_repn, LinearCanonicalRepn):
                    if self._skip_trivial_constraints and \
                       ((con_repn.linear is None) or \
                        (len(con_repn.linear) == 0)):
                       continue
                else:
                    # we shouldn't come across a constant canonical repn
                    # that is not LinearCanonicalRepn
                    assert not canonical_is_constant(con_repn)

                name = self._symbol_map.getSymbol(con, labeler)
                expr = None
                qexpr = None
                quadratic = False
                if isinstance(con_repn, LinearCanonicalRepn):
                    expr, offset = \
                        self._encode_constraint_body_linear_specialized(con_repn,
                                                                        labeler,
                                                                        use_variable_names=False,
                                                                        cplex_variable_name_index_map=self._cplex_variable_ids)
                else:
                    degree = canonical_degree(con_repn)
                    if degree == 2:
                        quadratic = True
                    elif (degree != 0) or (degree != 1):
                        raise ValueError(
                            "CPLEXPersistent plugin does not support general nonlinear "
                            "constraint expression (only linear or quadratic).\n"
                            "Constraint: %s" % (con.name))
                    expr, offset = self._encode_constraint_body_linear(con_repn,
                                                                       labeler)

                if quadratic:
                    if expr is None:
                        expr = CPLEXDirect._cplex_module.SparsePair(ind=[0],val=[0.0])
                    self._has_quadratic_constraints = True

                    qexpr = self._encode_constraint_body_quadratic(con_repn,labeler)
                    qnames.append(name)

                    if con.equality:
                        # equality constraint.
                        qsenses.append('E')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    elif con.has_lb() and con.has_ub():

                        raise RuntimeError(
                            "The CPLEXDirect plugin can not translate range "
                            "constraints containing quadratic expressions.")

                    elif con.has_lb():
                        assert not con.has_ub()
                        qsenses.append('G')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    else:
                        assert con.has_ub()
                        qsenses.append('L')
                        qrhss.append(self._get_bound(con.upper) - offset)

                    qlinears.append(expr)
                    qexpressions.append(qexpr)

                else:
                    names.append(name)
                    expressions.append(expr)

                    if con.equality:
                        # equality constraint.
                        senses.append('E')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    elif con.has_lb() and con.has_ub():
                        # ranged constraint.
                        senses.append('R')
                        lower_bound = self._get_bound(con.lower) - offset
                        upper_bound = self._get_bound(con.upper) - offset
                        rhss.append(lower_bound)
                        range_values.append(upper_bound - lower_bound)

                    elif con.has_lb():
                        senses.append('G')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    else:
                        assert con.has_ub()
                        senses.append('L')
                        rhss.append(self._get_bound(con.upper) - offset)
                        range_values.append(0.0)

        ###################################################
        # populate the SOS constraints in the cplex model #
        ###################################################

        # SOS constraints - largely taken from cpxlp.py so updates there,
        # should be applied here
        # TODO: Allow users to specify the variables coefficients for custom
        # branching/set orders - refer to cpxlp.py
        sosn = self._capabilities.sosn
        sos1 = self._capabilities.sos1
        sos2 = self._capabilities.sos2
        modelSOS = ModelSOS()
        for soscondata in pyomo_instance.component_data_objects(SOSConstraint,
                                                                active=True):
            level = soscondata.level
            if (level == 1 and not sos1) or \
               (level == 2 and not sos2) or \
               (level > 2 and not sosn):
                raise Exception("Solver does not support SOS level %s constraints"
                                % (level,))
            modelSOS.count_constraint(self._symbol_map,
                                      labeler,
                                      self._variable_symbol_map,
                                      soscondata)

        if modelSOS.sosType:
            for key in modelSOS.sosType:
                self._active_cplex_instance.SOS.add(type = modelSOS.sosType[key],
                                       name = modelSOS.sosName[key],
                                       SOS = [modelSOS.varnames[key],
                                              modelSOS.weights[key]])
                self._referenced_variable_ids.update(modelSOS.varids[key])
            self._used_sos_constraints = True

        self._active_cplex_instance.linear_constraints.add(
            lin_expr=expressions,
            senses=senses,
            rhs=rhss,
            range_values=range_values,
            names=names)

        for index in xrange(len(qexpressions)):
            self._active_cplex_instance.quadratic_constraints.add(
                lin_expr=qlinears[index],
                quad_expr=qexpressions[index],
                sense=qsenses[index],
                rhs=qrhss[index],
                name=qnames[index])

        #############################################
        # populate the objective in the cplex model #
        #############################################

        self.compile_objective(pyomo_instance)
예제 #23
0
    def __call__(self, model, output_filename, solver_capability, io_options):
        """
        Write a model in the GAMS modeling language format.

        Keyword Arguments
        -----------------
        output_filename: str
            Name of file to write GAMS model to. Optionally pass a file-like
            stream and the model will be written to that instead.
        io_options: dict
            - warmstart=True
                Warmstart by initializing model's variables to their values.
            - symbolic_solver_labels=False
                Use full Pyomo component names rather than
                shortened symbols (slower, but useful for debugging).
            - labeler=None
                Custom labeler. Incompatible with symbolic_solver_labels.
            - solver=None
                If None, GAMS will use default solver for model type.
            - mtype=None
                Model type. If None, will chose from lp, nlp, mip, and minlp.
            - add_options=None
                List of additional lines to write directly
                into model file before the solve statement.
                For model attributes, <model name> is GAMS_MODEL.
            - skip_trivial_constraints=False
                Skip writing constraints whose body section is fixed.
            - file_determinism=1
                | How much effort do we want to put into ensuring the
                | GAMS file is written deterministically for a Pyomo model:
                |     0 : None
                |     1 : sort keys of indexed components (default)
                |     2 : sort keys AND sort names (over declaration order)
            - put_results=None
                Filename for optionally writing solution values and
                marginals to (put_results).dat, and solver statuses
                to (put_results + 'stat').dat.
        """

        # Make sure not to modify the user's dictionary,
        # they may be reusing it outside of this call
        io_options = dict(io_options)

        # Use full Pyomo component names rather than
        # shortened symbols (slower, but useful for debugging).
        symbolic_solver_labels = io_options.pop("symbolic_solver_labels",
                                                False)

        # Custom labeler option. Incompatible with symbolic_solver_labels.
        labeler = io_options.pop("labeler", None)

        # If None, GAMS will use default solver for model type.
        solver = io_options.pop("solver", None)

        # If None, will chose from lp, nlp, mip, and minlp.
        mtype = io_options.pop("mtype", None)

        # Lines to add before solve statement.
        add_options = io_options.pop("add_options", None)

        # Skip writing constraints whose body section is
        # fixed (i.e., no variables)
        skip_trivial_constraints = \
            io_options.pop("skip_trivial_constraints", False)

        # How much effort do we want to put into ensuring the
        # GAMS file is written deterministically for a Pyomo model:
        #    0 : None
        #    1 : sort keys of indexed components (default)
        #    2 : sort keys AND sort names (over declaration order)
        file_determinism = io_options.pop("file_determinism", 1)
        sorter_map = {
            0: SortComponents.unsorted,
            1: SortComponents.deterministic,
            2: SortComponents.sortBoth
        }
        sort = sorter_map[file_determinism]

        # Warmstart by initializing model's variables to their values.
        warmstart = io_options.pop("warmstart", True)

        # Filename for optionally writing solution values and marginals
        # Set to True by GAMSSolver
        put_results = io_options.pop("put_results", None)

        if len(io_options):
            raise ValueError(
                "GAMS writer passed unrecognized io_options:\n\t" +
                "\n\t".join("%s = %s" % (k, v)
                            for k, v in iteritems(io_options)))

        if solver is not None and solver.upper() not in valid_solvers:
            raise ValueError("GAMS writer passed unrecognized solver: %s" %
                             solver)

        if mtype is not None:
            valid_mtypes = set([
                'lp', 'qcp', 'nlp', 'dnlp', 'rmip', 'mip', 'rmiqcp', 'rminlp',
                'miqcp', 'minlp', 'rmpec', 'mpec', 'mcp', 'cns', 'emp'
            ])
            if mtype.lower() not in valid_mtypes:
                raise ValueError("GAMS writer passed unrecognized "
                                 "model type: %s" % mtype)
            if (solver is not None
                    and mtype.upper() not in valid_solvers[solver.upper()]):
                raise ValueError("GAMS writer passed solver (%s) "
                                 "unsuitable for given model type (%s)" %
                                 (solver, mtype))

        if output_filename is None:
            output_filename = model.name + ".gms"

        if symbolic_solver_labels and (labeler is not None):
            raise ValueError("GAMS writer: Using both the "
                             "'symbolic_solver_labels' and 'labeler' "
                             "I/O options is forbidden")

        if symbolic_solver_labels:
            var_labeler = con_labeler = ShortNameLabeler(63, '_')
        elif labeler is None:
            var_labeler = NumericLabeler('x')
            con_labeler = NumericLabeler('c')
        else:
            var_labeler = con_labeler = labeler

        var_list = []

        def var_recorder(obj):
            ans = var_labeler(obj)
            try:
                if obj.is_variable_type():
                    var_list.append(ans)
            except:
                pass
            return ans

        def var_label(obj):
            #if obj.is_fixed():
            #    return str(value(obj))
            return symbolMap.getSymbol(obj, var_recorder)

        symbolMap = SymbolMap(var_label)

        # when sorting, there are a non-trivial number of
        # temporary objects created. these all yield
        # non-circular references, so disable GC - the
        # overhead is non-trivial, and because references
        # are non-circular, everything will be collected
        # immediately anyway.
        with PauseGC() as pgc:
            try:
                if isinstance(output_filename, string_types):
                    output_file = open(output_filename, "w")
                else:
                    # Support passing of stream such as a StringIO
                    # on which to write the model file
                    output_file = output_filename
                self._write_model(
                    model=model,
                    output_file=output_file,
                    solver_capability=solver_capability,
                    var_list=var_list,
                    var_label=var_label,
                    symbolMap=symbolMap,
                    con_labeler=con_labeler,
                    sort=sort,
                    skip_trivial_constraints=skip_trivial_constraints,
                    warmstart=warmstart,
                    solver=solver,
                    mtype=mtype,
                    add_options=add_options,
                    put_results=put_results)
            finally:
                if isinstance(output_filename, string_types):
                    output_file.close()

        return output_filename, symbolMap
예제 #24
0
파일: mps.py 프로젝트: vova292/pyomo
    def _print_model_MPS(self,
                         model,
                         output_file,
                         solver_capability,
                         labeler,
                         output_fixed_variable_bounds=False,
                         file_determinism=1,
                         row_order=None,
                         column_order=None,
                         skip_trivial_constraints=False,
                         force_objective_constant=False,
                         include_all_variable_bounds=False,
                         skip_objective_sense=False):

        symbol_map = SymbolMap()
        variable_symbol_map = SymbolMap()
        # NOTE: we use createSymbol instead of getSymbol because we
        #       know whether or not the symbol exists, and don't want
        #       to the overhead of error/duplicate checking.
        # cache frequently called functions
        extract_variable_coefficients = self._extract_variable_coefficients
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias
        variable_label_pairs = []

        sortOrder = SortComponents.unsorted
        if file_determinism >= 1:
            sortOrder = sortOrder | SortComponents.indices
            if file_determinism >= 2:
                sortOrder = sortOrder | SortComponents.alphabetical

        #
        # Create variable symbols (and cache the block list)
        #
        all_blocks = []
        variable_list = []
        for block in model.block_data_objects(active=True, sort=sortOrder):

            all_blocks.append(block)

            for vardata in block.component_data_objects(Var,
                                                        active=True,
                                                        sort=sortOrder,
                                                        descend_into=False):

                variable_list.append(vardata)
                variable_label_pairs.append(
                    (vardata, create_symbol_func(symbol_map, vardata,
                                                 labeler)))

        variable_symbol_map.addSymbols(variable_label_pairs)

        # and extract the information we'll need for rapid labeling.
        object_symbol_dictionary = symbol_map.byObject
        variable_symbol_dictionary = variable_symbol_map.byObject

        # sort the variable ordering by the user
        # column_order ComponentMap
        if column_order is not None:
            variable_list.sort(key=lambda _x: column_order[_x])

        # prepare to hold the sparse columns
        variable_to_column = ComponentMap(
            (vardata, i) for i, vardata in enumerate(variable_list))
        # add one position for ONE_VAR_CONSTANT
        column_data = [[] for i in xrange(len(variable_list) + 1)]
        quadobj_data = []
        quadmatrix_data = []
        # constraint rhs
        rhs_data = []

        # print the model name and the source, so we know
        # roughly where
        output_file.write("* Source:     Pyomo MPS Writer\n")
        output_file.write("* Format:     Free MPS\n")
        output_file.write("*\n")
        output_file.write("NAME %s\n" % (model.name, ))

        #
        # ROWS section
        #

        objective_label = None
        numObj = 0
        onames = []
        for block in all_blocks:

            gen_obj_repn = \
                getattr(block, "_gen_obj_repn", True)

            # Get/Create the ComponentMap for the repn
            if not hasattr(block, '_repn'):
                block._repn = ComponentMap()
            block_repn = block._repn
            for objective_data in block.component_data_objects(
                    Objective, active=True, sort=sortOrder,
                    descend_into=False):

                numObj += 1
                onames.append(objective_data.name)
                if numObj > 1:
                    raise ValueError(
                        "More than one active objective defined for input "
                        "model '%s'; Cannot write legal MPS file\n"
                        "Objectives: %s" % (model.name, ' '.join(onames)))

                objective_label = create_symbol_func(symbol_map,
                                                     objective_data, labeler)

                symbol_map.alias(objective_data, '__default_objective__')
                if not skip_objective_sense:
                    output_file.write("OBJSENSE\n")
                    if objective_data.is_minimizing():
                        output_file.write(" MIN\n")
                    else:
                        output_file.write(" MAX\n")
                # This section is not recognized by the COIN-OR
                # MPS reader
                #output_file.write("OBJNAME\n")
                #output_file.write(" %s\n" % (objective_label))
                output_file.write("ROWS\n")
                output_file.write(" N  %s\n" % (objective_label))

                if gen_obj_repn:
                    repn = \
                        generate_standard_repn(objective_data.expr)
                    block_repn[objective_data] = repn
                else:
                    repn = block_repn[objective_data]

                degree = repn.polynomial_degree()
                if degree == 0:
                    logger.warning(
                        "Constant objective detected, replacing "
                        "with a placeholder to prevent solver failure.")
                    force_objective_constant = True
                elif degree is None:
                    raise RuntimeError(
                        "Cannot write legal MPS file. Objective '%s' "
                        "has nonlinear terms that are not quadratic." %
                        objective_data.name)

                constant = extract_variable_coefficients(
                    objective_label, repn, column_data, quadobj_data,
                    variable_to_column)
                if force_objective_constant or (constant != 0.0):
                    # ONE_VAR_CONSTANT
                    column_data[-1].append((objective_label, constant))

        if numObj == 0:
            raise ValueError(
                "Cannot write legal MPS file: No objective defined "
                "for input model '%s'." % str(model))
        assert objective_label is not None

        # Constraints
        def constraint_generator():
            for block in all_blocks:

                gen_con_repn = \
                    getattr(block, "_gen_con_repn", True)

                # Get/Create the ComponentMap for the repn
                if not hasattr(block, '_repn'):
                    block._repn = ComponentMap()
                block_repn = block._repn

                for constraint_data in block.component_data_objects(
                        Constraint,
                        active=True,
                        sort=sortOrder,
                        descend_into=False):

                    if (not constraint_data.has_lb()) and \
                       (not constraint_data.has_ub()):
                        assert not constraint_data.equality
                        continue  # non-binding, so skip

                    if constraint_data._linear_canonical_form:
                        repn = constraint_data.canonical_form()
                    elif gen_con_repn:
                        repn = generate_standard_repn(constraint_data.body)
                        block_repn[constraint_data] = repn
                    else:
                        repn = block_repn[constraint_data]

                    yield constraint_data, repn

        if row_order is not None:
            sorted_constraint_list = list(constraint_generator())
            sorted_constraint_list.sort(key=lambda x: row_order[x[0]])

            def yield_all_constraints():
                for constraint_data, repn in sorted_constraint_list:
                    yield constraint_data, repn
        else:
            yield_all_constraints = constraint_generator

        for constraint_data, repn in yield_all_constraints():

            degree = repn.polynomial_degree()

            # Write constraint
            if degree == 0:
                if skip_trivial_constraints:
                    continue
            elif degree is None:
                raise RuntimeError(
                    "Cannot write legal MPS file. Constraint '%s' "
                    "has nonlinear terms that are not quadratic." %
                    constraint_data.name)

            # Create symbol
            con_symbol = create_symbol_func(symbol_map, constraint_data,
                                            labeler)

            if constraint_data.equality:
                assert value(constraint_data.lower) == \
                    value(constraint_data.upper)
                label = 'c_e_' + con_symbol + '_'
                alias_symbol_func(symbol_map, constraint_data, label)
                output_file.write(" E  %s\n" % (label))
                offset = extract_variable_coefficients(label, repn,
                                                       column_data,
                                                       quadmatrix_data,
                                                       variable_to_column)
                bound = constraint_data.lower
                bound = _get_bound(bound) - offset
                rhs_data.append((label, _no_negative_zero(bound)))
            else:
                if constraint_data.has_lb():
                    if constraint_data.has_ub():
                        label = 'r_l_' + con_symbol + '_'
                    else:
                        label = 'c_l_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(" G  %s\n" % (label))
                    offset = extract_variable_coefficients(
                        label, repn, column_data, quadmatrix_data,
                        variable_to_column)
                    bound = constraint_data.lower
                    bound = _get_bound(bound) - offset
                    rhs_data.append((label, _no_negative_zero(bound)))
                else:
                    assert constraint_data.has_ub()

                if constraint_data.has_ub():
                    if constraint_data.has_lb():
                        label = 'r_u_' + con_symbol + '_'
                    else:
                        label = 'c_u_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(" L  %s\n" % (label))
                    offset = extract_variable_coefficients(
                        label, repn, column_data, quadmatrix_data,
                        variable_to_column)
                    bound = constraint_data.upper
                    bound = _get_bound(bound) - offset
                    rhs_data.append((label, _no_negative_zero(bound)))
                else:
                    assert constraint_data.has_lb()

        if len(column_data[-1]) > 0:
            # ONE_VAR_CONSTANT = 1
            output_file.write(" E  c_e_ONE_VAR_CONSTANT\n")
            column_data[-1].append(("c_e_ONE_VAR_CONSTANT", 1))
            rhs_data.append(("c_e_ONE_VAR_CONSTANT", 1))

        #
        # COLUMNS section
        #
        column_template = "     %s %s %" + self._precision_string + "\n"
        output_file.write("COLUMNS\n")
        cnt = 0
        for vardata in variable_list:
            col_entries = column_data[variable_to_column[vardata]]
            cnt += 1
            if len(col_entries) > 0:
                var_label = variable_symbol_dictionary[id(vardata)]
                for i, (row_label, coef) in enumerate(col_entries):
                    output_file.write(
                        column_template %
                        (var_label, row_label, _no_negative_zero(coef)))
            elif include_all_variable_bounds:
                # the column is empty, so add a (0 * var)
                # term to the objective
                # * Note that some solvers (e.g., Gurobi)
                #   will accept an empty column as a line
                #   with just the column name. This doesn't
                #   seem to work for CPLEX 12.6, so I am
                #   doing it this way so that it will work for both
                var_label = variable_symbol_dictionary[id(vardata)]
                output_file.write(column_template %
                                  (var_label, objective_label, 0))

        assert cnt == len(column_data) - 1
        if len(column_data[-1]) > 0:
            col_entries = column_data[-1]
            var_label = "ONE_VAR_CONSTANT"
            for i, (row_label, coef) in enumerate(col_entries):
                output_file.write(
                    column_template %
                    (var_label, row_label, _no_negative_zero(coef)))

        #
        # RHS section
        #
        rhs_template = "     RHS %s %" + self._precision_string + "\n"
        output_file.write("RHS\n")
        for i, (row_label, rhs) in enumerate(rhs_data):
            # note: we have already converted any -0 to 0 by this point
            output_file.write(rhs_template % (row_label, rhs))

        # SOS constraints
        SOSlines = StringIO()
        sos1 = solver_capability("sos1")
        sos2 = solver_capability("sos2")
        for block in all_blocks:

            for soscondata in block.component_data_objects(SOSConstraint,
                                                           active=True,
                                                           sort=sortOrder,
                                                           descend_into=False):

                create_symbol_func(symbol_map, soscondata, labeler)

                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise ValueError(
                        "Solver does not support SOS level %s constraints" %
                        (level))
                # This updates the referenced_variable_ids, just in case
                # there is a variable that only appears in an
                # SOSConstraint, in which case this needs to be known
                # before we write the "bounds" section (Cplex does not
                # handle this correctly, Gurobi does)
                self._printSOS(symbol_map, labeler, variable_symbol_map,
                               soscondata, SOSlines)

        #
        # BOUNDS section
        #
        entry_template = "%s %" + self._precision_string + "\n"
        output_file.write("BOUNDS\n")
        for vardata in variable_list:
            if include_all_variable_bounds or \
               (id(vardata) in self._referenced_variable_ids):
                var_label = variable_symbol_dictionary[id(vardata)]
                if vardata.fixed:
                    if not output_fixed_variable_bounds:
                        raise ValueError(
                            "Encountered a fixed variable (%s) inside an active "
                            "objective or constraint expression on model %s, which is "
                            "usually indicative of a preprocessing error. Use the "
                            "IO-option 'output_fixed_variable_bounds=True' to suppress "
                            "this error and fix the variable by overwriting its bounds "
                            "in the MPS file." % (vardata.name, model.name))
                    if vardata.value is None:
                        raise ValueError(
                            "Variable cannot be fixed to a value of None.")
                    output_file.write(
                        (" FX BOUND " + entry_template) %
                        (var_label, _no_negative_zero(value(vardata.value))))
                    continue

                # convert any -0 to 0 to make baseline diffing easier
                vardata_lb = _no_negative_zero(_get_bound(vardata.lb))
                vardata_ub = _no_negative_zero(_get_bound(vardata.ub))
                unbounded_lb = not vardata.has_lb()
                unbounded_ub = not vardata.has_ub()
                treat_as_integer = False
                if vardata.is_binary():
                    if (vardata_lb == 0) and (vardata_ub == 1):
                        output_file.write(" BV BOUND %s\n" % (var_label))
                        continue
                    else:
                        # so we can add bounds
                        treat_as_integer = True
                if treat_as_integer or vardata.is_integer():
                    # Indicating unbounded integers is tricky because
                    # the only way to indicate a variable is integer
                    # is using the bounds section. Thus, we signify
                    # infinity with a large number (10E20)
                    # * Note: Gurobi allows values like inf and -inf
                    #         but CPLEX 12.6 does not, so I am just
                    #         using a large value
                    if not unbounded_lb:
                        output_file.write((" LI BOUND " + entry_template) %
                                          (var_label, vardata_lb))
                    else:
                        output_file.write(" LI BOUND %s -10E20\n" %
                                          (var_label))
                    if not unbounded_ub:
                        output_file.write((" UI BOUND " + entry_template) %
                                          (var_label, vardata_ub))
                    else:
                        output_file.write(" UI BOUND %s 10E20\n" % (var_label))
                else:
                    assert vardata.is_continuous()
                    if unbounded_lb and unbounded_ub:
                        output_file.write(" FR BOUND %s\n" % (var_label))
                    else:
                        if not unbounded_lb:
                            output_file.write((" LO BOUND " + entry_template) %
                                              (var_label, vardata_lb))
                        else:
                            output_file.write(" MI BOUND %s\n" % (var_label))

                        if not unbounded_ub:
                            output_file.write((" UP BOUND " + entry_template) %
                                              (var_label, vardata_ub))

        #
        # SOS section
        #
        output_file.write(SOSlines.getvalue())

        # Formatting of the next two sections comes from looking
        # at Gurobi and Cplex output

        #
        # QUADOBJ section
        #
        if len(quadobj_data) > 0:
            assert len(quadobj_data) == 1
            # it looks like the COIN-OR MPS Reader only
            # recognizes QUADOBJ (Gurobi and Cplex seem to
            # be okay with this)
            output_file.write("QUADOBJ\n")
            #output_file.write("QMATRIX\n")
            label, quad_terms = quadobj_data[0]
            assert label == objective_label
            # sort by the sorted tuple of symbols (or column assignments)
            # for the variables appearing in the term
            quad_terms = sorted(quad_terms,
                                key=lambda _x: \
                                  sorted((variable_to_column[_x[0][0]],
                                          variable_to_column[_x[0][1]])))
            for term, coef in quad_terms:
                # sort the term for consistent output
                var1, var2 = sorted(term,
                                    key=lambda _x: variable_to_column[_x])
                var1_label = variable_symbol_dictionary[id(var1)]
                var2_label = variable_symbol_dictionary[id(var2)]
                # Don't forget that a quadratic objective is always
                # assumed to be divided by 2
                if var1_label == var2_label:
                    output_file.write(
                        column_template %
                        (var1_label, var2_label, _no_negative_zero(coef * 2)))
                else:
                    # the matrix needs to be symmetric so split
                    # the coefficient (but remember it is divided by 2)
                    output_file.write(
                        column_template %
                        (var1_label, var2_label, _no_negative_zero(coef)))
                    output_file.write(
                        column_template %
                        (var2_label, var1_label, _no_negative_zero(coef)))

        #
        # QCMATRIX section
        #
        if len(quadmatrix_data) > 0:
            for row_label, quad_terms in quadmatrix_data:
                output_file.write("QCMATRIX    %s\n" % (row_label))
                # sort by the sorted tuple of symbols (or
                # column assignments) for the variables
                # appearing in the term
                quad_terms = sorted(quad_terms,
                                    key=lambda _x: \
                                      sorted((variable_to_column[_x[0][0]],
                                              variable_to_column[_x[0][1]])))
                for term, coef in quad_terms:
                    # sort the term for consistent output
                    var1, var2 = sorted(term,
                                        key=lambda _x: variable_to_column[_x])
                    var1_label = variable_symbol_dictionary[id(var1)]
                    var2_label = variable_symbol_dictionary[id(var2)]
                    if var1_label == var2_label:
                        output_file.write(
                            column_template %
                            (var1_label, var2_label, _no_negative_zero(coef)))
                    else:
                        # the matrix needs to be symmetric so split
                        # the coefficient
                        output_file.write(column_template %
                                          (var1_label, var2_label,
                                           _no_negative_zero(coef * 0.5)))
                        output_file.write(column_template %
                                          (var2_label, var1_label, coef * 0.5))

        output_file.write("ENDATA\n")

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints **Note**: warm start method may
        # rely on this for choosing the set of potential warm start
        # variables
        vars_to_delete = set(variable_symbol_map.byObject.keys()) - \
                         set(self._referenced_variable_ids.keys())
        sm_byObject = symbol_map.byObject
        sm_bySymbol = symbol_map.bySymbol
        var_sm_byObject = variable_symbol_map.byObject
        for varid in vars_to_delete:
            symbol = var_sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]
        del variable_symbol_map

        return symbol_map
예제 #25
0
class NLWriter(PersistentBase):
    def __init__(self):
        super(NLWriter, self).__init__()
        self._config = WriterConfig()
        self._writer = None
        self._symbol_map = SymbolMap()
        self._var_labeler = None
        self._con_labeler = None
        self._param_labeler = None
        self._pyomo_var_to_solver_var_map = dict()
        self._pyomo_con_to_solver_con_map = dict()
        self._solver_var_to_pyomo_var_map = dict()
        self._solver_con_to_pyomo_con_map = dict()
        self._pyomo_param_to_solver_param_map = dict()
        self._walker = PyomoToCModelWalker(
            self._pyomo_var_to_solver_var_map,
            self._pyomo_param_to_solver_param_map)

    @property
    def config(self):
        return self._config

    @config.setter
    def config(self, val: WriterConfig):
        self._config = val

    @property
    def symbol_map(self):
        return self._symbol_map

    def set_instance(self, model):
        saved_config = self.config
        saved_update_config = self.update_config
        self.__init__()
        self.config = saved_config
        self.update_config = saved_update_config
        self._model = model

        if self.config.symbolic_solver_labels:
            self._var_labeler = TextLabeler()
            self._con_labeler = TextLabeler()
            self._param_labeler = TextLabeler()
        else:
            self._var_labeler = NumericLabeler('x')
            self._con_labeler = NumericLabeler('c')
            self._param_labeler = NumericLabeler('p')

        self._writer = cmodel.NLWriter()

        self.add_block(model)
        if self._objective is None:
            self.set_objective(None)

    def _add_variables(self, variables: List[_GeneralVarData]):
        cvars = cmodel.create_vars(len(variables))
        for ndx, v in enumerate(variables):
            cv = cvars[ndx]
            cv.name = self._symbol_map.getSymbol(v, self._var_labeler)
            if not v.is_continuous():
                raise NotImplementedError(
                    'NLWriter currently only supports continuous variables')
            lb = value(v.lb)
            ub = value(v.ub)
            if lb is not None:
                cv.lb = lb
            if ub is not None:
                cv.ub = ub
            if v.value is not None:
                cv.value = v.value
            if v.is_fixed():
                cv.fixed = True
            self._pyomo_var_to_solver_var_map[id(v)] = cv
            self._solver_var_to_pyomo_var_map[cv] = v

    def _add_params(self, params: List[_ParamData]):
        cparams = cmodel.create_params(len(params))
        for ndx, p in enumerate(params):
            cp = cparams[ndx]
            cp.name = self._symbol_map.getSymbol(p, self._param_labeler)
            cp.value = p.value
            self._pyomo_param_to_solver_param_map[id(p)] = cp

    def _add_constraints(self, cons: List[_GeneralConstraintData]):
        for c in cons:
            cname = self._symbol_map.getSymbol(c, self._con_labeler)
            repn = generate_standard_repn(c.body,
                                          compute_values=False,
                                          quadratic=False)
            const = self._walker.dfs_postorder_stack(repn.constant)
            lin_vars = [
                self._pyomo_var_to_solver_var_map[id(i)]
                for i in repn.linear_vars
            ]
            lin_coef = [
                self._walker.dfs_postorder_stack(i) for i in repn.linear_coefs
            ]
            if repn.nonlinear_expr is None:
                nonlin = self._walker.dfs_postorder_stack(0)
            else:
                nonlin = self._walker.dfs_postorder_stack(repn.nonlinear_expr)
            cc = cmodel.NLConstraint(const, lin_coef, lin_vars, nonlin)
            lb = c.lower
            ub = c.upper
            if lb is not None:
                cc.lb = self._walker.dfs_postorder_stack(lb)
            if ub is not None:
                cc.ub = self._walker.dfs_postorder_stack(ub)
            self._writer.add_constraint(cc)
            self._pyomo_con_to_solver_con_map[c] = cc
            self._solver_con_to_pyomo_con_map[cc] = c

    def _add_sos_constraints(self, cons: List[_SOSConstraintData]):
        if len(cons) != 0:
            raise NotImplementedError(
                'NL writer does not support SOS constraints')

    def _remove_constraints(self, cons: List[_GeneralConstraintData]):
        for c in cons:
            cc = self._pyomo_con_to_solver_con_map.pop(c)
            self._writer.remove_constraint(cc)
            self._symbol_map.removeSymbol(c)
            self._con_labeler.remove_obj(c)
            del self._solver_con_to_pyomo_con_map[cc]

    def _remove_sos_constraints(self, cons: List[_SOSConstraintData]):
        if len(cons) != 0:
            raise NotImplementedError(
                'NL writer does not support SOS constraints')

    def _remove_variables(self, variables: List[_GeneralVarData]):
        for v in variables:
            cvar = self._pyomo_var_to_solver_var_map.pop(id(v))
            del self._solver_var_to_pyomo_var_map[cvar]
            self._symbol_map.removeSymbol(v)
            self._var_labeler.remove_obj(v)

    def _remove_params(self, params: List[_ParamData]):
        for p in params:
            del self._pyomo_param_to_solver_param_map[id(p)]
            self._symbol_map.removeSymbol(p)
            self._param_labeler.remove_obj(p)

    def _update_variables(self, variables: List[_GeneralVarData]):
        for v in variables:
            cv = self._pyomo_var_to_solver_var_map[id(v)]
            if not v.is_continuous():
                raise NotImplementedError(
                    'NLWriter currently only supports continuous variables')
            lb = value(v.lb)
            ub = value(v.ub)
            if lb is None:
                cv.lb = -cmodel.inf
            else:
                cv.lb = lb
            if ub is None:
                cv.ub = cmodel.inf
            else:
                cv.ub = ub
            if v.value is not None:
                cv.value = v.value
            if v.is_fixed():
                cv.fixed = True
            else:
                cv.fixed = False

    def update_params(self):
        for p_id, p in self._params.items():
            cp = self._pyomo_param_to_solver_param_map[p_id]
            cp.value = p.value

    def _set_objective(self, obj: _GeneralObjectiveData):
        if obj is None:
            const = cmodel.Constant(0)
            lin_vars = list()
            lin_coef = list()
            nonlin = cmodel.Constant(0)
            sense = 0
        else:
            repn = generate_standard_repn(obj.expr,
                                          compute_values=False,
                                          quadratic=False)
            const = self._walker.dfs_postorder_stack(repn.constant)
            lin_vars = [
                self._pyomo_var_to_solver_var_map[id(i)]
                for i in repn.linear_vars
            ]
            lin_coef = [
                self._walker.dfs_postorder_stack(i) for i in repn.linear_coefs
            ]
            if repn.nonlinear_expr is None:
                nonlin = cmodel.Constant(0)
            else:
                nonlin = self._walker.dfs_postorder_stack(repn.nonlinear_expr)
            if obj.sense is minimize:
                sense = 0
            else:
                sense = 1
        cobj = cmodel.NLObjective(const, lin_coef, lin_vars, nonlin)
        cobj.sense = sense
        self._writer.objective = cobj

    def write(self,
              model: _BlockData,
              filename: str,
              timer: HierarchicalTimer = None):
        if timer is None:
            timer = HierarchicalTimer()
        if model is not self._model:
            timer.start('set_instance')
            self.set_instance(model)
            timer.stop('set_instance')
        else:
            timer.start('update')
            self.update(timer=timer)
            for cv, v in self._solver_var_to_pyomo_var_map.items():
                if v.value is not None:
                    cv.value = v.value
            timer.stop('update')
        timer.start('write file')
        self._writer.write(filename)
        timer.stop('write file')

    def get_ordered_vars(self):
        return [
            self._solver_var_to_pyomo_var_map[i]
            for i in self._writer.get_solve_vars()
        ]

    def get_ordered_cons(self):
        return [
            self._solver_con_to_pyomo_con_map[i]
            for i in self._writer.get_solve_cons()
        ]

    def get_active_objective(self):
        return self._objective
예제 #26
0
    def _print_model_LP(self,
                        model,
                        output_file,
                        solver_capability,
                        labeler,
                        output_fixed_variable_bounds=False,
                        file_determinism=1,
                        row_order=None,
                        column_order=None,
                        skip_trivial_constraints=False,
                        force_objective_constant=False,
                        include_all_variable_bounds=False):

        symbol_map = SymbolMap()
        variable_symbol_map = SymbolMap()
        # NOTE: we use createSymbol instead of getSymbol because we
        #       know whether or not the symbol exists, and don't want
        #       to the overhead of error/duplicate checking.
        # cache frequently called functions
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias
        variable_label_pairs = []

        # populate the symbol map in a single pass.
        #objective_list, constraint_list, sosconstraint_list, variable_list \
        #    = self._populate_symbol_map(model,
        #                                symbol_map,
        #                                labeler,
        #                                variable_symbol_map,
        #                                file_determinism=file_determinism)
        sortOrder = SortComponents.unsorted
        if file_determinism >= 1:
            sortOrder = sortOrder | SortComponents.indices
            if file_determinism >= 2:
                sortOrder = sortOrder | SortComponents.alphabetical

        #
        # Create variable symbols (and cache the block list)
        #
        all_blocks = []
        variable_list = []
        for block in model.block_data_objects(active=True, sort=sortOrder):

            all_blocks.append(block)

            for vardata in block.component_data_objects(Var,
                                                        active=True,
                                                        sort=sortOrder,
                                                        descend_into=False):

                variable_list.append(vardata)
                variable_label_pairs.append(
                    (vardata, create_symbol_func(symbol_map, vardata,
                                                 labeler)))
        #
        # WEH - TODO:  See if this is faster
        #
        #all_blocks = list( model.block_data_objects(
        #        active=True, sort=sortOrder) )
        #variable_list = list( model.component_data_objects(
        #        Var, sort=sortOrder) )
        #variable_label_pairs = list(
        #    (vardata, create_symbol_func(symbol_map, vardata, labeler))
        #    for vardata in variable_list )

        variable_symbol_map.addSymbols(variable_label_pairs)

        # and extract the information we'll need for rapid labeling.
        object_symbol_dictionary = symbol_map.byObject
        variable_symbol_dictionary = variable_symbol_map.byObject

        # cache - these are called all the time.
        print_expr_canonical = self._print_expr_canonical

        # print the model name and the source, so we know roughly where
        # it came from.
        #
        # NOTE: this *must* use the "\* ... *\" comment format: the GLPK
        # LP parser does not correctly handle other formats (notably, "%").
        output_file.write("\\* Source Pyomo model name=%s *\\\n\n" %
                          (model.name, ))

        #
        # Objective
        #

        supports_quadratic_objective = solver_capability('quadratic_objective')

        numObj = 0
        onames = []
        for block in all_blocks:

            gen_obj_repn = getattr(block, "_gen_obj_repn", True)

            # Get/Create the ComponentMap for the repn
            if not hasattr(block, '_repn'):
                block._repn = ComponentMap()
            block_repn = block._repn

            for objective_data in block.component_data_objects(
                    Objective, active=True, sort=sortOrder,
                    descend_into=False):

                numObj += 1
                onames.append(objective_data.name)
                if numObj > 1:
                    raise ValueError(
                        "More than one active objective defined for input "
                        "model '%s'; Cannot write legal LP file\n"
                        "Objectives: %s" % (model.name, ' '.join(onames)))

                create_symbol_func(symbol_map, objective_data, labeler)

                symbol_map.alias(objective_data, '__default_objective__')
                if objective_data.is_minimizing():
                    output_file.write("min \n")
                else:
                    output_file.write("max \n")

                if gen_obj_repn:
                    repn = generate_standard_repn(objective_data.expr)
                    block_repn[objective_data] = repn
                else:
                    repn = block_repn[objective_data]

                degree = repn.polynomial_degree()

                if degree == 0:
                    logger.warning(
                        "Constant objective detected, replacing "
                        "with a placeholder to prevent solver failure.")
                    force_objective_constant = True
                elif degree == 2:
                    if not supports_quadratic_objective:
                        raise RuntimeError(
                            "Selected solver is unable to handle "
                            "objective functions with quadratic terms. "
                            "Objective at issue: %s." % objective_data.name)
                elif degree is None:
                    raise RuntimeError(
                        "Cannot write legal LP file.  Objective '%s' "
                        "has nonlinear terms that are not quadratic." %
                        objective_data.name)

                output_file.write(
                    object_symbol_dictionary[id(objective_data)] + ':\n')

                offset = print_expr_canonical(
                    repn,
                    output_file,
                    object_symbol_dictionary,
                    variable_symbol_dictionary,
                    True,
                    column_order,
                    force_objective_constant=force_objective_constant)

        if numObj == 0:
            raise ValueError("ERROR: No objectives defined for input model. "
                             "Cannot write legal LP file.")

        # Constraints
        #
        # If there are no non-trivial constraints, you'll end up with an empty
        # constraint block. CPLEX is OK with this, but GLPK isn't. And
        # eliminating the constraint block (i.e., the "s.t." line) causes GLPK
        # to whine elsewhere. Output a warning if the constraint block is empty,
        # so users can quickly determine the cause of the solve failure.

        output_file.write("\n")
        output_file.write("s.t.\n")
        output_file.write("\n")

        have_nontrivial = False

        supports_quadratic_constraint = solver_capability(
            'quadratic_constraint')

        def constraint_generator():
            for block in all_blocks:

                gen_con_repn = getattr(block, "_gen_con_repn", True)

                # Get/Create the ComponentMap for the repn
                if not hasattr(block, '_repn'):
                    block._repn = ComponentMap()
                block_repn = block._repn

                for constraint_data in block.component_data_objects(
                        Constraint,
                        active=True,
                        sort=sortOrder,
                        descend_into=False):

                    if (not constraint_data.has_lb()) and \
                       (not constraint_data.has_ub()):
                        assert not constraint_data.equality
                        continue  # non-binding, so skip

                    if constraint_data._linear_canonical_form:
                        repn = constraint_data.canonical_form()
                    elif gen_con_repn:
                        repn = generate_standard_repn(constraint_data.body)
                        block_repn[constraint_data] = repn
                    else:
                        repn = block_repn[constraint_data]

                    yield constraint_data, repn

        if row_order is not None:
            sorted_constraint_list = list(constraint_generator())
            sorted_constraint_list.sort(key=lambda x: row_order[x[0]])

            def yield_all_constraints():
                for data, repn in sorted_constraint_list:
                    yield data, repn
        else:
            yield_all_constraints = constraint_generator

        # FIXME: This is a hack to get nested blocks working...
        eq_string_template = "= %" + self._precision_string + '\n'
        geq_string_template = ">= %" + self._precision_string + '\n\n'
        leq_string_template = "<= %" + self._precision_string + '\n\n'
        for constraint_data, repn in yield_all_constraints():
            have_nontrivial = True

            degree = repn.polynomial_degree()

            #
            # Write constraint
            #

            # There are conditions, e.g., when fixing variables, under which
            # a constraint block might be empty.  Ignore these, for both
            # practical reasons and the fact that the CPLEX LP format
            # requires a variable in the constraint body.  It is also
            # possible that the body of the constraint consists of only a
            # constant, in which case the "variable" of
            if degree == 0:
                if skip_trivial_constraints:
                    continue
            elif degree == 2:
                if not supports_quadratic_constraint:
                    raise ValueError(
                        "Solver unable to handle quadratic expressions. Constraint"
                        " at issue: '%s'" % (constraint_data.name))
            elif degree is None:
                raise ValueError(
                    "Cannot write legal LP file.  Constraint '%s' has a body "
                    "with nonlinear terms." % (constraint_data.name))

            # Create symbol
            con_symbol = create_symbol_func(symbol_map, constraint_data,
                                            labeler)

            if constraint_data.equality:
                assert value(constraint_data.lower) == \
                    value(constraint_data.upper)
                label = 'c_e_' + con_symbol + '_'
                alias_symbol_func(symbol_map, constraint_data, label)
                output_file.write(label + ':\n')
                offset = print_expr_canonical(repn, output_file,
                                              object_symbol_dictionary,
                                              variable_symbol_dictionary,
                                              False, column_order)
                bound = constraint_data.lower
                bound = _get_bound(bound) - offset
                output_file.write(eq_string_template %
                                  (_no_negative_zero(bound)))
                output_file.write("\n")
            else:
                if constraint_data.has_lb():
                    if constraint_data.has_ub():
                        label = 'r_l_' + con_symbol + '_'
                    else:
                        label = 'c_l_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label + ':\n')
                    offset = print_expr_canonical(repn, output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False, column_order)
                    bound = constraint_data.lower
                    bound = _get_bound(bound) - offset
                    output_file.write(geq_string_template %
                                      (_no_negative_zero(bound)))
                else:
                    assert constraint_data.has_ub()

                if constraint_data.has_ub():
                    if constraint_data.has_lb():
                        label = 'r_u_' + con_symbol + '_'
                    else:
                        label = 'c_u_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label + ':\n')
                    offset = print_expr_canonical(repn, output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False, column_order)
                    bound = constraint_data.upper
                    bound = _get_bound(bound) - offset
                    output_file.write(leq_string_template %
                                      (_no_negative_zero(bound)))
                else:
                    assert constraint_data.has_lb()

        if not have_nontrivial:
            logger.warning('Empty constraint block written in LP format '  \
                  '- solver may error')

        # the CPLEX LP format doesn't allow constants in the objective (or
        # constraint body), which is a bit silly.  To avoid painful
        # book-keeping, we introduce the following "variable", constrained
        # to the value 1.  This is used when quadratic terms are present.
        # worst-case, if not used, is that CPLEX easily pre-processes it out.
        prefix = ""
        output_file.write('%sc_e_ONE_VAR_CONSTANT: \n' % prefix)
        output_file.write('%sONE_VAR_CONSTANT = 1.0\n' % prefix)
        output_file.write("\n")

        # SOS constraints
        #
        # For now, we write out SOS1 and SOS2 constraints in the cplex format
        #
        # All Component objects are stored in model._component, which is a
        # dictionary of {class: {objName: object}}.
        #
        # Consider the variable X,
        #
        #   model.X = Var(...)
        #
        # We print X to CPLEX format as X(i,j,k,...) where i, j, k, ... are the
        # indices of X.
        #
        SOSlines = StringIO()
        sos1 = solver_capability("sos1")
        sos2 = solver_capability("sos2")
        writtenSOS = False
        for block in all_blocks:

            for soscondata in block.component_data_objects(SOSConstraint,
                                                           active=True,
                                                           sort=sortOrder,
                                                           descend_into=False):

                create_symbol_func(symbol_map, soscondata, labeler)

                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise ValueError(
                        "Solver does not support SOS level %s constraints" %
                        (level))
                if writtenSOS == False:
                    SOSlines.write("SOS\n")
                    writtenSOS = True
                # This updates the referenced_variable_ids, just in case
                # there is a variable that only appears in an
                # SOSConstraint, in which case this needs to be known
                # before we write the "bounds" section (Cplex does not
                # handle this correctly, Gurobi does)
                self.printSOS(symbol_map, labeler, variable_symbol_map,
                              soscondata, SOSlines)

        #
        # Bounds
        #

        output_file.write("bounds\n")

        # Scan all variables even if we're only writing a subset of them.
        # required because we don't store maps by variable type currently.

        # FIXME: This is a hack to get nested blocks working...
        lb_string_template = "%" + self._precision_string + " <= "
        ub_string_template = " <= %" + self._precision_string + "\n"
        # Track the number of integer and binary variables, so you can
        # output their status later.
        integer_vars = []
        binary_vars = []
        for vardata in variable_list:

            # TODO: We could just loop over the set of items in
            #       self._referenced_variable_ids, except this is
            #       a dictionary that is hashed by id(vardata)
            #       which would make the bounds section
            #       nondeterministic (bad for unit testing)
            if (not include_all_variable_bounds) and \
               (id(vardata) not in self._referenced_variable_ids):
                continue

            if vardata.fixed:
                if not output_fixed_variable_bounds:
                    raise ValueError(
                        "Encountered a fixed variable (%s) inside an active "
                        "objective or constraint expression on model %s, which is "
                        "usually indicative of a preprocessing error. Use the "
                        "IO-option 'output_fixed_variable_bounds=True' to suppress "
                        "this error and fix the variable by overwriting its bounds "
                        "in the LP file." % (vardata.name, model.name))
                if vardata.value is None:
                    raise ValueError(
                        "Variable cannot be fixed to a value of None.")
                vardata_lb = value(vardata.value)
                vardata_ub = value(vardata.value)
            else:
                vardata_lb = _get_bound(vardata.lb)
                vardata_ub = _get_bound(vardata.ub)

            name_to_output = variable_symbol_dictionary[id(vardata)]

            # track the number of integer and binary variables, so we know whether
            # to output the general / binary sections below.
            if vardata.is_binary():
                binary_vars.append(name_to_output)
            elif vardata.is_integer():
                integer_vars.append(name_to_output)
            elif not vardata.is_continuous():
                raise TypeError(
                    "Invalid domain type for variable with name '%s'. "
                    "Variable is not continuous, integer, or binary." %
                    (vardata.name))

            # in the CPLEX LP file format, the default variable
            # bounds are 0 and +inf.  These bounds are in
            # conflict with Pyomo, which assumes -inf and +inf
            # (which we would argue is more rational).
            output_file.write("   ")
            if vardata.has_lb():
                output_file.write(lb_string_template %
                                  (_no_negative_zero(vardata_lb)))
            else:
                output_file.write(" -inf <= ")
            if name_to_output == "e":
                raise ValueError(
                    "Attempting to write variable with name 'e' in a CPLEX LP "
                    "formatted file will cause a parse failure due to confusion with "
                    "numeric values expressed in scientific notation")

            output_file.write(name_to_output)
            if vardata.has_ub():
                output_file.write(ub_string_template %
                                  (_no_negative_zero(vardata_ub)))
            else:
                output_file.write(" <= +inf\n")

        if len(integer_vars) > 0:

            output_file.write("general\n")
            for var_name in integer_vars:
                output_file.write('  %s\n' % var_name)

        if len(binary_vars) > 0:

            output_file.write("binary\n")
            for var_name in binary_vars:
                output_file.write('  %s\n' % var_name)

        # Write the SOS section
        output_file.write(SOSlines.getvalue())

        #
        # wrap-up
        #
        output_file.write("end\n")

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints **Note**: warm start method may
        # rely on this for choosing the set of potential warm start
        # variables
        vars_to_delete = set(variable_symbol_map.byObject.keys()) - \
                         set(self._referenced_variable_ids.keys())
        sm_byObject = symbol_map.byObject
        sm_bySymbol = symbol_map.bySymbol
        var_sm_byObject = variable_symbol_map.byObject
        for varid in vars_to_delete:
            symbol = var_sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]
        del variable_symbol_map

        return symbol_map
예제 #27
0
    def compile_instance(self,
                         pyomo_instance,
                         symbolic_solver_labels=False,
                         output_fixed_variable_bounds=False,
                         skip_trivial_constraints=False):

        from pyomo.core.base import Var, Constraint, SOSConstraint
        from pyomo.repn import canonical_is_constant, LinearCanonicalRepn, canonical_degree

        self._symbolic_solver_labels = symbolic_solver_labels
        self._output_fixed_variable_bounds = output_fixed_variable_bounds
        self._skip_trivial_constraints = skip_trivial_constraints

        self._has_quadratic_constraints = False
        self._has_quadratic_objective = False
        used_sos_constraints = False

        self._active_cplex_instance = cplex.Cplex()

        if self._symbolic_solver_labels:
            labeler = self._labeler = TextLabeler()
        else:
            labeler = self._labeler = NumericLabeler('x')

        self._symbol_map = SymbolMap()
        self._instance = pyomo_instance
        pyomo_instance.solutions.add_symbol_map(self._symbol_map)
        self._smap_id = id(self._symbol_map)

        # we use this when iterating over the constraints because it
        # will have a much smaller hash table, we also use this for
        # the warm start code after it is cleaned to only contain
        # variables referenced in the constraints
        self._variable_symbol_map = SymbolMap()

        # cplex wants the caller to set the problem type, which is (for
        # current purposes) strictly based on variable type counts.
        num_binary_variables = 0
        num_integer_variables = 0
        num_continuous_variables = 0

        #############################################
        # populate the variables in the cplex model #
        #############################################

        var_names = []
        var_lbs = []
        var_ubs = []
        var_types = []

        self._referenced_variable_ids.clear()

        # maps pyomo var data labels to the corresponding CPLEX variable id.
        self._cplex_variable_ids.clear()

        # cached in the loop below - used to update the symbol map
        # immediately following loop termination.
        var_label_pairs = []

        for var_data in pyomo_instance.component_data_objects(Var, active=True):

            if var_data.fixed and not self._output_fixed_variable_bounds:
                # if a variable is fixed, and we're preprocessing
                # fixed variables (as in not outputting them), there
                # is no need to add them to the compiled model.
                continue

            var_name = self._symbol_map.getSymbol(var_data, labeler)
            var_names.append(var_name)
            var_label_pairs.append((var_data, var_name))

            self._cplex_variable_ids[var_name] = len(self._cplex_variable_ids)

            if (var_data.lb is None) or (var_data.lb == -infinity):
                var_lbs.append(-cplex.infinity)
            else:
                var_lbs.append(value(var_data.lb))

            if (var_data.ub is None) or (var_data.ub == infinity):
                var_ubs.append(cplex.infinity)
            else:
                var_ubs.append(value(var_data.ub))

            if var_data.is_integer():
                var_types.append(self._active_cplex_instance.variables.type.integer)
                num_integer_variables += 1
            elif var_data.is_binary():
                var_types.append(self._active_cplex_instance.variables.type.binary)
                num_binary_variables += 1
            elif var_data.is_continuous():
                var_types.append(self._active_cplex_instance.variables.type.continuous)
                num_continuous_variables += 1
            else:
                raise TypeError("Invalid domain type for variable with name '%s'. "
                                "Variable is not continuous, integer, or binary.")

        self._active_cplex_instance.variables.add(names=var_names,
                                                  lb=var_lbs,
                                                  ub=var_ubs,
                                                  types=var_types)

        self._active_cplex_instance.variables.add(lb=[1],
                                                  ub=[1],
                                                  names=["ONE_VAR_CONSTANT"])

        self._cplex_variable_ids["ONE_VAR_CONSTANT"] = len(self._cplex_variable_ids)

        self._variable_symbol_map.addSymbols(var_label_pairs)
        self._cplex_variable_names = self._active_cplex_instance.variables.get_names()

        ########################################################
        # populate the standard constraints in the cplex model #
        ########################################################

        expressions = []
        senses = []
        rhss = []
        range_values = []
        names = []

        qexpressions = []
        qlinears = []
        qsenses = []
        qrhss = []
        qnames = []

        for block in pyomo_instance.block_data_objects(active=True):

            gen_con_canonical_repn = \
                getattr(block, "_gen_con_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for con in block.component_data_objects(Constraint,
                                                    active=True,
                                                    descend_into=False):

                if (con.lower is None) and \
                   (con.upper is None):
                    continue  # not binding at all, don't bother

                con_repn = None
                if isinstance(con, LinearCanonicalRepn):
                    con_repn = con
                else:
                    if gen_con_canonical_repn:
                        con_repn = generate_canonical_repn(con.body)
                        block_canonical_repn[con] = con_repn
                    else:
                        con_repn = block_canonical_repn[con]

                # There are conditions, e.g., when fixing variables, under which
                # a constraint block might be empty.  Ignore these, for both
                # practical reasons and the fact that the CPLEX LP format
                # requires a variable in the constraint body.  It is also
                # possible that the body of the constraint consists of only a
                # constant, in which case the "variable" of
                if isinstance(con_repn, LinearCanonicalRepn):
                    if (con_repn.linear is None) and \
                       self._skip_trivial_constraints:
                       continue
                else:
                    # we shouldn't come across a constant canonical repn
                    # that is not LinearCanonicalRepn
                    assert not canonical_is_constant(con_repn)

                name = self._symbol_map.getSymbol(con, labeler)
                expr = None
                qexpr = None
                quadratic = False
                if isinstance(con_repn, LinearCanonicalRepn):
                    expr, offset = \
                        self._encode_constraint_body_linear_specialized(con_repn,
                                                                        labeler,
                                                                        use_variable_names=False,
                                                                        cplex_variable_name_index_map=self._cplex_variable_ids)
                else:
                    degree = canonical_degree(con_repn)
                    if degree == 2:
                        quadratic = True
                    elif (degree != 0) or (degree != 1):
                        raise ValueError(
                            "CPLEXPersistent plugin does not support general nonlinear "
                            "constraint expression (only linear or quadratic).\n"
                            "Constraint: %s" % (con.cname(True)))
                    expr, offset = self._encode_constraint_body_linear(con_repn,
                                                                       labeler)

                if quadratic:
                    if expr is None:
                        expr = cplex.SparsePair(ind=[0],val=[0.0])
                    self._has_quadratic_constraints = True

                    qexpr = self._encode_constraint_body_quadratic(con_repn,labeler)
                    qnames.append(name)

                    if con.equality:
                        # equality constraint.
                        qsenses.append('E')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    elif (con.lower is not None) and (con.upper is not None):
                        raise RuntimeError(
                            "The CPLEXDirect plugin can not translate range "
                            "constraints containing quadratic expressions.")

                    elif con.lower is not None:
                        assert con.upper is None
                        qsenses.append('G')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    else:
                        qsenses.append('L')
                        qrhss.append(self._get_bound(con.upper) - offset)

                    qlinears.append(expr)
                    qexpressions.append(qexpr)

                else:
                    names.append(name)
                    expressions.append(expr)

                    if con.equality:
                        # equality constraint.
                        senses.append('E')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    elif (con.lower is not None) and (con.upper is not None):
                        # ranged constraint.
                        senses.append('R')
                        lower_bound = self._get_bound(con.lower) - offset
                        upper_bound = self._get_bound(con.upper) - offset
                        rhss.append(lower_bound)
                        range_values.append(upper_bound - lower_bound)

                    elif con.lower is not None:
                        senses.append('G')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    else:
                        senses.append('L')
                        rhss.append(self._get_bound(con.upper) - offset)
                        range_values.append(0.0)

        ###################################################
        # populate the SOS constraints in the cplex model #
        ###################################################

        # SOS constraints - largely taken from cpxlp.py so updates there,
        # should be applied here
        # TODO: Allow users to specify the variables coefficients for custom
        # branching/set orders - refer to cpxlp.py
        sosn = self._capabilities.sosn
        sos1 = self._capabilities.sos1
        sos2 = self._capabilities.sos2
        modelSOS = ModelSOS()
        for soscondata in pyomo_instance.component_data_objects(SOSConstraint,
                                                                active=True):
            level = soscondata.level
            if (level == 1 and not sos1) or \
               (level == 2 and not sos2) or \
               (level > 2 and not sosn):
                raise Exception("Solver does not support SOS level %s constraints"
                                % (level,))
            modelSOS.count_constraint(self._symbol_map,
                                      labeler,
                                      self._variable_symbol_map,
                                      soscondata)

        if modelSOS.sosType:
            for key in modelSOS.sosType:
                self._active_cplex_instance.SOS.add(type = modelSOS.sosType[key],
                                       name = modelSOS.sosName[key],
                                       SOS = [modelSOS.varnames[key],
                                              modelSOS.weights[key]])
                self._referenced_variable_ids.update(modelSOS.varids[key])
            used_sos_constraints = True

        self._active_cplex_instance.linear_constraints.add(
            lin_expr=expressions,
            senses=senses,
            rhs=rhss,
            range_values=range_values,
            names=names)

        for index in xrange(len(qexpressions)):
            self._active_cplex_instance.quadratic_constraints.add(
                lin_expr=qlinears[index],
                quad_expr=qexpressions[index],
                sense=qsenses[index],
                rhs=qrhss[index],
                name=qnames[index])

        #############################################
        # populate the objective in the cplex model #
        #############################################

        self.compile_objective(pyomo_instance)

        ################################################
        # populate the problem type in the cplex model #
        ################################################

        # This gets rid of the annoying "Freeing MIP data." message.
        def _filter_freeing_mip_data(val):
            if val.strip() == 'Freeing MIP data.':
                return ""
            return val
        self._active_cplex_instance.set_warning_stream(sys.stderr,
                                                       fn=_filter_freeing_mip_data)

        if (self._has_quadratic_objective is True) or \
           (self._has_quadratic_constraints is True):
            if (num_integer_variables > 0) or \
               (num_binary_variables > 0) or \
               (used_sos_constraints):
                if self._has_quadratic_constraints is True:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.MIQCP)
                else:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.MIQP)
            else:
                if self._has_quadratic_constraints is True:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.QCP)
                else:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.QP)
        elif (num_integer_variables > 0) or \
             (num_binary_variables > 0) or \
             (used_sos_constraints):
            self._active_cplex_instance.set_problem_type(
                self._active_cplex_instance.problem_type.MILP)
        else:
            self._active_cplex_instance.set_problem_type(
                self._active_cplex_instance.problem_type.LP)

        # restore the warning stream without our filter function
        self._active_cplex_instance.set_warning_stream(sys.stderr)
예제 #28
0
    def __call__(self, model, output_filename, solver_capability, io_options):

        # Make sure not to modify the user's dictionary, they may be
        # reusing it outside of this call
        io_options = dict(io_options)

        # NOTE: io_options is a simple dictionary of keyword-value
        #       pairs specific to this writer.
        symbolic_solver_labels = \
            io_options.pop("symbolic_solver_labels", False)
        labeler = io_options.pop("labeler", None)

        # How much effort do we want to put into ensuring the
        # LP file is written deterministically for a Pyomo model:
        #    0 : None
        #    1 : sort keys of indexed components (default)
        #    2 : sort keys AND sort names (over declaration order)
        file_determinism = io_options.pop("file_determinism", 1)

        sorter = SortComponents.unsorted
        if file_determinism >= 1:
            sorter = sorter | SortComponents.indices
            if file_determinism >= 2:
                sorter = sorter | SortComponents.alphabetical

        output_fixed_variable_bounds = \
            io_options.pop("output_fixed_variable_bounds", False)

        # Skip writing constraints whose body section is fixed (i.e.,
        # no variables)
        skip_trivial_constraints = \
            io_options.pop("skip_trivial_constraints", False)

        # Note: Baron does not allow specification of runtime
        #       option outside of this file, so we add support
        #       for them here
        solver_options = io_options.pop("solver_options", {})

        if len(io_options):
            raise ValueError(
                "ProblemWriter_baron_writer passed unrecognized io_options:\n\t"
                + "\n\t".join("%s = %s" % (k, v)
                              for k, v in iteritems(io_options)))

        if symbolic_solver_labels and (labeler is not None):
            raise ValueError("Baron problem writer: Using both the "
                             "'symbolic_solver_labels' and 'labeler' "
                             "I/O options is forbidden")

        # Make sure there are no strange ActiveComponents. The expression
        # walker will handle strange things in constraints later.
        model_ctypes = model.collect_ctypes(active=True)
        invalids = set()
        for t in (model_ctypes - valid_active_ctypes_minlp):
            if issubclass(t, ActiveComponent):
                invalids.add(t)
        if len(invalids):
            invalids = [t.__name__ for t in invalids]
            raise RuntimeError(
                "Unallowable active component(s) %s.\nThe BARON writer cannot "
                "export models with this component type." %
                ", ".join(invalids))

        if output_filename is None:
            output_filename = model.name + ".bar"

        output_file = open(output_filename, "w")

        # Process the options. Rely on baron to catch
        # and reset bad option values
        output_file.write("OPTIONS {\n")
        summary_found = False
        if len(solver_options):
            for key, val in iteritems(solver_options):
                if (key.lower() == 'summary'):
                    summary_found = True
                if key.endswith("Name"):
                    output_file.write(key + ": \"" + str(val) + "\";\n")
                else:
                    output_file.write(key + ": " + str(val) + ";\n")
        if not summary_found:
            # The 'summary option is defaulted to 0, so that no
            # summary file is generated in the directory where the
            # user calls baron. Check if a user explicitly asked for
            # a summary file.
            output_file.write("Summary: 0;\n")
        output_file.write("}\n\n")

        if symbolic_solver_labels:
            # Note that the Var and Constraint labelers must use the
            # same labeler, so that we can correctly detect name
            # collisions (which can arise when we truncate the labels to
            # the max allowable length.  BARON requires all identifiers
            # to start with a letter.  We will (randomly) choose "s_"
            # (for 'shortened')
            v_labeler = c_labeler = ShortNameLabeler(15,
                                                     prefix='s_',
                                                     suffix='_',
                                                     caseInsensitive=True,
                                                     legalRegex='^[a-zA-Z]')
        elif labeler is None:
            v_labeler = NumericLabeler('x')
            c_labeler = NumericLabeler('c')
        else:
            v_labeler = c_labeler = labeler

        symbol_map = SymbolMap()
        symbol_map.default_labeler = v_labeler
        #sm_bySymbol = symbol_map.bySymbol

        # Cache the list of model blocks so we don't have to call
        # model.block_data_objects() many many times, which is slow
        # for indexed blocks
        all_blocks_list = list(
            model.block_data_objects(active=True,
                                     sort=sorter,
                                     descend_into=True))
        active_components_data_var = {}
        #for block in all_blocks_list:
        #    tmp = active_components_data_var[id(block)] = \
        #          list(obj for obj in block.component_data_objects(Var,
        #                                                           sort=sorter,
        #                                                           descend_into=False))
        #    create_symbols_func(symbol_map, tmp, labeler)

        # GAH: Not sure this is necessary, and also it would break for
        #      non-mutable indexed params so I am commenting out for now.
        #for param_data in active_components_data(block, Param, sort=sorter):
        #instead of checking if param_data._mutable:
        #if not param_data.is_constant():
        #    create_symbol_func(symbol_map, param_data, labeler)

        #symbol_map_variable_ids = set(symbol_map.byObject.keys())
        #object_symbol_dictionary = symbol_map.byObject

        #
        # Go through the objectives and constraints and generate
        # the output so that we can obtain the set of referenced
        # variables.
        #
        equation_section_stream = StringIO()
        referenced_variable_ids, branching_priorities_suffixes = \
            self._write_equations_section(
                model,
                equation_section_stream,
                all_blocks_list,
                active_components_data_var,
                symbol_map,
                c_labeler,
                output_fixed_variable_bounds,
                skip_trivial_constraints,
                sorter)

        #
        # BINARY_VARIABLES, INTEGER_VARIABLES, POSITIVE_VARIABLES, VARIABLES
        #

        BinVars = []
        IntVars = []
        PosVars = []
        Vars = []
        for vid in referenced_variable_ids:
            name = symbol_map.byObject[vid]
            var_data = symbol_map.bySymbol[name]()

            if var_data.is_continuous():
                if var_data.has_lb() and (value(var_data.lb) >= 0):
                    TypeList = PosVars
                else:
                    TypeList = Vars
            elif var_data.is_binary():
                TypeList = BinVars
            elif var_data.is_integer():
                TypeList = IntVars
            else:
                assert False
            TypeList.append(name)

        if len(BinVars) > 0:
            BinVars.sort()
            output_file.write('BINARY_VARIABLES ')
            output_file.write(", ".join(BinVars))
            output_file.write(';\n\n')

        if len(IntVars) > 0:
            IntVars.sort()
            output_file.write('INTEGER_VARIABLES ')
            output_file.write(", ".join(IntVars))
            output_file.write(';\n\n')

        PosVars.append('ONE_VAR_CONST__')
        PosVars.sort()
        output_file.write('POSITIVE_VARIABLES ')
        output_file.write(", ".join(PosVars))
        output_file.write(';\n\n')

        if len(Vars) > 0:
            Vars.sort()
            output_file.write('VARIABLES ')
            output_file.write(", ".join(Vars))
            output_file.write(';\n\n')

        #
        # LOWER_BOUNDS
        #

        lbounds = {}
        for vid in referenced_variable_ids:
            name = symbol_map.byObject[vid]
            var_data = symbol_map.bySymbol[name]()

            if var_data.fixed:
                if output_fixed_variable_bounds:
                    var_data_lb = ftoa(var_data.value)
                else:
                    var_data_lb = None
            else:
                var_data_lb = None
                if var_data.has_lb():
                    var_data_lb = ftoa(var_data.lb)

            if var_data_lb is not None:
                name_to_output = symbol_map.getSymbol(var_data)
                lbounds[name_to_output] = '%s: %s;\n' % (name_to_output,
                                                         var_data_lb)

        if len(lbounds) > 0:
            output_file.write("LOWER_BOUNDS{\n")
            output_file.write("".join(lbounds[key]
                                      for key in sorted(lbounds.keys())))
            output_file.write("}\n\n")
        lbounds = None

        #
        # UPPER_BOUNDS
        #

        ubounds = {}
        for vid in referenced_variable_ids:
            name = symbol_map.byObject[vid]
            var_data = symbol_map.bySymbol[name]()

            if var_data.fixed:
                if output_fixed_variable_bounds:
                    var_data_ub = ftoa(var_data.value)
                else:
                    var_data_ub = None
            else:
                var_data_ub = None
                if var_data.has_ub():
                    var_data_ub = ftoa(var_data.ub)

            if var_data_ub is not None:
                name_to_output = symbol_map.getSymbol(var_data)
                ubounds[name_to_output] = '%s: %s;\n' % (name_to_output,
                                                         var_data_ub)

        if len(ubounds) > 0:
            output_file.write("UPPER_BOUNDS{\n")
            output_file.write("".join(ubounds[key]
                                      for key in sorted(ubounds.keys())))
            output_file.write("}\n\n")
        ubounds = None

        #
        # BRANCHING_PRIORITIES
        #

        # Specifying priorities requires that the pyomo model has established an
        # EXTERNAL, float suffix called 'branching_priorities' on the model
        # object, indexed by the relevant variable
        BranchingPriorityHeader = False
        for suffix in branching_priorities_suffixes:
            for var_data, priority in iteritems(suffix):
                if id(var_data) not in referenced_variable_ids:
                    continue
                if priority is not None:
                    if not BranchingPriorityHeader:
                        output_file.write('BRANCHING_PRIORITIES{\n')
                        BranchingPriorityHeader = True
                    name_to_output = symbol_map.getSymbol(var_data)
                    output_file.write(name_to_output + ': ' + str(priority) +
                                      ';\n')

        if BranchingPriorityHeader:
            output_file.write("}\n\n")

        #
        # Now write the objective and equations section
        #
        output_file.write(equation_section_stream.getvalue())

        #
        # STARTING_POINT
        #
        output_file.write('STARTING_POINT{\nONE_VAR_CONST__: 1;\n')
        tmp = {}
        for vid in referenced_variable_ids:
            name = symbol_map.byObject[vid]
            var_data = symbol_map.bySymbol[name]()

            starting_point = var_data.value
            if starting_point is not None:
                var_name = symbol_map.getSymbol(var_data)
                tmp[var_name] = "%s: %s;\n" % (var_name, ftoa(starting_point))

        output_file.write("".join(tmp[key] for key in sorted(tmp.keys())))
        output_file.write('}\n\n')

        output_file.close()

        return output_filename, symbol_map
예제 #29
0
파일: baron_writer.py 프로젝트: Pyomo/pyomo
    def __call__(self,
                 model,
                 output_filename,
                 solver_capability,
                 io_options):

        # Make sure not to modify the user's dictionary, they may be
        # reusing it outside of this call
        io_options = dict(io_options)

        # NOTE: io_options is a simple dictionary of keyword-value
        #       pairs specific to this writer.
        symbolic_solver_labels = \
            io_options.pop("symbolic_solver_labels", False)
        labeler = io_options.pop("labeler", None)

        # How much effort do we want to put into ensuring the
        # LP file is written deterministically for a Pyomo model:
        #    0 : None
        #    1 : sort keys of indexed components (default)
        #    2 : sort keys AND sort names (over declaration order)
        file_determinism = io_options.pop("file_determinism", 1)

        sorter = SortComponents.unsorted
        if file_determinism >= 1:
            sorter = sorter | SortComponents.indices
            if file_determinism >= 2:
                sorter = sorter | SortComponents.alphabetical

        output_fixed_variable_bounds = \
            io_options.pop("output_fixed_variable_bounds", False)

        # Skip writing constraints whose body section is fixed (i.e.,
        # no variables)
        skip_trivial_constraints = \
            io_options.pop("skip_trivial_constraints", False)

        # Note: Baron does not allow specification of runtime
        #       option outside of this file, so we add support
        #       for them here
        solver_options = io_options.pop("solver_options", {})

        if len(io_options):
            raise ValueError(
                "ProblemWriter_baron_writer passed unrecognized io_options:\n\t" +
                "\n\t".join("%s = %s" % (k,v) for k,v in iteritems(io_options)))

        if symbolic_solver_labels and (labeler is not None):
            raise ValueError("Baron problem writer: Using both the "
                             "'symbolic_solver_labels' and 'labeler' "
                             "I/O options is forbidden")

        # Make sure there are no strange ActiveComponents. The expression
        # walker will handle strange things in constraints later.
        model_ctypes = model.collect_ctypes(active=True)
        invalids = set()
        for t in (model_ctypes - valid_active_ctypes_minlp):
            if issubclass(t, ActiveComponent):
                invalids.add(t)
        if len(invalids):
            invalids = [t.__name__ for t in invalids]
            raise RuntimeError(
                "Unallowable active component(s) %s.\nThe BARON writer cannot "
                "export models with this component type." %
                ", ".join(invalids))

        if output_filename is None:
            output_filename = model.name + ".bar"

        output_file=open(output_filename, "w")

        # Process the options. Rely on baron to catch
        # and reset bad option values
        output_file.write("OPTIONS {\n")
        summary_found = False
        if len(solver_options):
            for key, val in iteritems(solver_options):
                if (key.lower() == 'summary'):
                    summary_found = True
                if key.endswith("Name"):
                    output_file.write(key+": \""+str(val)+"\";\n")
                else:
                    output_file.write(key+": "+str(val)+";\n")
        if not summary_found:
            # The 'summary option is defaulted to 0, so that no
            # summary file is generated in the directory where the
            # user calls baron. Check if a user explicitly asked for
            # a summary file.
            output_file.write("Summary: 0;\n")
        output_file.write("}\n\n")

        if symbolic_solver_labels:
            v_labeler = AlphaNumericTextLabeler()
            c_labeler = AlphaNumericTextLabeler()
        elif labeler is None:
            v_labeler = NumericLabeler('x')
            c_labeler = NumericLabeler('c')

        symbol_map = SymbolMap()
        symbol_map.default_labeler = v_labeler
        #sm_bySymbol = symbol_map.bySymbol

        # Cache the list of model blocks so we don't have to call
        # model.block_data_objects() many many times, which is slow
        # for indexed blocks
        all_blocks_list = list(model.block_data_objects(active=True,
                                                        sort=sorter,
                                                        descend_into=True))
        active_components_data_var = {}
        #for block in all_blocks_list:
        #    tmp = active_components_data_var[id(block)] = \
        #          list(obj for obj in block.component_data_objects(Var,
        #                                                           sort=sorter,
        #                                                           descend_into=False))
        #    create_symbols_func(symbol_map, tmp, labeler)

            # GAH: Not sure this is necessary, and also it would break for
            #      non-mutable indexed params so I am commenting out for now.
            #for param_data in active_components_data(block, Param, sort=sorter):
                #instead of checking if param_data._mutable:
                #if not param_data.is_constant():
                #    create_symbol_func(symbol_map, param_data, labeler)

        #symbol_map_variable_ids = set(symbol_map.byObject.keys())
        #object_symbol_dictionary = symbol_map.byObject

        #
        # Go through the objectives and constraints and generate
        # the output so that we can obtain the set of referenced
        # variables.
        #
        equation_section_stream = StringIO()
        referenced_variable_ids, branching_priorities_suffixes = \
            self._write_equations_section(
                model,
                equation_section_stream,
                all_blocks_list,
                active_components_data_var,
                symbol_map,
                c_labeler,
                output_fixed_variable_bounds,
                skip_trivial_constraints,
                sorter)

        #
        # BINARY_VARIABLES, INTEGER_VARIABLES, POSITIVE_VARIABLES, VARIABLES
        #

        BinVars = []
        IntVars = []
        PosVars = []
        Vars = []
        for vid in referenced_variable_ids:
            name = symbol_map.byObject[vid]
            var_data = symbol_map.bySymbol[name]()

            if var_data.is_continuous():
                if var_data.has_lb() and \
                   (self._get_bound(var_data.lb) >= 0):
                    TypeList = PosVars
                else:
                    TypeList = Vars
            elif var_data.is_binary():
                TypeList = BinVars
            elif var_data.is_integer():
                TypeList = IntVars
            else:
                assert False
            TypeList.append(name)

        if len(BinVars) > 0:
            BinVars.sort()
            output_file.write('BINARY_VARIABLES ')
            output_file.write(", ".join(BinVars))
            output_file.write(';\n\n')

        if len(IntVars) > 0:
            IntVars.sort()
            output_file.write('INTEGER_VARIABLES ')
            output_file.write(", ".join(IntVars))
            output_file.write(';\n\n')

        PosVars.append('ONE_VAR_CONST__')
        PosVars.sort()
        output_file.write('POSITIVE_VARIABLES ')
        output_file.write(", ".join(PosVars))
        output_file.write(';\n\n')

        if len(Vars) > 0:
            Vars.sort()
            output_file.write('VARIABLES ')
            output_file.write(", ".join(Vars))
            output_file.write(';\n\n')

        #
        # LOWER_BOUNDS
        #

        lbounds = {}
        for vid in referenced_variable_ids:
            name = symbol_map.byObject[vid]
            var_data = symbol_map.bySymbol[name]()

            if var_data.fixed:
                if output_fixed_variable_bounds:
                    var_data_lb = var_data.value
                else:
                    var_data_lb = None
            else:
                var_data_lb = None
                if var_data.has_lb():
                    var_data_lb = self._get_bound(var_data.lb)

            if var_data_lb is not None:
                name_to_output = symbol_map.getSymbol(var_data)
                lb_string_template = '%s: %'+self._precision_string+';\n'
                lbounds[name_to_output] = lb_string_template % (name_to_output, var_data_lb)

        if len(lbounds) > 0:
            output_file.write("LOWER_BOUNDS{\n")
            output_file.write("".join( lbounds[key] for key in sorted(lbounds.keys()) ) )
            output_file.write("}\n\n")
        lbounds = None

        #
        # UPPER_BOUNDS
        #

        ubounds = {}
        for vid in referenced_variable_ids:
            name = symbol_map.byObject[vid]
            var_data = symbol_map.bySymbol[name]()

            if var_data.fixed:
                if output_fixed_variable_bounds:
                    var_data_ub = var_data.value
                else:
                    var_data_ub = None
            else:
                var_data_ub = None
                if var_data.has_ub():
                    var_data_ub = self._get_bound(var_data.ub)

            if var_data_ub is not None:
                name_to_output = symbol_map.getSymbol(var_data)
                ub_string_template = '%s: %'+self._precision_string+';\n'
                ubounds[name_to_output] = ub_string_template % (name_to_output, var_data_ub)

        if len(ubounds) > 0:
            output_file.write("UPPER_BOUNDS{\n")
            output_file.write("".join( ubounds[key] for key in sorted(ubounds.keys()) ) )
            output_file.write("}\n\n")
        ubounds = None

        #
        # BRANCHING_PRIORITIES
        #

        # Specifying priorities requires that the pyomo model has established an
        # EXTERNAL, float suffix called 'branching_priorities' on the model
        # object, indexed by the relevant variable
        BranchingPriorityHeader = False
        for suffix in branching_priorities_suffixes:
            for var_data, priority in iteritems(suffix):
                if id(var_data) not in referenced_variable_ids:
                    continue
                if priority is not None:
                    if not BranchingPriorityHeader:
                        output_file.write('BRANCHING_PRIORITIES{\n')
                        BranchingPriorityHeader = True
                    name_to_output = symbol_map.getSymbol(var_data)
                    output_file.write(name_to_output+': '+str(priority)+';\n')

        if BranchingPriorityHeader:
            output_file.write("}\n\n")

        #
        # Now write the objective and equations section
        #
        output_file.write(equation_section_stream.getvalue())

        #
        # STARTING_POINT
        #
        output_file.write('STARTING_POINT{\nONE_VAR_CONST__: 1;\n')
        tmp = {}
        string_template = '%s: %'+self._precision_string+';\n'
        for vid in referenced_variable_ids:
            name = symbol_map.byObject[vid]
            var_data = symbol_map.bySymbol[name]()

            starting_point = var_data.value
            if starting_point is not None:
                var_name = symbol_map.getSymbol(var_data)
                tmp[var_name] = string_template % (var_name, starting_point)

        output_file.write("".join( tmp[key] for key in sorted(tmp.keys()) ))
        output_file.write('}\n\n')

        output_file.close()

        return output_filename, symbol_map
예제 #30
0
파일: cpxlp.py 프로젝트: qtothec/pyomo
    def _print_model_LP(self,
                        model,
                        output_file,
                        solver_capability,
                        labeler,
                        output_fixed_variable_bounds=False,
                        file_determinism=1,
                        row_order=None,
                        column_order=None,
                        skip_trivial_constraints=False,
                        force_objective_constant=False,
                        include_all_variable_bounds=False):

        symbol_map = SymbolMap()
        variable_symbol_map = SymbolMap()
        # NOTE: we use createSymbol instead of getSymbol because we
        #       know whether or not the symbol exists, and don't want
        #       to the overhead of error/duplicate checking.
        # cache frequently called functions
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias
        variable_label_pairs = []

        # populate the symbol map in a single pass.
        #objective_list, constraint_list, sosconstraint_list, variable_list \
        #    = self._populate_symbol_map(model,
        #                                symbol_map,
        #                                labeler,
        #                                variable_symbol_map,
        #                                file_determinism=file_determinism)
        sortOrder = SortComponents.unsorted
        if file_determinism >= 1:
            sortOrder = sortOrder | SortComponents.indices
            if file_determinism >= 2:
                sortOrder = sortOrder | SortComponents.alphabetical

        #
        # Create variable symbols (and cache the block list)
        #
        all_blocks = []
        variable_list = []
        for block in model.block_data_objects(active=True,
                                              sort=sortOrder):

            all_blocks.append(block)

            for vardata in block.component_data_objects(
                    Var,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                variable_list.append(vardata)
                variable_label_pairs.append(
                    (vardata,create_symbol_func(symbol_map,
                                                vardata,
                                                labeler)))

        variable_symbol_map.addSymbols(variable_label_pairs)

        # and extract the information we'll need for rapid labeling.
        object_symbol_dictionary = symbol_map.byObject
        variable_symbol_dictionary = variable_symbol_map.byObject

        # cache - these are called all the time.
        print_expr_canonical = self._print_expr_canonical

        # print the model name and the source, so we know roughly where
        # it came from.
        #
        # NOTE: this *must* use the "\* ... *\" comment format: the GLPK
        # LP parser does not correctly handle other formats (notably, "%").
        output_file.write(
            "\\* Source Pyomo model name=%s *\\\n\n" % (model.name,) )

        #
        # Objective
        #

        supports_quadratic_objective = \
            solver_capability('quadratic_objective')

        numObj = 0
        onames = []
        for block in all_blocks:

            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)

            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for objective_data in block.component_data_objects(
                    Objective,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                numObj += 1
                onames.append(objective_data.name)
                if numObj > 1:
                    raise ValueError(
                        "More than one active objective defined for input "
                        "model '%s'; Cannot write legal LP file\n"
                        "Objectives: %s" % (model.name, ' '.join(onames)))

                create_symbol_func(symbol_map,
                                   objective_data,
                                   labeler)

                symbol_map.alias(objective_data, '__default_objective__')
                if objective_data.is_minimizing():
                    output_file.write("min \n")
                else:
                    output_file.write("max \n")

                if gen_obj_canonical_repn:
                    canonical_repn = \
                        generate_canonical_repn(objective_data.expr)
                    block_canonical_repn[objective_data] = canonical_repn
                else:
                    canonical_repn = block_canonical_repn[objective_data]

                degree = canonical_degree(canonical_repn)

                if degree == 0:
                    logger.warning("Constant objective detected, replacing "
                          "with a placeholder to prevent solver failure.")
                    force_objective_constant = True
                elif degree == 2:
                    if not supports_quadratic_objective:
                        raise RuntimeError(
                            "Selected solver is unable to handle "
                            "objective functions with quadratic terms. "
                            "Objective at issue: %s."
                            % objective_data.name)
                elif degree != 1:
                    raise RuntimeError(
                        "Cannot write legal LP file.  Objective '%s' "
                        "has nonlinear terms that are not quadratic."
                        % objective_data.name)

                output_file.write(
                    object_symbol_dictionary[id(objective_data)]+':\n')

                offset = print_expr_canonical(
                    canonical_repn,
                    output_file,
                    object_symbol_dictionary,
                    variable_symbol_dictionary,
                    True,
                    column_order,
                    force_objective_constant=force_objective_constant)

        if numObj == 0:
            raise ValueError(
                "ERROR: No objectives defined for input model '%s'; "
                " cannot write legal LP file" % str(model.name))

        # Constraints
        #
        # If there are no non-trivial constraints, you'll end up with an empty
        # constraint block. CPLEX is OK with this, but GLPK isn't. And
        # eliminating the constraint block (i.e., the "s.t." line) causes GLPK
        # to whine elsewhere. Output a warning if the constraint block is empty,
        # so users can quickly determine the cause of the solve failure.

        output_file.write("\n")
        output_file.write("s.t.\n")
        output_file.write("\n")

        have_nontrivial = False

        supports_quadratic_constraint = solver_capability('quadratic_constraint')

        def constraint_generator():
            for block in all_blocks:

                gen_con_canonical_repn = \
                    getattr(block, "_gen_con_canonical_repn", True)

                # Get/Create the ComponentMap for the repn
                if not hasattr(block,'_canonical_repn'):
                    block._canonical_repn = ComponentMap()
                block_canonical_repn = block._canonical_repn

                for constraint_data in block.component_data_objects(
                        Constraint,
                        active=True,
                        sort=sortOrder,
                        descend_into=False):

                    if isinstance(constraint_data, LinearCanonicalRepn):
                        canonical_repn = constraint_data
                    else:
                        if gen_con_canonical_repn:
                            canonical_repn = generate_canonical_repn(constraint_data.body)
                            block_canonical_repn[constraint_data] = canonical_repn
                        else:
                            canonical_repn = block_canonical_repn[constraint_data]

                    yield constraint_data, canonical_repn

        if row_order is not None:
            sorted_constraint_list = list(constraint_generator())
            sorted_constraint_list.sort(key=lambda x: row_order[x[0]])
            def yield_all_constraints():
                for constraint_data, canonical_repn in sorted_constraint_list:
                    yield constraint_data, canonical_repn
        else:
            yield_all_constraints = constraint_generator

        # FIXME: This is a hack to get nested blocks working...
        eq_string_template = "= %"+self._precision_string+'\n'
        geq_string_template = ">= %"+self._precision_string+'\n\n'
        leq_string_template = "<= %"+self._precision_string+'\n\n'
        for constraint_data, canonical_repn in yield_all_constraints():
            have_nontrivial = True

            degree = canonical_degree(canonical_repn)

            #
            # Write constraint
            #

            # There are conditions, e.g., when fixing variables, under which
            # a constraint block might be empty.  Ignore these, for both
            # practical reasons and the fact that the CPLEX LP format
            # requires a variable in the constraint body.  It is also
            # possible that the body of the constraint consists of only a
            # constant, in which case the "variable" of
            if degree == 0:
                if skip_trivial_constraints:
                    continue
            elif degree == 2:
                if not supports_quadratic_constraint:
                    raise ValueError(
                        "Solver unable to handle quadratic expressions. Constraint"
                        " at issue: '%s'" % (constraint_data.name))
            elif degree != 1:
                raise ValueError(
                    "Cannot write legal LP file.  Constraint '%s' has a body "
                    "with nonlinear terms." % (constraint_data.name))

            # Create symbol
            con_symbol = create_symbol_func(symbol_map, constraint_data, labeler)

            if constraint_data.equality:
                label = 'c_e_' + con_symbol + '_'
                alias_symbol_func(symbol_map, constraint_data, label)
                output_file.write(label+':\n')
                offset = print_expr_canonical(canonical_repn,
                                              output_file,
                                              object_symbol_dictionary,
                                              variable_symbol_dictionary,
                                              False,
                                              column_order)
                bound = constraint_data.lower
                bound = self._get_bound(bound) - offset
                output_file.write(eq_string_template
                                  % (_no_negative_zero(bound)))
                output_file.write("\n")
            else:
                if constraint_data.lower is not None:
                    if constraint_data.upper is not None:
                        label = 'r_l_' + con_symbol + '_'
                    else:
                        label = 'c_l_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label+':\n')
                    offset = print_expr_canonical(canonical_repn,
                                                  output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False,
                                                  column_order)
                    bound = constraint_data.lower
                    bound = self._get_bound(bound) - offset
                    output_file.write(geq_string_template
                                      % (_no_negative_zero(bound)))
                if constraint_data.upper is not None:
                    if constraint_data.lower is not None:
                        label = 'r_u_' + con_symbol + '_'
                    else:
                        label = 'c_u_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label+':\n')
                    offset = print_expr_canonical(canonical_repn,
                                                  output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False,
                                                  column_order)
                    bound = constraint_data.upper
                    bound = self._get_bound(bound) - offset
                    output_file.write(leq_string_template
                                      % (_no_negative_zero(bound)))

        if not have_nontrivial:
            logger.warning('Empty constraint block written in LP format '  \
                  '- solver may error')

        # the CPLEX LP format doesn't allow constants in the objective (or
        # constraint body), which is a bit silly.  To avoid painful
        # book-keeping, we introduce the following "variable", constrained
        # to the value 1.  This is used when quadratic terms are present.
        # worst-case, if not used, is that CPLEX easily pre-processes it out.
        prefix = ""
        output_file.write('%sc_e_ONE_VAR_CONSTANT: \n' % prefix)
        output_file.write('%sONE_VAR_CONSTANT = 1.0\n' % prefix)
        output_file.write("\n")

        # SOS constraints
        #
        # For now, we write out SOS1 and SOS2 constraints in the cplex format
        #
        # All Component objects are stored in model._component, which is a
        # dictionary of {class: {objName: object}}.
        #
        # Consider the variable X,
        #
        #   model.X = Var(...)
        #
        # We print X to CPLEX format as X(i,j,k,...) where i, j, k, ... are the
        # indices of X.
        #
        SOSlines = StringIO()
        sos1 = solver_capability("sos1")
        sos2 = solver_capability("sos2")
        writtenSOS = False
        for block in all_blocks:

            for soscondata in block.component_data_objects(
                    SOSConstraint,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                create_symbol_func(symbol_map, soscondata, labeler)

                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise ValueError(
                        "Solver does not support SOS level %s constraints" % (level))
                if writtenSOS == False:
                    SOSlines.write("SOS\n")
                    writtenSOS = True
                # This updates the referenced_variable_ids, just in case
                # there is a variable that only appears in an
                # SOSConstraint, in which case this needs to be known
                # before we write the "bounds" section (Cplex does not
                # handle this correctly, Gurobi does)
                self.printSOS(symbol_map,
                              labeler,
                              variable_symbol_map,
                              soscondata,
                              SOSlines)

        #
        # Bounds
        #

        output_file.write("bounds\n")

        # Scan all variables even if we're only writing a subset of them.
        # required because we don't store maps by variable type currently.

        # FIXME: This is a hack to get nested blocks working...
        lb_string_template = "%"+self._precision_string+" <= "
        ub_string_template = " <= %"+self._precision_string+"\n"
        # Track the number of integer and binary variables, so you can
        # output their status later.
        integer_vars = []
        binary_vars = []
        for vardata in variable_list:

            # TODO: We could just loop over the set of items in
            #       self._referenced_variable_ids, except this is
            #       a dictionary that is hashed by id(vardata)
            #       which would make the bounds section
            #       nondeterministic (bad for unit testing)
            if (not include_all_variable_bounds) and \
               (id(vardata) not in self._referenced_variable_ids):
                continue

            if vardata.fixed:
                if not output_fixed_variable_bounds:
                    raise ValueError(
                        "Encountered a fixed variable (%s) inside an active "
                        "objective or constraint expression on model %s, which is "
                        "usually indicative of a preprocessing error. Use the "
                        "IO-option 'output_fixed_variable_bounds=True' to suppress "
                        "this error and fix the variable by overwriting its bounds "
                        "in the LP file." % (vardata.name, model.name))
                if vardata.value is None:
                    raise ValueError("Variable cannot be fixed to a value of None.")
                vardata_lb = value(vardata.value)
                vardata_ub = value(vardata.value)
            else:
                vardata_lb = self._get_bound(vardata.lb)
                vardata_ub = self._get_bound(vardata.ub)

            name_to_output = variable_symbol_dictionary[id(vardata)]

            # track the number of integer and binary variables, so we know whether
            # to output the general / binary sections below.
            if vardata.is_integer():
                integer_vars.append(name_to_output)
            elif vardata.is_binary():
                binary_vars.append(name_to_output)
            elif not vardata.is_continuous():
                raise TypeError("Invalid domain type for variable with name '%s'. "
                                "Variable is not continuous, integer, or binary."
                                % (vardata.name))

            # in the CPLEX LP file format, the default variable
            # bounds are 0 and +inf.  These bounds are in
            # conflict with Pyomo, which assumes -inf and +inf
            # (which we would argue is more rational).
            output_file.write("   ")
            if (vardata_lb is not None) and (vardata_lb != -infinity):
                output_file.write(lb_string_template
                                  % (_no_negative_zero(vardata_lb)))
            else:
                output_file.write(" -inf <= ")
            if name_to_output == "e":
                raise ValueError(
                    "Attempting to write variable with name 'e' in a CPLEX LP "
                    "formatted file will cause a parse failure due to confusion with "
                    "numeric values expressed in scientific notation")

            output_file.write(name_to_output)
            if (vardata_ub is not None) and (vardata_ub != infinity):
                output_file.write(ub_string_template
                                  % (_no_negative_zero(vardata_ub)))
            else:
                output_file.write(" <= +inf\n")

        if len(integer_vars) > 0:

            output_file.write("general\n")
            for var_name in integer_vars:
                output_file.write('  %s\n' % var_name)

        if len(binary_vars) > 0:

            output_file.write("binary\n")
            for var_name in binary_vars:
                output_file.write('  %s\n' % var_name)


        # Write the SOS section
        output_file.write(SOSlines.getvalue())

        #
        # wrap-up
        #
        output_file.write("end\n")

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints **Note**: warm start method may
        # rely on this for choosing the set of potential warm start
        # variables
        vars_to_delete = set(variable_symbol_map.byObject.keys()) - \
                         set(self._referenced_variable_ids.keys())
        sm_byObject = symbol_map.byObject
        sm_bySymbol = symbol_map.bySymbol
        var_sm_byObject = variable_symbol_map.byObject
        for varid in vars_to_delete:
            symbol = var_sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]
        del variable_symbol_map

        return symbol_map
예제 #31
0
class NLWriter(PersistentBase):
    def __init__(self):
        super(NLWriter, self).__init__()
        self._config = WriterConfig()
        self._writer = None
        self._symbol_map = SymbolMap()
        self._var_labeler = None
        self._con_labeler = None
        self._param_labeler = None
        self._pyomo_var_to_solver_var_map = dict()
        self._pyomo_con_to_solver_con_map = dict()
        self._solver_var_to_pyomo_var_map = dict()
        self._solver_con_to_pyomo_con_map = dict()
        self._pyomo_param_to_solver_param_map = dict()
        self._expr_types = None

    @property
    def config(self):
        return self._config

    @config.setter
    def config(self, val: WriterConfig):
        self._config = val

    @property
    def symbol_map(self):
        return self._symbol_map

    def set_instance(self, model):
        saved_config = self.config
        saved_update_config = self.update_config
        self.__init__()
        self.config = saved_config
        self.update_config = saved_update_config
        self._model = model
        self._expr_types = cmodel.PyomoExprTypes()

        if self.config.symbolic_solver_labels:
            self._var_labeler = TextLabeler()
            self._con_labeler = TextLabeler()
            self._param_labeler = TextLabeler()
        else:
            self._var_labeler = NumericLabeler('x')
            self._con_labeler = NumericLabeler('c')
            self._param_labeler = NumericLabeler('p')

        self._writer = cmodel.NLWriter()

        self.add_block(model)
        if self._objective is None:
            self.set_objective(None)
        self._set_pyomo_amplfunc_env()

    def _add_variables(self, variables: List[_GeneralVarData]):
        cmodel.process_pyomo_vars(self._expr_types, variables,
                                  self._pyomo_var_to_solver_var_map,
                                  self._pyomo_param_to_solver_param_map,
                                  self._vars,
                                  self._solver_var_to_pyomo_var_map, False,
                                  None, None, False)

    def _add_params(self, params: List[_ParamData]):
        cparams = cmodel.create_params(len(params))
        for ndx, p in enumerate(params):
            cp = cparams[ndx]
            cp.name = self._symbol_map.getSymbol(p, self._param_labeler)
            cp.value = p.value
            self._pyomo_param_to_solver_param_map[id(p)] = cp

    def _add_constraints(self, cons: List[_GeneralConstraintData]):
        cmodel.process_nl_constraints(self._writer, self._expr_types, cons,
                                      self._pyomo_var_to_solver_var_map,
                                      self._pyomo_param_to_solver_param_map,
                                      self._active_constraints,
                                      self._pyomo_con_to_solver_con_map,
                                      self._solver_con_to_pyomo_con_map)

    def _add_sos_constraints(self, cons: List[_SOSConstraintData]):
        if len(cons) != 0:
            raise NotImplementedError(
                'NL writer does not support SOS constraints')

    def _remove_constraints(self, cons: List[_GeneralConstraintData]):
        for c in cons:
            cc = self._pyomo_con_to_solver_con_map.pop(c)
            self._writer.remove_constraint(cc)
            self._con_labeler.remove_obj(c)
            del self._solver_con_to_pyomo_con_map[cc]

    def _remove_sos_constraints(self, cons: List[_SOSConstraintData]):
        if len(cons) != 0:
            raise NotImplementedError(
                'NL writer does not support SOS constraints')

    def _remove_variables(self, variables: List[_GeneralVarData]):
        for v in variables:
            cvar = self._pyomo_var_to_solver_var_map.pop(id(v))
            del self._solver_var_to_pyomo_var_map[cvar]
            # self._symbol_map.removeSymbol(v)
            self._var_labeler.remove_obj(v)

    def _remove_params(self, params: List[_ParamData]):
        for p in params:
            del self._pyomo_param_to_solver_param_map[id(p)]
            self._symbol_map.removeSymbol(p)
            self._param_labeler.remove_obj(p)

    def _update_variables(self, variables: List[_GeneralVarData]):
        cmodel.process_pyomo_vars(self._expr_types, variables,
                                  self._pyomo_var_to_solver_var_map,
                                  self._pyomo_param_to_solver_param_map,
                                  self._vars,
                                  self._solver_var_to_pyomo_var_map, False,
                                  None, None, True)

    def update_params(self):
        for p_id, p in self._params.items():
            cp = self._pyomo_param_to_solver_param_map[p_id]
            cp.value = p.value

    def _set_objective(self, obj: _GeneralObjectiveData):
        if obj is None:
            const = cmodel.Constant(0)
            lin_vars = list()
            lin_coef = list()
            nonlin = cmodel.Constant(0)
            sense = 0
        else:
            pyomo_expr_types = cmodel.PyomoExprTypes()
            repn = generate_standard_repn(obj.expr,
                                          compute_values=False,
                                          quadratic=False)
            const = cmodel.appsi_expr_from_pyomo_expr(
                repn.constant, self._pyomo_var_to_solver_var_map,
                self._pyomo_param_to_solver_param_map, pyomo_expr_types)
            lin_vars = [
                self._pyomo_var_to_solver_var_map[id(i)]
                for i in repn.linear_vars
            ]
            lin_coef = [
                cmodel.appsi_expr_from_pyomo_expr(
                    i, self._pyomo_var_to_solver_var_map,
                    self._pyomo_param_to_solver_param_map, pyomo_expr_types)
                for i in repn.linear_coefs
            ]
            if repn.nonlinear_expr is None:
                nonlin = cmodel.appsi_expr_from_pyomo_expr(
                    0, self._pyomo_var_to_solver_var_map,
                    self._pyomo_param_to_solver_param_map, pyomo_expr_types)
            else:
                nonlin = cmodel.appsi_expr_from_pyomo_expr(
                    repn.nonlinear_expr, self._pyomo_var_to_solver_var_map,
                    self._pyomo_param_to_solver_param_map, pyomo_expr_types)
            if obj.sense is minimize:
                sense = 0
            else:
                sense = 1
        cobj = cmodel.NLObjective(const, lin_coef, lin_vars, nonlin)
        cobj.sense = sense
        self._writer.objective = cobj

    def write(self,
              model: _BlockData,
              filename: str,
              timer: HierarchicalTimer = None):
        if timer is None:
            timer = HierarchicalTimer()
        if model is not self._model:
            timer.start('set_instance')
            self.set_instance(model)
            timer.stop('set_instance')
        else:
            timer.start('update')
            self.update(timer=timer)
            for cv, v in self._solver_var_to_pyomo_var_map.items():
                if v.value is not None:
                    cv.value = v.value
            timer.stop('update')
        timer.start('write file')
        self._writer.write(filename)
        timer.stop('write file')

    def update(self, timer: HierarchicalTimer = None):
        super(NLWriter, self).update(timer=timer)
        self._set_pyomo_amplfunc_env()

    def get_ordered_vars(self):
        return [
            self._solver_var_to_pyomo_var_map[i]
            for i in self._writer.get_solve_vars()
        ]

    def get_ordered_cons(self):
        return [
            self._solver_con_to_pyomo_con_map[i]
            for i in self._writer.get_solve_cons()
        ]

    def get_active_objective(self):
        return self._objective

    def _set_pyomo_amplfunc_env(self):
        if self._external_functions:
            external_Libs = OrderedSet()
            for con, ext_funcs in self._external_functions.items():
                external_Libs.update([i._fcn._library for i in ext_funcs])
            set_pyomo_amplfunc_env(external_Libs)
        elif "PYOMO_AMPLFUNC" in os.environ:
            del os.environ["PYOMO_AMPLFUNC"]
예제 #32
0
파일: mps.py 프로젝트: Juanlu001/pyomo
    def _print_model_MPS(self,
                         model,
                         output_file,
                         solver_capability,
                         labeler,
                         output_fixed_variable_bounds=False,
                         file_determinism=1,
                         row_order=None,
                         column_order=None,
                         skip_trivial_constraints=False,
                         force_objective_constant=False,
                         include_all_variable_bounds=False,
                         skip_objective_sense=False):

        symbol_map = SymbolMap()
        variable_symbol_map = SymbolMap()
        # NOTE: we use createSymbol instead of getSymbol because we
        #       know whether or not the symbol exists, and don't want
        #       to the overhead of error/duplicate checking.
        # cache frequently called functions
        extract_variable_coefficients = self._extract_variable_coefficients
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias
        variable_label_pairs = []

        sortOrder = SortComponents.unsorted
        if file_determinism >= 1:
            sortOrder = sortOrder | SortComponents.indices
            if file_determinism >= 2:
                sortOrder = sortOrder | SortComponents.alphabetical

        #
        # Create variable symbols (and cache the block list)
        #
        all_blocks = []
        variable_list = []
        for block in model.block_data_objects(active=True,
                                              sort=sortOrder):

            all_blocks.append(block)

            for vardata in block.component_data_objects(
                    Var,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                variable_list.append(vardata)
                variable_label_pairs.append(
                    (vardata,create_symbol_func(symbol_map,
                                                vardata,
                                                labeler)))

        variable_symbol_map.addSymbols(variable_label_pairs)

        # and extract the information we'll need for rapid labeling.
        object_symbol_dictionary = symbol_map.byObject
        variable_symbol_dictionary = variable_symbol_map.byObject

        # sort the variable ordering by the user
        # column_order ComponentMap
        if column_order is not None:
            variable_list.sort(key=lambda _x: column_order[_x])

        # prepare to hold the sparse columns
        variable_to_column = ComponentMap(
            (vardata, i) for i, vardata in enumerate(variable_list))
        # add one position for ONE_VAR_CONSTANT
        column_data = [[] for i in xrange(len(variable_list)+1)]
        quadobj_data = []
        quadmatrix_data = []
        # constraint rhs
        rhs_data = []

        # print the model name and the source, so we know
        # roughly where
        output_file.write("* Source:     Pyomo MPS Writer\n")
        output_file.write("* Format:     Free MPS\n")
        output_file.write("*\n")
        output_file.write("NAME %s\n" % (model.name,))

        #
        # ROWS section
        #

        objective_label = None
        numObj = 0
        onames = []
        for block in all_blocks:

            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)

            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn
            for objective_data in block.component_data_objects(
                    Objective,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                numObj += 1
                onames.append(objective_data.cname())
                if numObj > 1:
                    raise ValueError(
                        "More than one active objective defined for input "
                        "model '%s'; Cannot write legal MPS file\n"
                        "Objectives: %s" % (model.cname(True), ' '.join(onames)))

                objective_label = create_symbol_func(symbol_map,
                                                     objective_data,
                                                     labeler)

                symbol_map.alias(objective_data, '__default_objective__')
                if not skip_objective_sense:
                    output_file.write("OBJSENSE\n")
                    if objective_data.is_minimizing():
                        output_file.write(" MIN\n")
                    else:
                        output_file.write(" MAX\n")
                # This section is not recognized by the COIN-OR
                # MPS reader
                #output_file.write("OBJNAME\n")
                #output_file.write(" %s\n" % (objective_label))
                output_file.write("ROWS\n")
                output_file.write(" N  %s\n" % (objective_label))

                if gen_obj_canonical_repn:
                    canonical_repn = \
                        generate_canonical_repn(objective_data.expr)
                    block_canonical_repn[objective_data] = canonical_repn
                else:
                    canonical_repn = block_canonical_repn[objective_data]

                degree = canonical_degree(canonical_repn)
                if degree == 0:
                    print("Warning: Constant objective detected, replacing "
                          "with a placeholder to prevent solver failure.")
                    force_objective_constant = True
                elif (degree != 1) and (degree != 2):
                    raise RuntimeError(
                        "Cannot write legal MPS file. Objective '%s' "
                        "has nonlinear terms that are not quadratic."
                        % objective_data.cname(True))

                constant = extract_variable_coefficients(
                    objective_label,
                    canonical_repn,
                    column_data,
                    quadobj_data,
                    variable_to_column)
                if force_objective_constant or (constant != 0.0):
                    # ONE_VAR_CONSTANT
                    column_data[-1].append((objective_label, constant))

        if numObj == 0:
            raise ValueError(
                "Cannot write legal MPS file: No objective defined "
                "for input model '%s'." % str(model))
        assert objective_label is not None

        # Constraints
        def constraint_generator():
            for block in all_blocks:

                gen_con_canonical_repn = \
                    getattr(block, "_gen_con_canonical_repn", True)

                # Get/Create the ComponentMap for the repn
                if not hasattr(block,'_canonical_repn'):
                    block._canonical_repn = ComponentMap()
                block_canonical_repn = block._canonical_repn

                for constraint_data in block.component_data_objects(
                        Constraint,
                        active=True,
                        sort=sortOrder,
                        descend_into=False):

                    if isinstance(constraint_data, LinearCanonicalRepn):
                        canonical_repn = constraint_data
                    else:
                        if gen_con_canonical_repn:
                            canonical_repn = generate_canonical_repn(
                                constraint_data.body)
                            block_canonical_repn[constraint_data] = canonical_repn
                        else:
                            canonical_repn = block_canonical_repn[constraint_data]

                    yield constraint_data, canonical_repn

        if row_order is not None:
            sorted_constraint_list = list(constraint_generator())
            sorted_constraint_list.sort(key=lambda x: row_order[x[0]])
            def yield_all_constraints():
                for constraint_data, canonical_repn in sorted_constraint_list:
                    yield constraint_data, canonical_repn
        else:
            yield_all_constraints = constraint_generator

        for constraint_data, canonical_repn in yield_all_constraints():

            degree = canonical_degree(canonical_repn)

            # Write constraint
            if degree == 0:
                if skip_trivial_constraints:
                    continue
            elif (degree != 1) and (degree != 2):
                raise RuntimeError(
                    "Cannot write legal MPS file. Constraint '%s' "
                    "has nonlinear terms that are not quadratic."
                    % constraint_data.cname(True))

            # Create symbol
            con_symbol = create_symbol_func(symbol_map,
                                            constraint_data,
                                            labeler)

            if constraint_data.equality:
                label = 'c_e_' + con_symbol + '_'
                alias_symbol_func(symbol_map, constraint_data, label)
                output_file.write(" E  %s\n" % (label))
                offset = extract_variable_coefficients(
                    label,
                    canonical_repn,
                    column_data,
                    quadmatrix_data,
                    variable_to_column)
                bound = constraint_data.lower
                bound = self._get_bound(bound) - offset
                rhs_data.append((label, bound))
            else:
                if constraint_data.lower is not None:
                    if constraint_data.upper is not None:
                        label = 'r_l_' + con_symbol + '_'
                    else:
                        label = 'c_l_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(" G  %s\n" % (label))
                    offset = extract_variable_coefficients(
                        label,
                        canonical_repn,
                        column_data,
                        quadmatrix_data,
                        variable_to_column)
                    bound = constraint_data.lower
                    bound = self._get_bound(bound) - offset
                    rhs_data.append((label, bound))
                if constraint_data.upper is not None:
                    if constraint_data.lower is not None:
                        label = 'r_u_' + con_symbol + '_'
                    else:
                        label = 'c_u_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(" L  %s\n" % (label))
                    offset = extract_variable_coefficients(
                        label,
                        canonical_repn,
                        column_data,
                        quadmatrix_data,
                        variable_to_column)
                    bound = constraint_data.upper
                    bound = self._get_bound(bound) - offset
                    rhs_data.append((label, bound))

        if len(column_data[-1]) > 0:
            # ONE_VAR_CONSTANT = 1
            output_file.write(" E  c_e_ONE_VAR_CONSTANT\n")
            column_data[-1].append(("c_e_ONE_VAR_CONSTANT",1))
            rhs_data.append(("c_e_ONE_VAR_CONSTANT",1))

        #
        # COLUMNS section
        #
        column_template = "     %s %s %"+self._precision_string+"\n"
        output_file.write("COLUMNS\n")
        cnt = 0
        for vardata in variable_list:
            col_entries = column_data[variable_to_column[vardata]]
            cnt += 1
            if len(col_entries) > 0:
                var_label = variable_symbol_dictionary[id(vardata)]
                for i, (row_label, coef) in enumerate(col_entries):
                    output_file.write(column_template % (var_label,
                                                         row_label,
                                                         coef))
            elif include_all_variable_bounds:
                # the column is empty, so add a (0 * var)
                # term to the objective
                # * Note that some solvers (e.g., Gurobi)
                #   will accept an empty column as a line
                #   with just the column name. This doesn't
                #   seem to work for CPLEX 12.6, so I am
                #   doing it this way so that it will work for both
                var_label = variable_symbol_dictionary[id(vardata)]
                output_file.write(column_template % (var_label,
                                                     objective_label,
                                                     0))

        assert cnt == len(column_data)-1
        if len(column_data[-1]) > 0:
            col_entries = column_data[-1]
            var_label = "ONE_VAR_CONSTANT"
            for i, (row_label, coef) in enumerate(col_entries):
                output_file.write(column_template % (var_label,
                                                     row_label,
                                                     coef))

        #
        # RHS section
        #
        rhs_template = "     RHS %s %"+self._precision_string+"\n"
        output_file.write("RHS\n")
        for i, (row_label, rhs) in enumerate(rhs_data):
            output_file.write(rhs_template % (row_label, rhs))

        # SOS constraints
        SOSlines = StringIO()
        sos1 = solver_capability("sos1")
        sos2 = solver_capability("sos2")
        for block in all_blocks:

            for soscondata in block.component_data_objects(
                    SOSConstraint,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                create_symbol_func(symbol_map, soscondata, labeler)

                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise ValueError(
                        "Solver does not support SOS level %s constraints" % (level))
                # This updates the referenced_variable_ids, just in case
                # there is a variable that only appears in an
                # SOSConstraint, in which case this needs to be known
                # before we write the "bounds" section (Cplex does not
                # handle this correctly, Gurobi does)
                self._printSOS(symbol_map,
                               labeler,
                               variable_symbol_map,
                               soscondata,
                               SOSlines)

        #
        # BOUNDS section
        #
        entry_template = "%s %"+self._precision_string+"\n"
        output_file.write("BOUNDS\n")
        for vardata in variable_list:
            if include_all_variable_bounds or \
               (id(vardata) in self._referenced_variable_ids):
                var_label = variable_symbol_dictionary[id(vardata)]
                if vardata.fixed:
                    if not output_fixed_variable_bounds:
                        raise ValueError(
                            "Encountered a fixed variable (%s) inside an active "
                            "objective or constraint expression on model %s, which is "
                            "usually indicative of a preprocessing error. Use the "
                            "IO-option 'output_fixed_variable_bounds=True' to suppress "
                            "this error and fix the variable by overwriting its bounds "
                            "in the MPS file." % (vardata.cname(True), model.cname(True)))
                    if vardata.value is None:
                        raise ValueError("Variable cannot be fixed to a value of None.")
                    output_file.write((" FX BOUND "+entry_template)
                                      % (var_label, value(vardata.value)))
                    continue

                vardata_lb = self._get_bound(vardata.lb)
                vardata_ub = self._get_bound(vardata.ub)
                # Make it harder for -0 to show up in
                # the output. This makes file diffing
                # for test baselines slightly less
                # annoying
                if vardata_lb == 0:
                    vardata_lb = 0
                if vardata_ub == 0:
                    vardata_ub = 0
                unbounded_lb = (vardata_lb is None) or (vardata_lb == -infinity)
                unbounded_ub = (vardata_ub is None) or (vardata_ub == infinity)
                treat_as_integer = False
                if vardata.is_binary():
                    if (vardata_lb == 0) and (vardata_ub == 1):
                        output_file.write(" BV BOUND %s\n" % (var_label))
                        continue
                    else:
                        # so we can add bounds
                        treat_as_integer = True
                if treat_as_integer or vardata.is_integer():
                    # Indicating unbounded integers is tricky because
                    # the only way to indicate a variable is integer
                    # is using the bounds section. Thus, we signify
                    # infinity with a large number (10E20)
                    # * Note: Gurobi allows values like inf and -inf
                    #         but CPLEX 12.6 does not, so I am just
                    #         using a large value
                    if not unbounded_lb:
                        output_file.write((" LI BOUND "+entry_template)
                                          % (var_label, vardata_lb))
                    else:
                        output_file.write(" LI BOUND %s -10E20\n" % (var_label))
                    if not unbounded_ub:
                        output_file.write((" UI BOUND "+entry_template)
                                          % (var_label, vardata_ub))
                    else:
                        output_file.write(" UI BOUND %s 10E20\n" % (var_label))
                else:
                    assert vardata.is_continuous()
                    if unbounded_lb and unbounded_ub:
                        output_file.write(" FR BOUND %s\n" % (var_label))
                    else:
                        if not unbounded_lb:
                            output_file.write((" LO BOUND "+entry_template)
                                              % (var_label, vardata_lb))
                        else:
                            output_file.write(" MI BOUND %s\n" % (var_label))

                        if not unbounded_ub:
                            output_file.write((" UP BOUND "+entry_template)
                                              % (var_label, vardata_ub))

        #
        # SOS section
        #
        output_file.write(SOSlines.getvalue())

        # Formatting of the next two sections comes from looking
        # at Gurobi and Cplex output

        #
        # QUADOBJ section
        #
        if len(quadobj_data) > 0:
            assert len(quadobj_data) == 1
            # it looks like the COIN-OR MPS Reader only
            # recognizes QUADOBJ (Gurobi and Cplex seem to
            # be okay with this)
            output_file.write("QUADOBJ\n")
            #output_file.write("QMATRIX\n")
            label, quad_terms = quadobj_data[0]
            assert label == objective_label
            for (var1, var2), coef in sorted(quad_terms,
                                             key=lambda _x: (variable_to_column[_x[0][0]],
                                                             variable_to_column[_x[0][1]])):
                var1_label = variable_symbol_dictionary[id(var1)]
                var2_label = variable_symbol_dictionary[id(var2)]
                # Don't forget that a quadratic objective is always
                # assumed to be divided by 2
                if var1_label == var2_label:
                    output_file.write(column_template % (var1_label,
                                                         var2_label,
                                                         coef * 2))
                else:
                    # the matrix needs to be symmetric so split
                    # the coefficient (but remember it is divided by 2)
                    output_file.write(column_template % (var1_label,
                                                         var2_label,
                                                         coef))
                    output_file.write(column_template % (var2_label,
                                                         var1_label,
                                                         coef))

        #
        # QCMATRIX section
        #
        if len(quadmatrix_data) > 0:
            for row_label, quad_terms in quadmatrix_data:
                output_file.write("QCMATRIX    %s\n" % (row_label))
                for (var1, var2), coef in sorted(quad_terms,
                                                 key=lambda _x: (variable_to_column[_x[0][0]],
                                                                 variable_to_column[_x[0][1]])):
                    var1_label = variable_symbol_dictionary[id(var1)]
                    var2_label = variable_symbol_dictionary[id(var2)]
                    if var1_label == var2_label:
                        output_file.write(column_template % (var1_label,
                                                             var2_label,
                                                             coef))
                    else:
                        # the matrix needs to be symmetric so split
                        # the coefficient
                        output_file.write(column_template % (var1_label,
                                                             var2_label,
                                                             coef * 0.5))
                        output_file.write(column_template % (var2_label,
                                                             var1_label,
                                                             coef * 0.5))

        output_file.write("ENDATA\n")

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints **Note**: warm start method may
        # rely on this for choosing the set of potential warm start
        # variables
        vars_to_delete = set(variable_symbol_map.byObject.keys()) - \
                         set(self._referenced_variable_ids.keys())
        sm_byObject = symbol_map.byObject
        sm_bySymbol = symbol_map.bySymbol
        var_sm_byObject = variable_symbol_map.byObject
        for varid in vars_to_delete:
            symbol = var_sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]
        del variable_symbol_map

        return symbol_map
예제 #33
0
    def __init__(self, **kwds):
        OptSolver.__init__(self, **kwds)

        self._pyomo_model = None
        """The pyomo model being solved."""

        self._solver_model = None
        """The python instance of the solver model (e.g., the gurobipy Model instance)."""

        self._symbol_map = SymbolMap()
        """A symbol map used to map between pyomo components and their names used with the solver."""

        self._labeler = None
        """The labeler for creating names for the solver model components."""

        self._pyomo_var_to_solver_var_map = ComponentMap()
        """A dictionary mapping pyomo Var's to the solver variables."""

        self._pyomo_con_to_solver_con_map = ComponentMap()
        """A dictionary mapping pyomo constraints to solver constraints."""

        self._vars_referenced_by_con = ComponentMap()
        """A dictionary mapping constraints to a ComponentSet containt the pyomo variables referenced by that
        constraint. This is primarily needed for the persistent solvers. When a constraint is deleted, we need
        to decrement the number of times those variables are referenced (see self._referenced_variables)."""

        self._vars_referenced_by_obj = ComponentSet()
        """A set containing the pyomo variables referenced by that the objective.
        This is primarily needed for the persistent solvers. When a the objective is deleted, we need
        to decrement the number of times those variables are referenced (see self._referenced_variables)."""

        self._objective = None
        """The pyomo Objective object currently being used with the solver."""

        self.results = None
        """A results object return from the solve method."""

        self._skip_trivial_constraints = False
        """A bool. If True, then any constraints with a constant body will not be added to the solver model.
        Be careful with this. If a trivial constraint is skipped then that constraint cannot be removed from
        a persistent solver (an error will be raised if a user tries to remove a non-existent constraint)."""

        self._output_fixed_variable_bounds = False
        """A bool. If False then an error will be raised if a fixed variable is used in one of the solver constraints.
        This is useful for catching bugs. Ordinarily a fixed variable should appear as a constant value in the
        solver constraints. If True, then the error will not be raised."""

        self._python_api_exists = False
        """A bool indicating whether or not the python api is available for the specified solver."""

        self._version = None
        """The version of the solver."""

        self._version_major = None
        """The major version of the solver. For example, if using Gurobi 7.0.2, then _version_major is 7."""

        self._symbolic_solver_labels = False
        """A bool. If true then the solver components will be given names corresponding to the pyomo component names."""

        self._capabilites = Options()

        self._referenced_variables = ComponentMap()
        """dict: {var: count} where count is the number of constraints/objective referencing the var"""

        self._keepfiles = False
        """A bool. If True, then the solver log will be saved."""

        self._save_results = True
        """A bool. This is used for backwards compatability. If True, the solution will be loaded into the Solution
예제 #34
0
    def __call__(self, model, output_filename, solver_capability, io_options):

        # Make sure not to modify the user's dictionary, they may be
        # reusing it outside of this call
        io_options = dict(io_options)

        # NOTE: io_options is a simple dictionary of keyword-value
        #       pairs specific to this writer.
        symbolic_solver_labels = \
            io_options.pop("symbolic_solver_labels", False)
        labeler = io_options.pop("labeler", None)

        # How much effort do we want to put into ensuring the
        # LP file is written deterministically for a Pyomo model:
        #    0 : None
        #    1 : sort keys of indexed components (default)
        #    2 : sort keys AND sort names (over declaration order)
        file_determinism = io_options.pop("file_determinism", 1)

        sorter = SortComponents.unsorted
        if file_determinism >= 1:
            sorter = sorter | SortComponents.indices
            if file_determinism >= 2:
                sorter = sorter | SortComponents.alphabetical

        # TODO
        #output_fixed_variable_bounds = \
        #    io_options.pop("output_fixed_variable_bounds", False)

        # Skip writing constraints whose body section is fixed (i.e.,
        # no variables)
        skip_trivial_constraints = \
            io_options.pop("skip_trivial_constraints", False)

        # Note: Baron does not allow specification of runtime
        #       option outside of this file, so we add support
        #       for them here
        solver_options = io_options.pop("solver_options", {})

        if len(io_options):
            raise ValueError(
                "ProblemWriter_baron_writer passed unrecognized io_options:\n\t"
                + "\n\t".join("%s = %s" % (k, v)
                              for k, v in iteritems(io_options)))

        if symbolic_solver_labels and (labeler is not None):
            raise ValueError("Baron problem writer: Using both the "
                             "'symbolic_solver_labels' and 'labeler' "
                             "I/O options is forbidden")

        if output_filename is None:
            output_filename = model.name + ".bar"

        output_file = open(output_filename, "w")

        # Process the options. Rely on baron to catch
        # and reset bad option values
        output_file.write("OPTIONS {\n")
        summary_found = False
        if len(solver_options):
            for key, val in iteritems(solver_options):
                if (key.lower() == 'summary'):
                    summary_found = True
                if key.endswith("Name"):
                    output_file.write(key + ": \"" + str(val) + "\";\n")
                else:
                    output_file.write(key + ": " + str(val) + ";\n")
        if not summary_found:
            # The 'summary option is defaulted to 0, so that no
            # summary file is generated in the directory where the
            # user calls baron. Check if a user explicitly asked for
            # a summary file.
            output_file.write("Summary: 0;\n")
        output_file.write("}\n\n")

        if symbolic_solver_labels:
            labeler = AlphaNumTextLabeler()
        elif labeler is None:
            labeler = NumericLabeler('x')

        symbol_map = SymbolMap()
        sm_bySymbol = symbol_map.bySymbol
        referenced_variable_ids = set()

        #cache frequently called functions
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias

        # Cache the list of model blocks so we don't have to call
        # model.block_data_objects() many many times, which is slow
        # for indexed blocks
        all_blocks_list = list(
            model.block_data_objects(active=True,
                                     sort=sorter,
                                     descend_into=True))
        active_components_data_var = {}
        for block in all_blocks_list:
            tmp = active_components_data_var[id(block)] = \
                  list(obj for obj in block.component_data_objects(Var,
                                                                   active=True,
                                                                   sort=sorter,
                                                                   descend_into=False))
            create_symbols_func(symbol_map, tmp, labeler)

            # GAH: Not sure this is necessary, and also it would break for
            #      non-mutable indexed params so I am commenting out for now.
            #for param_data in active_components_data(block, Param, sort=sorter):
            #instead of checking if param_data._mutable:
            #if not param_data.is_constant():
            #    create_symbol_func(symbol_map, param_data, labeler)

        symbol_map_variable_ids = set(symbol_map.byObject.keys())
        object_symbol_dictionary = symbol_map.byObject

        def _skip_trivial(constraint_data):
            if skip_trivial_constraints:
                if isinstance(constraint_data, LinearCanonicalRepn):
                    if constraint_data.variables is None:
                        return True
                else:
                    if constraint_data.body.polynomial_degree() == 0:
                        return True
            return False

        #
        # Check for active suffixes to export
        #
        r_o_eqns = []
        c_eqns = []
        l_eqns = []
        branching_priorities_suffixes = []
        for block in all_blocks_list:
            for name, suffix in active_export_suffix_generator(block):
                if name == 'branching_priorities':
                    branching_priorities_suffixes.append(suffix)
                elif name == 'constraint_types':
                    for constraint_data, constraint_type in iteritems(suffix):
                        if not _skip_trivial(constraint_data):
                            if constraint_type.lower() == 'relaxationonly':
                                r_o_eqns.append(constraint_data)
                            elif constraint_type.lower() == 'convex':
                                c_eqns.append(constraint_data)
                            elif constraint_type.lower() == 'local':
                                l_eqns.append(constraint_data)
                            else:
                                raise ValueError(
                                    "A suffix '%s' contained an invalid value: %s\n"
                                    "Choices are: [relaxationonly, convex, local]"
                                    % (suffix.name, constraint_type))
                else:
                    raise ValueError(
                        "The BARON writer can not export suffix with name '%s'. "
                        "Either remove it from block '%s' or deactivate it." %
                        (block.name, name))

        non_standard_eqns = r_o_eqns + c_eqns + l_eqns

        # GAH 1/5/15: Substituting all non-alphanumeric characters for underscore
        #             in labeler so this manual update should no longer be needed
        #
        # If the text labeler is used, correct the labels to be
        # baron-allowed variable names
        # Change '(' and ')' to '__'
        # This way, for simple variable names like 'x(1_2)' --> 'x__1_2__'
        # FIXME: 7/21/14 This may break if users give variable names
        #        with two or more underscores together
        #if symbolic_solver_labels:
        #    for key,label in iteritems(object_symbol_dictionary):
        #        label = label.replace('(','___')
        #        object_symbol_dictionary[key] = label.replace(')','__')

        #
        # BINARY_VARIABLES, INTEGER_VARIABLES, POSITIVE_VARIABLES, VARIABLES
        #

        BinVars = []
        IntVars = []
        PosVars = []
        Vars = []
        for block in all_blocks_list:
            for var_data in active_components_data_var[id(block)]:

                if isinstance(var_data.domain, BooleanSet):
                    TypeList = BinVars
                elif isinstance(var_data.domain, IntegerSet):
                    TypeList = IntVars
                elif isinstance(var_data.domain, RealSet) and \
                     (var_data.lb is not None) and \
                     (var_data.lb >= 0):
                    TypeList = PosVars
                else:
                    TypeList = Vars

                var_name = object_symbol_dictionary[id(var_data)]
                #if len(var_name) > 15:
                #    logger.warning(
                #        "Variable symbol '%s' for variable %s exceeds maximum "
                #        "character limit for BARON. Solver may fail"
                #        % (var_name, var_data.name))

                TypeList.append(var_name)

        if len(BinVars) > 0:
            output_file.write('BINARY_VARIABLES ')
            for var_name in BinVars[:-1]:
                output_file.write(str(var_name) + ', ')
            output_file.write(str(BinVars[-1]) + ';\n\n')
        if len(IntVars) > 0:
            output_file.write('INTEGER_VARIABLES ')
            for var_name in IntVars[:-1]:
                output_file.write(str(var_name) + ', ')
            output_file.write(str(IntVars[-1]) + ';\n\n')

        output_file.write('POSITIVE_VARIABLES ')
        output_file.write('ONE_VAR_CONST__')
        for var_name in PosVars:
            output_file.write(', ' + str(var_name))
        output_file.write(';\n\n')

        if len(Vars) > 0:
            output_file.write('VARIABLES ')
            for var_name in Vars[:-1]:
                output_file.write(str(var_name) + ', ')
            output_file.write(str(Vars[-1]) + ';\n\n')

        #
        # LOWER_BOUNDS
        #

        LowerBoundHeader = False
        for block in all_blocks_list:
            for var_data in active_components_data_var[id(block)]:
                if var_data.fixed:
                    var_data_lb = var_data.value
                else:
                    var_data_lb = var_data.lb
                    if var_data_lb == -infinity:
                        var_data_lb = None

                if var_data_lb is not None:
                    if LowerBoundHeader is False:
                        output_file.write("LOWER_BOUNDS{\n")
                        LowerBoundHeader = True
                    name_to_output = object_symbol_dictionary[id(var_data)]
                    lb_string_template = '%s: %' + self._precision_string + ';\n'
                    output_file.write(lb_string_template %
                                      (name_to_output, var_data_lb))

        if LowerBoundHeader:
            output_file.write("}\n\n")

        #
        # UPPER_BOUNDS
        #

        UpperBoundHeader = False
        for block in all_blocks_list:
            for var_data in active_components_data_var[id(block)]:
                if var_data.fixed:
                    var_data_ub = var_data.value
                else:
                    var_data_ub = var_data.ub
                    if var_data_ub == infinity:
                        var_data_ub = None

                if var_data_ub is not None:
                    if UpperBoundHeader is False:
                        output_file.write("UPPER_BOUNDS{\n")
                        UpperBoundHeader = True
                    name_to_output = object_symbol_dictionary[id(var_data)]
                    ub_string_template = '%s: %' + self._precision_string + ';\n'
                    output_file.write(ub_string_template %
                                      (name_to_output, var_data_ub))

        if UpperBoundHeader:
            output_file.write("}\n\n")

        #
        # BRANCHING_PRIORITIES
        #

        # Specifyig priorities requires that the pyomo model has established an
        # EXTERNAL, float suffix called 'branching_priorities' on the model
        # object, indexed by the relevant variable
        BranchingPriorityHeader = False
        for suffix in branching_priorities_suffixes:
            for var_data, priority in iteritems(suffix):
                if priority is not None:
                    if not BranchingPriorityHeader:
                        output_file.write('BRANCHING_PRIORITIES{\n')
                        BranchingPriorityHeader = True
                    name_to_output = object_symbol_dictionary[id(var_data)]
                    output_file.write(name_to_output + ': ' + str(priority) +
                                      ';\n')

        if BranchingPriorityHeader:
            output_file.write("}\n\n")

        #
        # EQUATIONS
        #

        #Equation Declaration
        n_roeqns = len(r_o_eqns)
        n_ceqns = len(c_eqns)
        n_leqns = len(l_eqns)
        eqns = []

        # Alias the constraints by declaration order since Baron does not
        # include the constraint names in the solution file. It is important
        # that this alias not clash with any real constraint labels, hence
        # the use of the ".c<integer>" template. It is not possible to declare
        # a component having this type of name when using standard syntax.
        # There are ways to do it, but it is unlikely someone will.
        order_counter = 0
        alias_template = ".c%d"
        output_file.write('EQUATIONS ')
        output_file.write("c_e_FIX_ONE_VAR_CONST__")
        order_counter += 1
        for block in all_blocks_list:

            for constraint_data in block.component_data_objects(
                    Constraint, active=True, sort=sorter, descend_into=False):

                if (not _skip_trivial(constraint_data)) and \
                   (constraint_data not in non_standard_eqns):

                    eqns.append(constraint_data)

                    con_symbol = \
                        create_symbol_func(symbol_map, constraint_data, labeler)
                    assert not con_symbol.startswith('.')
                    assert con_symbol != "c_e_FIX_ONE_VAR_CONST__"

                    alias_symbol_func(symbol_map, constraint_data,
                                      alias_template % order_counter)
                    output_file.write(", " + str(con_symbol))
                    order_counter += 1

        output_file.write(";\n\n")

        if n_roeqns > 0:
            output_file.write('RELAXATION_ONLY_EQUATIONS ')
            for i, constraint_data in enumerate(r_o_eqns):
                con_symbol = create_symbol_func(symbol_map, constraint_data,
                                                labeler)
                assert not con_symbol.startswith('.')
                assert con_symbol != "c_e_FIX_ONE_VAR_CONST__"
                alias_symbol_func(symbol_map, constraint_data,
                                  alias_template % order_counter)
                if i == n_roeqns - 1:
                    output_file.write(str(con_symbol) + ';\n\n')
                else:
                    output_file.write(str(con_symbol) + ', ')
                order_counter += 1

        if n_ceqns > 0:
            output_file.write('CONVEX_EQUATIONS ')
            for i, constraint_data in enumerate(c_eqns):
                con_symbol = create_symbol_func(symbol_map, constraint_data,
                                                labeler)
                assert not con_symbol.startswith('.')
                assert con_symbol != "c_e_FIX_ONE_VAR_CONST__"
                alias_symbol_func(symbol_map, constraint_data,
                                  alias_template % order_counter)
                if i == n_ceqns - 1:
                    output_file.write(str(con_symbol) + ';\n\n')
                else:
                    output_file.write(str(con_symbol) + ', ')
                order_counter += 1

        if n_leqns > 0:
            output_file.write('LOCAL_EQUATIONS ')
            for i, constraint_data in enumerate(l_eqns):
                con_symbol = create_symbol_func(symbol_map, constraint_data,
                                                labeler)
                assert not con_symbol.startswith('.')
                assert con_symbol != "c_e_FIX_ONE_VAR_CONST__"
                alias_symbol_func(symbol_map, constraint_data,
                                  alias_template % order_counter)
                if i == n_leqns - 1:
                    output_file.write(str(con_symbol) + ';\n\n')
                else:
                    output_file.write(str(con_symbol) + ', ')
                order_counter += 1

        # Create a dictionary of baron variable names to match to the
        # strings that constraint.to_string() prints. An important
        # note is that the variable strings are padded by spaces so
        # that whole variable names are recognized, and simple
        # variable names are not identified inside longer names.
        # Example: ' x[1] ' -> ' x3 '
        #FIXME: 7/18/14 CLH: This may cause mistakes if spaces in
        #                    variable names are allowed
        vstring_to_bar_dict = {}
        pstring_to_bar_dict = {}
        for block in all_blocks_list:

            for var_data in active_components_data_var[id(block)]:
                variable_stream = StringIO()
                var_data.to_string(ostream=variable_stream, verbose=False)
                variable_string = variable_stream.getvalue()

                variable_string = ' ' + variable_string + ' '
                vstring_to_bar_dict[variable_string] = \
                    ' '+object_symbol_dictionary[id(var_data)]+' '

            for param in block.component_objects(Param, active=True):
                if param._mutable and param.is_indexed():
                    param_data_iter = \
                        (param_data for index, param_data in iteritems(param))
                elif not param.is_indexed():
                    param_data_iter = iter([param])
                else:
                    param_data_iter = iter([])

                for param_data in param_data_iter:
                    param_stream = StringIO()
                    param.to_string(ostream=param_stream, verbose=False)
                    param_string = param_stream.getvalue()

                    param_string = ' ' + param_string + ' '
                    pstring_to_bar_dict[param_string] = ' ' + str(
                        param_data()) + ' '

        # Equation Definition
        string_template = '%' + self._precision_string
        output_file.write('c_e_FIX_ONE_VAR_CONST__:  ONE_VAR_CONST__  == 1;\n')
        for constraint_data in itertools.chain(eqns, r_o_eqns, c_eqns, l_eqns):

            #########################
            #CLH: The section below is kind of a hack-y way to use
            #     the expr.to_string function to print
            #     expressions. A stream is created, writen to, and
            #     then the string is recovered and stored in
            #     eqn_body. Then the variable names are converted
            #     to match the variable names that are used in the
            #     bar file.

            # Fill in the body of the equation
            body_string_buffer = StringIO()

            constraint_data.body.to_string(ostream=body_string_buffer,
                                           verbose=False)
            eqn_body = body_string_buffer.getvalue()

            # First, pad the equation so that if there is a
            # variable name at the start or end of the equation,
            # it can still be identified as padded with spaces.

            # Second, change pyomo's ** to baron's ^, also with
            # padding so that variable can always be found with
            # space around them

            # Third, add more padding around multiplication. Pyomo
            # already has spaces between variable on variable
            # multiplication, but not for constants on variables
            eqn_body = ' ' + eqn_body + ' '
            eqn_body = eqn_body.replace('**', ' ^ ')
            eqn_body = eqn_body.replace('*', ' * ')

            #
            # FIXME: The following block of code is extremely inefficient.
            #        We are looping through every parameter and variable in
            #        the model each time we write a constraint expression.
            #
            ################################################
            vnames = [(variable_string, bar_string) for variable_string,
                      bar_string in iteritems(vstring_to_bar_dict)
                      if variable_string in eqn_body]
            for variable_string, bar_string in vnames:
                eqn_body = eqn_body.replace(variable_string, bar_string)
            for param_string, bar_string in iteritems(pstring_to_bar_dict):
                eqn_body = eqn_body.replace(param_string, bar_string)
            referenced_variable_ids.update(
                id(sm_bySymbol[bar_string.strip()]())
                for variable_string, bar_string in vnames)
            ################################################

            if len(vnames) == 0:
                assert not skip_trivial_constraints
                eqn_body += "+ 0 * ONE_VAR_CONST__ "

            # 7/29/14 CLH:
            #FIXME: Baron doesn't handle many of the
            #       intrinsic_functions available in pyomo. The
            #       error message given by baron is also very
            #       weak.  Either a function here to re-write
            #       unallowed expressions or a way to track solver
            #       capability by intrinsic_expression would be
            #       useful.
            ##########################

            con_symbol = object_symbol_dictionary[id(constraint_data)]
            output_file.write(str(con_symbol) + ': ')

            # Fill in the left and right hand side (constants) of
            #  the equations

            # Equality constraint
            if constraint_data.equality:
                eqn_lhs = ''
                eqn_rhs = ' == ' + \
                          str(string_template
                              % self._get_bound(constraint_data.upper))

            # Greater than constraint
            elif constraint_data.upper is None:
                eqn_rhs = ' >= ' + \
                          str(string_template
                              % self._get_bound(constraint_data.lower))
                eqn_lhs = ''

            # Less than constraint
            elif constraint_data.lower is None:
                eqn_rhs = ' <= ' + \
                          str(string_template
                              % self._get_bound(constraint_data.upper))
                eqn_lhs = ''

            # Double-sided constraint
            elif (constraint_data.upper is not None) and \
                 (constraint_data.lower is not None):
                eqn_lhs = str(string_template
                              % self._get_bound(constraint_data.lower)) + \
                          ' <= '
                eqn_rhs = ' <= ' + \
                          str(string_template
                              % self._get_bound(constraint_data.upper))

            eqn_string = eqn_lhs + eqn_body + eqn_rhs + ';\n'
            output_file.write(eqn_string)

        #
        # OBJECTIVE
        #

        output_file.write("\nOBJ: ")

        n_objs = 0
        for block in all_blocks_list:

            for objective_data in block.component_data_objects(
                    Objective, active=True, sort=sorter, descend_into=False):

                n_objs += 1
                if n_objs > 1:
                    raise ValueError(
                        "The BARON writer has detected multiple active "
                        "objective functions on model %s, but "
                        "currently only handles a single objective." %
                        (model.name))

                # create symbol
                create_symbol_func(symbol_map, objective_data, labeler)
                alias_symbol_func(symbol_map, objective_data,
                                  "__default_objective__")

                if objective_data.is_minimizing():
                    output_file.write("minimize ")
                else:
                    output_file.write("maximize ")

                #FIXME 7/18/14 See above, constraint writing
                #              section. Will cause problems if there
                #              are spaces in variables
                # Similar to the constraints section above, the
                # objective is generated from the expr.to_string
                # function.
                obj_stream = StringIO()
                objective_data.expr.to_string(ostream=obj_stream,
                                              verbose=False)

                obj_string = ' ' + obj_stream.getvalue() + ' '
                obj_string = obj_string.replace('**', ' ^ ')
                obj_string = obj_string.replace('*', ' * ')

                #
                # FIXME: The following block of code is extremely inefficient.
                #        We are looping through every parameter and variable in
                #        the model each time we write an expression.
                #
                ################################################
                vnames = [(variable_string, bar_string) for variable_string,
                          bar_string in iteritems(vstring_to_bar_dict)
                          if variable_string in obj_string]
                for variable_string, bar_string in vnames:
                    obj_string = obj_string.replace(variable_string,
                                                    bar_string)
                for param_string, bar_string in iteritems(pstring_to_bar_dict):
                    obj_string = obj_string.replace(param_string, bar_string)
                referenced_variable_ids.update(
                    id(sm_bySymbol[bar_string.strip()]())
                    for variable_string, bar_string in vnames)
                ################################################

        output_file.write(obj_string + ";\n\n")

        #
        # STARTING_POINT
        #
        output_file.write('STARTING_POINT{\nONE_VAR_CONST__: 1;\n')
        string_template = '%s: %' + self._precision_string + ';\n'
        for block in all_blocks_list:
            for var_data in active_components_data_var[id(block)]:
                starting_point = var_data.value
                if starting_point is not None:
                    var_name = object_symbol_dictionary[id(var_data)]
                    output_file.write(string_template %
                                      (var_name, starting_point))

        output_file.write('}\n\n')

        output_file.close()

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints
        vars_to_delete = symbol_map_variable_ids - referenced_variable_ids
        sm_byObject = symbol_map.byObject
        for varid in vars_to_delete:
            symbol = sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]

        del symbol_map_variable_ids
        del referenced_variable_ids

        return output_filename, symbol_map
예제 #35
0
class LPWriter(PersistentBase):
    def __init__(self):
        super(LPWriter, self).__init__()
        self._config = WriterConfig()
        self._writer = None
        self._symbol_map = SymbolMap()
        self._var_labeler = None
        self._con_labeler = None
        self._param_labeler = None
        self._obj_labeler = None
        self._pyomo_var_to_solver_var_map = dict()
        self._pyomo_con_to_solver_con_map = dict()
        self._solver_var_to_pyomo_var_map = dict()
        self._solver_con_to_pyomo_con_map = dict()
        self._pyomo_param_to_solver_param_map = dict()
        self._walker = PyomoToCModelWalker(
            self._pyomo_var_to_solver_var_map,
            self._pyomo_param_to_solver_param_map)

    @property
    def config(self):
        return self._config

    @config.setter
    def config(self, val: WriterConfig):
        self._config = val

    def set_instance(self, model):
        saved_config = self.config
        saved_update_config = self.update_config
        self.__init__()
        self.config = saved_config
        self.update_config = saved_update_config
        self._model = model

        if self.config.symbolic_solver_labels:
            self._var_labeler = TextLabeler()
            self._con_labeler = TextLabeler()
            self._param_labeler = TextLabeler()
            self._obj_labeler = TextLabeler()
        else:
            self._var_labeler = NumericLabeler('x')
            self._con_labeler = NumericLabeler('c')
            self._param_labeler = NumericLabeler('p')
            self._obj_labeler = NumericLabeler('obj')

        self._writer = cmodel.LPWriter()

        self.add_block(model)
        if self._objective is None:
            self.set_objective(None)

    def _add_variables(self, variables: List[_GeneralVarData]):
        cvars = cmodel.create_vars(len(variables))
        for ndx, v in enumerate(variables):
            cv = cvars[ndx]
            cv.name = self._symbol_map.getSymbol(v, self._var_labeler)
            if v.is_binary():
                cv.domain = 'binary'
            elif v.is_integer():
                cv.domain = 'integer'
            else:
                assert v.is_continuous(
                ), 'LP writer only supports continuous, binary, and integer variables'
                cv.domain = 'continuous'
            _, lb, ub, v_is_fixed, v_domain, v_value = self._vars[id(v)]
            if lb is not None:
                cv.lb = lb
            if ub is not None:
                cv.ub = ub
            if v_value is not None:
                cv.value = v_value
            if v_is_fixed:
                cv.fixed = True
            self._pyomo_var_to_solver_var_map[id(v)] = cv
            self._solver_var_to_pyomo_var_map[cv] = v

    def _add_params(self, params: List[_ParamData]):
        cparams = cmodel.create_params(len(params))
        for ndx, p in enumerate(params):
            cp = cparams[ndx]
            cp.name = self._symbol_map.getSymbol(p, self._param_labeler)
            cp.value = p.value
            self._pyomo_param_to_solver_param_map[id(p)] = cp

    def _add_constraints(self, cons: List[_GeneralConstraintData]):
        cmodel.process_lp_constraints(cons, self)

    def _add_sos_constraints(self, cons: List[_SOSConstraintData]):
        if len(cons) != 0:
            raise NotImplementedError(
                'LP writer does not yet support SOS constraints')

    def _remove_constraints(self, cons: List[_GeneralConstraintData]):
        for c in cons:
            cc = self._pyomo_con_to_solver_con_map.pop(c)
            self._writer.remove_constraint(cc)
            self._symbol_map.removeSymbol(c)
            self._con_labeler.remove_obj(c)
            del self._solver_con_to_pyomo_con_map[cc]

    def _remove_sos_constraints(self, cons: List[_SOSConstraintData]):
        if len(cons) != 0:
            raise NotImplementedError(
                'LP writer does not yet support SOS constraints')

    def _remove_variables(self, variables: List[_GeneralVarData]):
        for v in variables:
            cvar = self._pyomo_var_to_solver_var_map.pop(id(v))
            del self._solver_var_to_pyomo_var_map[cvar]
            self._symbol_map.removeSymbol(v)
            self._var_labeler.remove_obj(v)

    def _remove_params(self, params: List[_ParamData]):
        for p in params:
            del self._pyomo_param_to_solver_param_map[id(p)]
            self._symbol_map.removeSymbol(p)
            self._param_labeler.remove_obj(p)

    def update_variables(self, variables: List[_GeneralVarData]):
        for v in variables:
            cv = self._pyomo_var_to_solver_var_map[id(v)]
            if v.is_binary():
                cv.domain = 'binary'
            elif v.is_integer():
                cv.domain = 'integer'
            else:
                assert v.is_continuous(
                ), 'LP writer only supports continuous, binary, and integer variables'
                cv.domain = 'continuous'
            lb = value(v.lb)
            ub = value(v.ub)
            if lb is None:
                cv.lb = -cmodel.inf
            else:
                cv.lb = lb
            if ub is None:
                cv.ub = cmodel.inf
            else:
                cv.ub = ub
            if v.value is not None:
                cv.value = v.value
            if v.is_fixed():
                cv.fixed = True
            else:
                cv.fixed = False

    def update_params(self):
        for p_id, p in self._params.items():
            cp = self._pyomo_param_to_solver_param_map[p_id]
            cp.value = p.value

    def _set_objective(self, obj: _GeneralObjectiveData):
        if obj is None:
            const = cmodel.Constant(0)
            lin_coef = list()
            lin_vars = list()
            quad_coef = list()
            quad_vars_1 = list()
            quad_vars_2 = list()
            sense = 0
        else:
            repn = generate_standard_repn(obj.expr,
                                          compute_values=False,
                                          quadratic=True)
            const = self._walker.dfs_postorder_stack(repn.constant)
            lin_coef = [
                self._walker.dfs_postorder_stack(i) for i in repn.linear_coefs
            ]
            lin_vars = [
                self._pyomo_var_to_solver_var_map[id(i)]
                for i in repn.linear_vars
            ]
            quad_coef = [
                self._walker.dfs_postorder_stack(i)
                for i in repn.quadratic_coefs
            ]
            quad_vars_1 = [
                self._pyomo_var_to_solver_var_map[id(i[0])]
                for i in repn.quadratic_vars
            ]
            quad_vars_2 = [
                self._pyomo_var_to_solver_var_map[id(i[1])]
                for i in repn.quadratic_vars
            ]
            if obj.sense is minimize:
                sense = 0
            else:
                sense = 1
        cobj = cmodel.LPObjective(const, lin_coef, lin_vars, quad_coef,
                                  quad_vars_1, quad_vars_2)
        cobj.sense = sense
        if obj is None:
            cname = 'objective'
        else:
            cname = self._symbol_map.getSymbol(obj, self._obj_labeler)
        cobj.name = cname
        self._writer.objective = cobj

    def write(self,
              model: _BlockData,
              filename: str,
              timer: HierarchicalTimer = None):
        if timer is None:
            timer = HierarchicalTimer()
        if model is not self._model:
            timer.start('set_instance')
            self.set_instance(model)
            timer.stop('set_instance')
        else:
            timer.start('update')
            self.update(timer=timer)
            timer.stop('update')
        timer.start('write file')
        self._writer.write(filename)
        timer.stop('write file')

    def get_vars(self):
        return [
            self._solver_var_to_pyomo_var_map[i]
            for i in self._writer.get_solve_vars()
        ]

    def get_ordered_cons(self):
        return [
            self._solver_con_to_pyomo_con_map[i]
            for i in self._writer.get_solve_cons()
        ]

    def get_active_objective(self):
        return self._objective

    @property
    def symbol_map(self):
        return self._symbol_map
예제 #36
0
    def _populate_gurobi_instance(self, pyomo_instance):

        from pyomo.core.base import Var, Objective, Constraint, SOSConstraint
        from pyomo.repn import LinearCanonicalRepn, canonical_degree

        try:
            grbmodel = Model(name=pyomo_instance.name)
        except Exception:
            e = sys.exc_info()[1]
            msg = 'Unable to create Gurobi model.  Have you installed the Python'\
            '\n       bindings for Gurobi?\n\n\tError message: %s'
            raise Exception(msg % e)

        if self._symbolic_solver_labels:
            labeler = TextLabeler()
        else:
            labeler = NumericLabeler('x')
        # cache to avoid dictionary getitem calls in the loops below.
        self_symbol_map = self._symbol_map = SymbolMap()
        pyomo_instance.solutions.add_symbol_map(self_symbol_map)
        self._smap_id = id(self_symbol_map)

        # we use this when iterating over the constraints because it
        # will have a much smaller hash table, we also use this for
        # the warm start code after it is cleaned to only contain
        # variables referenced in the constraints
        self_variable_symbol_map = self._variable_symbol_map = SymbolMap()
        var_symbol_pairs = []

        # maps _VarData labels to the corresponding Gurobi variable object
        pyomo_gurobi_variable_map = {}

        self._referenced_variable_ids.clear()

        # cache to avoid dictionary getitem calls in the loop below.
        grb_infinity = GRB.INFINITY

        for var_value in pyomo_instance.component_data_objects(Var,
                                                               active=True):

            lb = -grb_infinity
            ub = grb_infinity

            if (var_value.lb is not None) and (var_value.lb != -infinity):
                lb = value(var_value.lb)
            if (var_value.ub is not None) and (var_value.ub != infinity):
                ub = value(var_value.ub)

            # _VarValue objects will not be in the symbol map yet, so
            # avoid some checks.
            var_value_label = self_symbol_map.createSymbol(var_value, labeler)
            var_symbol_pairs.append((var_value, var_value_label))

            # be sure to impart the integer and binary nature of any variables
            if var_value.is_integer():
                var_type = GRB.INTEGER
            elif var_value.is_binary():
                var_type = GRB.BINARY
            elif var_value.is_continuous():
                var_type = GRB.CONTINUOUS
            else:
                raise TypeError(
                    "Invalid domain type for variable with name '%s'. "
                    "Variable is not continuous, integer, or binary.")

            pyomo_gurobi_variable_map[var_value_label] = \
                grbmodel.addVar(lb=lb, \
                                ub=ub, \
                                vtype=var_type, \
                                name=var_value_label)

        self_variable_symbol_map.addSymbols(var_symbol_pairs)

        grbmodel.update()

        # The next loop collects the following component types from the model:
        #  - SOSConstraint
        #  - Objective
        #  - Constraint
        sos1 = self._capabilities.sos1
        sos2 = self._capabilities.sos2
        modelSOS = ModelSOS()
        objective_cntr = 0
        # Track the range constraints and their associated variables added by gurobi
        self._last_native_var_idx = grbmodel.NumVars - 1
        range_var_idx = grbmodel.NumVars
        _self_range_con_var_pairs = self._range_con_var_pairs = []
        for block in pyomo_instance.block_data_objects(active=True):

            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)
            gen_con_canonical_repn = \
                getattr(block, "_gen_con_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block, '_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            # SOSConstraints
            for soscondata in block.component_data_objects(SOSConstraint,
                                                           active=True,
                                                           descend_into=False):
                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise RuntimeError(
                        "Solver does not support SOS level %s constraints" %
                        (level, ))
                modelSOS.count_constraint(self_symbol_map, labeler,
                                          self_variable_symbol_map,
                                          pyomo_gurobi_variable_map,
                                          soscondata)

            # Objective
            for obj_data in block.component_data_objects(Objective,
                                                         active=True,
                                                         descend_into=False):

                if objective_cntr > 1:
                    raise ValueError(
                        "Multiple active objectives found on Pyomo instance '%s'. "
                        "Solver '%s' will only handle a single active objective" \
                        % (pyomo_instance.cname(True), self.type))

                sense = GRB_MIN if (obj_data.is_minimizing()) else GRB_MAX
                grbmodel.ModelSense = sense
                obj_expr = LinExpr()

                if gen_obj_canonical_repn:
                    obj_repn = generate_canonical_repn(obj_data.expr)
                    block_canonical_repn[obj_data] = obj_repn
                else:
                    obj_repn = block_canonical_repn[obj_data]

                if isinstance(obj_repn, LinearCanonicalRepn):

                    if obj_repn.constant != None:
                        obj_expr.addConstant(obj_repn.constant)

                    if obj_repn.linear != None:

                        for i in xrange(len(obj_repn.linear)):
                            var_coefficient = obj_repn.linear[i]
                            var_value = obj_repn.variables[i]
                            self._referenced_variable_ids.add(id(var_value))
                            label = self_variable_symbol_map.getSymbol(
                                var_value)
                            obj_expr.addTerms(var_coefficient,
                                              pyomo_gurobi_variable_map[label])
                else:

                    if 0 in obj_repn:  # constant term
                        obj_expr.addConstant(obj_repn[0][None])

                    if 1 in obj_repn:  # first-order terms
                        hash_to_variable_map = obj_repn[-1]
                        for var_hash, var_coefficient in iteritems(
                                obj_repn[1]):
                            vardata = hash_to_variable_map[var_hash]
                            self._referenced_variable_ids.add(id(vardata))
                            label = self_variable_symbol_map.getSymbol(vardata)
                            obj_expr.addTerms(var_coefficient,
                                              pyomo_gurobi_variable_map[label])

                    if 2 in obj_repn:
                        obj_expr = QuadExpr(obj_expr)
                        hash_to_variable_map = obj_repn[-1]
                        for quad_repn, coef in iteritems(obj_repn[2]):
                            gurobi_expr = QuadExpr(coef)
                            for var_hash, exponent in iteritems(quad_repn):
                                vardata = hash_to_variable_map[var_hash]
                                self._referenced_variable_ids.add(id(vardata))
                                gurobi_var = pyomo_gurobi_variable_map\
                                             [self_variable_symbol_map.\
                                              getSymbol(vardata)]
                                gurobi_expr *= gurobi_var
                                if exponent == 2:
                                    gurobi_expr *= gurobi_var
                            obj_expr += gurobi_expr

                    degree = canonical_degree(obj_repn)
                    if (degree is None) or (degree > 2):
                        raise ValueError(
                            "gurobi_direct plugin does not support general nonlinear "
                            "objective expressions (only linear or quadratic).\n"
                            "Objective: %s" % (obj_data.cname(True)))

                # need to cache the objective label, because the
                # GUROBI python interface doesn't track this.
                # _ObjectiveData objects will not be in the symbol map
                # yet, so avoid some checks.
                self._objective_label = \
                    self_symbol_map.createSymbol(obj_data, labeler)

                grbmodel.setObjective(obj_expr, sense=sense)

            # Constraint
            for constraint_data in block.component_data_objects(
                    Constraint, active=True, descend_into=False):

                if (constraint_data.lower is None) and \
                   (constraint_data.upper is None):
                    continue  # not binding at all, don't bother

                con_repn = None
                if isinstance(constraint_data, LinearCanonicalRepn):
                    con_repn = constraint_data
                else:
                    if gen_con_canonical_repn:
                        con_repn = generate_canonical_repn(
                            constraint_data.body)
                        block_canonical_repn[constraint_data] = con_repn
                    else:
                        con_repn = block_canonical_repn[constraint_data]

                offset = 0.0
                # _ConstraintData objects will not be in the symbol
                # map yet, so avoid some checks.
                constraint_label = \
                    self_symbol_map.createSymbol(constraint_data, labeler)

                trivial = False
                if isinstance(con_repn, LinearCanonicalRepn):

                    #
                    # optimization (these might be generated on the fly)
                    #
                    constant = con_repn.constant
                    coefficients = con_repn.linear
                    variables = con_repn.variables

                    if constant is not None:
                        offset = constant
                    expr = LinExpr() + offset

                    if coefficients is not None:

                        linear_coefs = list()
                        linear_vars = list()

                        for i in xrange(len(coefficients)):

                            var_coefficient = coefficients[i]
                            var_value = variables[i]
                            self._referenced_variable_ids.add(id(var_value))
                            label = self_variable_symbol_map.getSymbol(
                                var_value)
                            linear_coefs.append(var_coefficient)
                            linear_vars.append(
                                pyomo_gurobi_variable_map[label])

                        expr += LinExpr(linear_coefs, linear_vars)

                    else:

                        trivial = True

                else:

                    if 0 in con_repn:
                        offset = con_repn[0][None]
                    expr = LinExpr() + offset

                    if 1 in con_repn:  # first-order terms

                        linear_coefs = list()
                        linear_vars = list()

                        hash_to_variable_map = con_repn[-1]
                        for var_hash, var_coefficient in iteritems(
                                con_repn[1]):
                            var = hash_to_variable_map[var_hash]
                            self._referenced_variable_ids.add(id(var))
                            label = self_variable_symbol_map.getSymbol(var)
                            linear_coefs.append(var_coefficient)
                            linear_vars.append(
                                pyomo_gurobi_variable_map[label])

                        expr += LinExpr(linear_coefs, linear_vars)

                    if 2 in con_repn:  # quadratic constraint
                        if _GUROBI_VERSION_MAJOR < 5:
                            raise ValueError(
                                "The gurobi_direct plugin does not handle quadratic "
                                "constraint expressions for Gurobi major versions "
                                "< 5. Current version: Gurobi %s.%s%s" %
                                (gurobi.version()))

                        expr = QuadExpr(expr)
                        hash_to_variable_map = con_repn[-1]
                        for quad_repn, coef in iteritems(con_repn[2]):
                            gurobi_expr = QuadExpr(coef)
                            for var_hash, exponent in iteritems(quad_repn):
                                vardata = hash_to_variable_map[var_hash]
                                self._referenced_variable_ids.add(id(vardata))
                                gurobi_var = pyomo_gurobi_variable_map\
                                             [self_variable_symbol_map.\
                                              getSymbol(vardata)]
                                gurobi_expr *= gurobi_var
                                if exponent == 2:
                                    gurobi_expr *= gurobi_var
                            expr += gurobi_expr

                    degree = canonical_degree(con_repn)
                    if (degree is None) or (degree > 2):
                        raise ValueError(
                            "gurobi_direct plugin does not support general nonlinear "
                            "constraint expressions (only linear or quadratic).\n"
                            "Constraint: %s" % (constraint_data.cname(True)))

                if (not trivial) or (not self._skip_trivial_constraints):

                    if constraint_data.equality:
                        sense = GRB.EQUAL
                        bound = self._get_bound(constraint_data.lower)
                        grbmodel.addConstr(lhs=expr,
                                           sense=sense,
                                           rhs=bound,
                                           name=constraint_label)
                    else:
                        # L <= body <= U
                        if (constraint_data.upper is not None) and \
                           (constraint_data.lower is not None):
                            grb_con = grbmodel.addRange(
                                expr, self._get_bound(constraint_data.lower),
                                self._get_bound(constraint_data.upper),
                                constraint_label)
                            _self_range_con_var_pairs.append(
                                (grb_con, range_var_idx))
                            range_var_idx += 1
                        # body <= U
                        elif constraint_data.upper is not None:
                            bound = self._get_bound(constraint_data.upper)
                            if bound < float('inf'):
                                grbmodel.addConstr(lhs=expr,
                                                   sense=GRB.LESS_EQUAL,
                                                   rhs=bound,
                                                   name=constraint_label)
                        # L <= body
                        else:
                            bound = self._get_bound(constraint_data.lower)
                            if bound > -float('inf'):
                                grbmodel.addConstr(lhs=expr,
                                                   sense=GRB.GREATER_EQUAL,
                                                   rhs=bound,
                                                   name=constraint_label)

        if modelSOS.sosType:
            for key in modelSOS.sosType:
                grbmodel.addSOS(modelSOS.sosType[key], \
                                modelSOS.varnames[key], \
                                modelSOS.weights[key] )
                self._referenced_variable_ids.update(modelSOS.varids[key])

        for var_id in self._referenced_variable_ids:
            varname = self._variable_symbol_map.byObject[var_id]
            vardata = self._variable_symbol_map.bySymbol[varname]()
            if vardata.fixed:
                if not self._output_fixed_variable_bounds:
                    raise ValueError(
                        "Encountered a fixed variable (%s) inside an active objective "
                        "or constraint expression on model %s, which is usually indicative of "
                        "a preprocessing error. Use the IO-option 'output_fixed_variable_bounds=True' "
                        "to suppress this error and fix the variable by overwriting its bounds in "
                        "the Gurobi instance." % (
                            vardata.cname(True),
                            pyomo_instance.cname(True),
                        ))

                grbvar = pyomo_gurobi_variable_map[varname]
                grbvar.setAttr(GRB.Attr.UB, vardata.value)
                grbvar.setAttr(GRB.Attr.LB, vardata.value)

        grbmodel.update()

        self._gurobi_instance = grbmodel
        self._pyomo_gurobi_variable_map = pyomo_gurobi_variable_map
예제 #37
0
    def __call__(self, model, output_filename, solver_capability, io_options):

        # Make sure not to modify the user's dictionary, they may be
        # reusing it outside of this call
        io_options = dict(io_options)

        # NOTE: io_options is a simple dictionary of keyword-value
        #       pairs specific to this writer.
        symbolic_solver_labels = \
            io_options.pop("symbolic_solver_labels", False)
        labeler = io_options.pop("labeler", None)

        # How much effort do we want to put into ensuring the
        # LP file is written deterministically for a Pyomo model:
        #    0 : None
        #    1 : sort keys of indexed components (default)
        #    2 : sort keys AND sort names (over declaration order)
        file_determinism = io_options.pop("file_determinism", 1)

        sorter = SortComponents.unsorted
        if file_determinism >= 1:
            sorter = sorter | SortComponents.indices
            if file_determinism >= 2:
                sorter = sorter | SortComponents.alphabetical

        output_fixed_variable_bounds = \
            io_options.pop("output_fixed_variable_bounds", False)

        # Skip writing constraints whose body section is fixed (i.e.,
        # no variables)
        skip_trivial_constraints = \
            io_options.pop("skip_trivial_constraints", False)

        # Note: Baron does not allow specification of runtime
        #       option outside of this file, so we add support
        #       for them here
        solver_options = io_options.pop("solver_options", {})

        if len(io_options):
            raise ValueError(
                "ProblemWriter_baron_writer passed unrecognized io_options:\n\t"
                + "\n\t".join("%s = %s" % (k, v)
                              for k, v in iteritems(io_options)))

        if symbolic_solver_labels and (labeler is not None):
            raise ValueError("Baron problem writer: Using both the "
                             "'symbolic_solver_labels' and 'labeler' "
                             "I/O options is forbidden")

        if output_filename is None:
            output_filename = model.name + ".bar"

        output_file = open(output_filename, "w")

        # Process the options. Rely on baron to catch
        # and reset bad option values
        output_file.write("OPTIONS {\n")
        summary_found = False
        if len(solver_options):
            for key, val in iteritems(solver_options):
                if (key.lower() == 'summary'):
                    summary_found = True
                if key.endswith("Name"):
                    output_file.write(key + ": \"" + str(val) + "\";\n")
                else:
                    output_file.write(key + ": " + str(val) + ";\n")
        if not summary_found:
            # The 'summary option is defaulted to 0, so that no
            # summary file is generated in the directory where the
            # user calls baron. Check if a user explicitly asked for
            # a summary file.
            output_file.write("Summary: 0;\n")
        output_file.write("}\n\n")

        if symbolic_solver_labels:
            labeler = AlphaNumericTextLabeler()
        elif labeler is None:
            labeler = NumericLabeler('x')

        symbol_map = SymbolMap()
        sm_bySymbol = symbol_map.bySymbol

        #cache frequently called functions
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias

        # Cache the list of model blocks so we don't have to call
        # model.block_data_objects() many many times, which is slow
        # for indexed blocks
        all_blocks_list = list(
            model.block_data_objects(active=True,
                                     sort=sorter,
                                     descend_into=True))
        active_components_data_var = {}
        for block in all_blocks_list:
            tmp = active_components_data_var[id(block)] = \
                  list(obj for obj in block.component_data_objects(Var,
                                                                   sort=sorter,
                                                                   descend_into=False))
            create_symbols_func(symbol_map, tmp, labeler)

            # GAH: Not sure this is necessary, and also it would break for
            #      non-mutable indexed params so I am commenting out for now.
            #for param_data in active_components_data(block, Param, sort=sorter):
            #instead of checking if param_data._mutable:
            #if not param_data.is_constant():
            #    create_symbol_func(symbol_map, param_data, labeler)

        symbol_map_variable_ids = set(symbol_map.byObject.keys())
        object_symbol_dictionary = symbol_map.byObject

        #
        # Go through the objectives and constraints and generate
        # the output so that we can obtain the set of referenced
        # variables.
        #
        equation_section_stream = StringIO()
        referenced_variable_ids, branching_priorities_suffixes = \
            self._write_equations_section(
                model,
                equation_section_stream,
                all_blocks_list,
                active_components_data_var,
                symbol_map,
                labeler,
                create_symbol_func,
                create_symbols_func,
                alias_symbol_func,
                object_symbol_dictionary,
                output_fixed_variable_bounds,
                skip_trivial_constraints,
                sorter)

        #
        # BINARY_VARIABLES, INTEGER_VARIABLES, POSITIVE_VARIABLES, VARIABLES
        #

        BinVars = []
        IntVars = []
        PosVars = []
        Vars = []
        for block in all_blocks_list:
            for var_data in active_components_data_var[id(block)]:

                if id(var_data) not in referenced_variable_ids:
                    continue

                if var_data.is_continuous():
                    if var_data.has_lb() and \
                       (self._get_bound(var_data.lb) >= 0):
                        TypeList = PosVars
                    else:
                        TypeList = Vars
                elif var_data.is_binary():
                    TypeList = BinVars
                elif var_data.is_integer():
                    TypeList = IntVars
                else:
                    assert False

                var_name = object_symbol_dictionary[id(var_data)]
                #if len(var_name) > 15:
                #    logger.warning(
                #        "Variable symbol '%s' for variable %s exceeds maximum "
                #        "character limit for BARON. Solver may fail"
                #        % (var_name, var_data.name))

                TypeList.append(var_name)

        if len(BinVars) > 0:
            output_file.write('BINARY_VARIABLES ')
            for var_name in BinVars[:-1]:
                output_file.write(str(var_name) + ', ')
            output_file.write(str(BinVars[-1]) + ';\n\n')
        if len(IntVars) > 0:
            output_file.write('INTEGER_VARIABLES ')
            for var_name in IntVars[:-1]:
                output_file.write(str(var_name) + ', ')
            output_file.write(str(IntVars[-1]) + ';\n\n')

        output_file.write('POSITIVE_VARIABLES ')
        output_file.write('ONE_VAR_CONST__')
        for var_name in PosVars:
            output_file.write(', ' + str(var_name))
        output_file.write(';\n\n')

        if len(Vars) > 0:
            output_file.write('VARIABLES ')
            for var_name in Vars[:-1]:
                output_file.write(str(var_name) + ', ')
            output_file.write(str(Vars[-1]) + ';\n\n')

        #
        # LOWER_BOUNDS
        #

        LowerBoundHeader = False
        for block in all_blocks_list:
            for var_data in active_components_data_var[id(block)]:

                if id(var_data) not in referenced_variable_ids:
                    continue

                if var_data.fixed:
                    if output_fixed_variable_bounds:
                        var_data_lb = var_data.value
                    else:
                        var_data_lb = None
                else:
                    var_data_lb = None
                    if var_data.has_lb():
                        var_data_lb = self._get_bound(var_data.lb)

                if var_data_lb is not None:
                    if LowerBoundHeader is False:
                        output_file.write("LOWER_BOUNDS{\n")
                        LowerBoundHeader = True
                    name_to_output = object_symbol_dictionary[id(var_data)]
                    lb_string_template = '%s: %' + self._precision_string + ';\n'
                    output_file.write(lb_string_template %
                                      (name_to_output, var_data_lb))

        if LowerBoundHeader:
            output_file.write("}\n\n")

        #
        # UPPER_BOUNDS
        #

        UpperBoundHeader = False
        for block in all_blocks_list:
            for var_data in active_components_data_var[id(block)]:

                if id(var_data) not in referenced_variable_ids:
                    continue

                if var_data.fixed:
                    if output_fixed_variable_bounds:
                        var_data_ub = var_data.value
                    else:
                        var_data_ub = None
                else:
                    var_data_ub = None
                    if var_data.has_ub():
                        var_data_ub = self._get_bound(var_data.ub)

                if var_data_ub is not None:
                    if UpperBoundHeader is False:
                        output_file.write("UPPER_BOUNDS{\n")
                        UpperBoundHeader = True
                    name_to_output = object_symbol_dictionary[id(var_data)]
                    ub_string_template = '%s: %' + self._precision_string + ';\n'
                    output_file.write(ub_string_template %
                                      (name_to_output, var_data_ub))

        if UpperBoundHeader:
            output_file.write("}\n\n")

        #
        # BRANCHING_PRIORITIES
        #

        # Specifyig priorities requires that the pyomo model has established an
        # EXTERNAL, float suffix called 'branching_priorities' on the model
        # object, indexed by the relevant variable
        BranchingPriorityHeader = False
        for suffix in branching_priorities_suffixes:
            for var_data, priority in iteritems(suffix):
                if id(var_data) not in referenced_variable_ids:
                    continue
                if priority is not None:
                    if not BranchingPriorityHeader:
                        output_file.write('BRANCHING_PRIORITIES{\n')
                        BranchingPriorityHeader = True
                    name_to_output = object_symbol_dictionary[id(var_data)]
                    output_file.write(name_to_output + ': ' + str(priority) +
                                      ';\n')

        if BranchingPriorityHeader:
            output_file.write("}\n\n")

        #
        # Now write the objective and equations section
        #
        output_file.write(equation_section_stream.getvalue())

        #
        # STARTING_POINT
        #
        output_file.write('STARTING_POINT{\nONE_VAR_CONST__: 1;\n')
        string_template = '%s: %' + self._precision_string + ';\n'
        for block in all_blocks_list:
            for var_data in active_components_data_var[id(block)]:

                if id(var_data) not in referenced_variable_ids:
                    continue

                starting_point = var_data.value
                if starting_point is not None:
                    var_name = object_symbol_dictionary[id(var_data)]
                    output_file.write(string_template %
                                      (var_name, starting_point))

        output_file.write('}\n\n')

        output_file.close()

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints
        vars_to_delete = symbol_map_variable_ids - referenced_variable_ids
        sm_byObject = symbol_map.byObject
        for varid in vars_to_delete:
            symbol = sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]

        del symbol_map_variable_ids
        del referenced_variable_ids

        return output_filename, symbol_map
예제 #38
0
class CPLEXPersistent(CPLEXDirect, PersistentSolver):
    """The CPLEX LP/MIP solver
    """

    pyomo.util.plugin.alias('_cplex_persistent',
                            doc='Persistent Python interface to the CPLEX LP/MIP solver')

    def __init__(self, **kwds):
        #
        # Call base class constructor
        #
        kwds['type'] = 'cplexpersistent'
        CPLEXDirect.__init__(self, **kwds)

        # maps pyomo var data labels to the corresponding CPLEX variable id.
        self._cplex_variable_ids = {}
        self._cplex_variable_names = None

    #
    # updates all variable bounds in the compiled model - handles
    # fixed variables and related issues.  re-does everything from
    # scratch by default, ignoring whatever was specified
    # previously. if the value associated with the keyword
    # vars_to_update is a non-empty list (assumed to be variable name
    # / index pairs), then only the bounds for those variables are
    # updated.  this function assumes that the variables themselves
    # already exist in the compiled model.
    #
    def compile_variable_bounds(self, pyomo_instance, vars_to_update):

        from pyomo.core.base import Var

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin "
                               "cannot compile variable bounds - no "
                               "instance is presently compiled")

        # the bound update entries should be name-value pairs
        new_lower_bounds = []
        new_upper_bounds = []

        # operates through side effects on the above lists!
        def update_bounds_lists(var_name):

            var_lb = None
            var_ub = None

            if var_data.fixed and self._output_fixed_variable_bounds:
                var_lb = var_ub = var_data.value
            elif var_data.fixed:
                # if we've been directed to not deal with fixed
                # variables, then skip - they should have been
                # compiled out of any description of the constraints
                return
            else:
                if var_data.lb is None:
                    var_lb = -cplex.infinity
                else:
                    var_lb = value(var_data.lb)

                if var_data.ub is None:
                    var_ub = cplex.infinity
                else:
                    var_ub= value(var_data.ub)

            var_cplex_id = self._cplex_variable_ids[var_name]

            new_lower_bounds.append((var_cplex_id, var_lb))
            new_upper_bounds.append((var_cplex_id, var_ub))

        if len(vars_to_update) == 0:
            for var_data in pyomo_instance.component_data_objects(Var, active=True):
                var_name = self._symbol_map.getSymbol(var_data, self._labeler)
                update_bounds_lists(var_name)
        else:
            for var_name, var_index in vars_to_update:
                var = pyomo_instance.find_component(var_name)
                # TBD - do some error checking!
                var_data = var[var_index]
                var_name = self._symbol_map.getSymbol(var_data, self._labeler)
                update_bounds_lists(var_name)

        self._active_cplex_instance.variables.set_lower_bounds(new_lower_bounds)
        self._active_cplex_instance.variables.set_upper_bounds(new_upper_bounds)

    #
    # method to compile objective of the input pyomo instance.
    # TBD:
    #   it may be smarter just to track the associated pyomo instance,
    #   and re-compile it automatically from a cached local attribute.
    #   this would ensure consistency, among other things!
    #
    def compile_objective(self, pyomo_instance):

        from pyomo.core.base import Objective
        from pyomo.repn import canonical_is_constant, LinearCanonicalRepn, canonical_degree

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin "
                               "cannot compile objective - no "
                               "instance is presently compiled")

        cplex_instance = self._active_cplex_instance

        cntr = 0
        for block in pyomo_instance.block_data_objects(active=True):
            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for obj_data in block.component_data_objects(Objective,
                                                         active=True,
                                                         descend_into=False):

                cntr += 1
                if cntr > 1:
                    raise ValueError(
                        "Multiple active objectives found on Pyomo instance '%s'. "
                        "Solver '%s' will only handle a single active objective" \
                        % (pyomo_instance.cname(True), self.type))

                if obj_data.is_minimizing():
                    cplex_instance.objective.set_sense(
                        cplex_instance.objective.sense.minimize)
                else:
                    cplex_instance.objective.set_sense(
                        cplex_instance.objective.sense.maximize)

                cplex_instance.objective.set_name(
                    self._symbol_map.getSymbol(obj_data,
                                               self._labeler))

                if gen_obj_canonical_repn:
                    obj_repn = generate_canonical_repn(obj_data.expr)
                    block_canonical_repn[obj_data] = obj_repn
                else:
                    obj_repn = block_canonical_repn[obj_data]

                if (isinstance(obj_repn, LinearCanonicalRepn) and \
                    (obj_repn.linear == None)) or \
                    canonical_is_constant(obj_repn):
                    print("Warning: Constant objective detected, replacing "
                          "with a placeholder to prevent solver failure.")
                    offset = obj_repn.constant
                    if offset is None:
                        offset = 0.0
                    objective_expression = [("ONE_VAR_CONSTANT",offset)]
                    cplex_instance.objective.set_linear(objective_expression)

                else:

                    if isinstance(obj_repn, LinearCanonicalRepn):
                        objective_expression, offset = \
                            self._encode_constraint_body_linear_specialized(
                                    obj_repn,
                                    self._labeler,
                                    use_variable_names=False,
                                    cplex_variable_name_index_map=self._cplex_variable_ids,
                                    as_pairs=True)
                        if offset != 0.0:
                            objective_expression.append((self._cplex_variable_ids["ONE_VAR_CONSTANT"],offset))
                        cplex_instance.objective.set_linear(objective_expression)

                    else:
                        #Linear terms
                        if 1 in obj_repn:
                            objective_expression, offset = \
                                self._encode_constraint_body_linear(
                                    obj_repn,
                                    self._labeler,
                                    as_pairs=True)
                            if offset != 0.0:
                                objective_expression.append(("ONE_VAR_CONSTANT",offset))
                            cplex_instance.objective.set_linear(objective_expression)

                        #Quadratic terms
                        if 2 in obj_repn:
                            self._has_quadratic_objective = True
                            objective_expression = \
                                self._encode_constraint_body_quadratic(obj_repn,
                                                                       self._labeler,
                                                                       as_triples=True,
                                                                       is_obj=2.0)
                            cplex_instance.objective.\
                                set_quadratic_coefficients(objective_expression)

                        degree = canonical_degree(obj_repn)
                        if (degree is None) or (degree > 2):
                            raise ValueError(
                                "CPLEXPersistent plugin does not support general nonlinear "
                                "objective expressions (only linear or quadratic).\n"
                                "Objective: %s" % (obj_data.cname(True)))

    #
    # method to populate the CPLEX problem instance (interface) from
    # the supplied Pyomo problem instance.
    #
    def compile_instance(self,
                         pyomo_instance,
                         symbolic_solver_labels=False,
                         output_fixed_variable_bounds=False,
                         skip_trivial_constraints=False):

        from pyomo.core.base import Var, Constraint, SOSConstraint
        from pyomo.repn import canonical_is_constant, LinearCanonicalRepn, canonical_degree

        self._symbolic_solver_labels = symbolic_solver_labels
        self._output_fixed_variable_bounds = output_fixed_variable_bounds
        self._skip_trivial_constraints = skip_trivial_constraints

        self._has_quadratic_constraints = False
        self._has_quadratic_objective = False
        used_sos_constraints = False

        self._active_cplex_instance = cplex.Cplex()

        if self._symbolic_solver_labels:
            labeler = self._labeler = TextLabeler()
        else:
            labeler = self._labeler = NumericLabeler('x')

        self._symbol_map = SymbolMap()
        self._instance = pyomo_instance
        pyomo_instance.solutions.add_symbol_map(self._symbol_map)
        self._smap_id = id(self._symbol_map)

        # we use this when iterating over the constraints because it
        # will have a much smaller hash table, we also use this for
        # the warm start code after it is cleaned to only contain
        # variables referenced in the constraints
        self._variable_symbol_map = SymbolMap()

        # cplex wants the caller to set the problem type, which is (for
        # current purposes) strictly based on variable type counts.
        num_binary_variables = 0
        num_integer_variables = 0
        num_continuous_variables = 0

        #############################################
        # populate the variables in the cplex model #
        #############################################

        var_names = []
        var_lbs = []
        var_ubs = []
        var_types = []

        self._referenced_variable_ids.clear()

        # maps pyomo var data labels to the corresponding CPLEX variable id.
        self._cplex_variable_ids.clear()

        # cached in the loop below - used to update the symbol map
        # immediately following loop termination.
        var_label_pairs = []

        for var_data in pyomo_instance.component_data_objects(Var, active=True):

            if var_data.fixed and not self._output_fixed_variable_bounds:
                # if a variable is fixed, and we're preprocessing
                # fixed variables (as in not outputting them), there
                # is no need to add them to the compiled model.
                continue

            var_name = self._symbol_map.getSymbol(var_data, labeler)
            var_names.append(var_name)
            var_label_pairs.append((var_data, var_name))

            self._cplex_variable_ids[var_name] = len(self._cplex_variable_ids)

            if (var_data.lb is None) or (var_data.lb == -infinity):
                var_lbs.append(-cplex.infinity)
            else:
                var_lbs.append(value(var_data.lb))

            if (var_data.ub is None) or (var_data.ub == infinity):
                var_ubs.append(cplex.infinity)
            else:
                var_ubs.append(value(var_data.ub))

            if var_data.is_integer():
                var_types.append(self._active_cplex_instance.variables.type.integer)
                num_integer_variables += 1
            elif var_data.is_binary():
                var_types.append(self._active_cplex_instance.variables.type.binary)
                num_binary_variables += 1
            elif var_data.is_continuous():
                var_types.append(self._active_cplex_instance.variables.type.continuous)
                num_continuous_variables += 1
            else:
                raise TypeError("Invalid domain type for variable with name '%s'. "
                                "Variable is not continuous, integer, or binary.")

        self._active_cplex_instance.variables.add(names=var_names,
                                                  lb=var_lbs,
                                                  ub=var_ubs,
                                                  types=var_types)

        self._active_cplex_instance.variables.add(lb=[1],
                                                  ub=[1],
                                                  names=["ONE_VAR_CONSTANT"])

        self._cplex_variable_ids["ONE_VAR_CONSTANT"] = len(self._cplex_variable_ids)

        self._variable_symbol_map.addSymbols(var_label_pairs)
        self._cplex_variable_names = self._active_cplex_instance.variables.get_names()

        ########################################################
        # populate the standard constraints in the cplex model #
        ########################################################

        expressions = []
        senses = []
        rhss = []
        range_values = []
        names = []

        qexpressions = []
        qlinears = []
        qsenses = []
        qrhss = []
        qnames = []

        for block in pyomo_instance.block_data_objects(active=True):

            gen_con_canonical_repn = \
                getattr(block, "_gen_con_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for con in block.component_data_objects(Constraint,
                                                    active=True,
                                                    descend_into=False):

                if (con.lower is None) and \
                   (con.upper is None):
                    continue  # not binding at all, don't bother

                con_repn = None
                if isinstance(con, LinearCanonicalRepn):
                    con_repn = con
                else:
                    if gen_con_canonical_repn:
                        con_repn = generate_canonical_repn(con.body)
                        block_canonical_repn[con] = con_repn
                    else:
                        con_repn = block_canonical_repn[con]

                # There are conditions, e.g., when fixing variables, under which
                # a constraint block might be empty.  Ignore these, for both
                # practical reasons and the fact that the CPLEX LP format
                # requires a variable in the constraint body.  It is also
                # possible that the body of the constraint consists of only a
                # constant, in which case the "variable" of
                if isinstance(con_repn, LinearCanonicalRepn):
                    if (con_repn.linear is None) and \
                       self._skip_trivial_constraints:
                       continue
                else:
                    # we shouldn't come across a constant canonical repn
                    # that is not LinearCanonicalRepn
                    assert not canonical_is_constant(con_repn)

                name = self._symbol_map.getSymbol(con, labeler)
                expr = None
                qexpr = None
                quadratic = False
                if isinstance(con_repn, LinearCanonicalRepn):
                    expr, offset = \
                        self._encode_constraint_body_linear_specialized(con_repn,
                                                                        labeler,
                                                                        use_variable_names=False,
                                                                        cplex_variable_name_index_map=self._cplex_variable_ids)
                else:
                    degree = canonical_degree(con_repn)
                    if degree == 2:
                        quadratic = True
                    elif (degree != 0) or (degree != 1):
                        raise ValueError(
                            "CPLEXPersistent plugin does not support general nonlinear "
                            "constraint expression (only linear or quadratic).\n"
                            "Constraint: %s" % (con.cname(True)))
                    expr, offset = self._encode_constraint_body_linear(con_repn,
                                                                       labeler)

                if quadratic:
                    if expr is None:
                        expr = cplex.SparsePair(ind=[0],val=[0.0])
                    self._has_quadratic_constraints = True

                    qexpr = self._encode_constraint_body_quadratic(con_repn,labeler)
                    qnames.append(name)

                    if con.equality:
                        # equality constraint.
                        qsenses.append('E')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    elif (con.lower is not None) and (con.upper is not None):
                        raise RuntimeError(
                            "The CPLEXDirect plugin can not translate range "
                            "constraints containing quadratic expressions.")

                    elif con.lower is not None:
                        assert con.upper is None
                        qsenses.append('G')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    else:
                        qsenses.append('L')
                        qrhss.append(self._get_bound(con.upper) - offset)

                    qlinears.append(expr)
                    qexpressions.append(qexpr)

                else:
                    names.append(name)
                    expressions.append(expr)

                    if con.equality:
                        # equality constraint.
                        senses.append('E')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    elif (con.lower is not None) and (con.upper is not None):
                        # ranged constraint.
                        senses.append('R')
                        lower_bound = self._get_bound(con.lower) - offset
                        upper_bound = self._get_bound(con.upper) - offset
                        rhss.append(lower_bound)
                        range_values.append(upper_bound - lower_bound)

                    elif con.lower is not None:
                        senses.append('G')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    else:
                        senses.append('L')
                        rhss.append(self._get_bound(con.upper) - offset)
                        range_values.append(0.0)

        ###################################################
        # populate the SOS constraints in the cplex model #
        ###################################################

        # SOS constraints - largely taken from cpxlp.py so updates there,
        # should be applied here
        # TODO: Allow users to specify the variables coefficients for custom
        # branching/set orders - refer to cpxlp.py
        sosn = self._capabilities.sosn
        sos1 = self._capabilities.sos1
        sos2 = self._capabilities.sos2
        modelSOS = ModelSOS()
        for soscondata in pyomo_instance.component_data_objects(SOSConstraint,
                                                                active=True):
            level = soscondata.level
            if (level == 1 and not sos1) or \
               (level == 2 and not sos2) or \
               (level > 2 and not sosn):
                raise Exception("Solver does not support SOS level %s constraints"
                                % (level,))
            modelSOS.count_constraint(self._symbol_map,
                                      labeler,
                                      self._variable_symbol_map,
                                      soscondata)

        if modelSOS.sosType:
            for key in modelSOS.sosType:
                self._active_cplex_instance.SOS.add(type = modelSOS.sosType[key],
                                       name = modelSOS.sosName[key],
                                       SOS = [modelSOS.varnames[key],
                                              modelSOS.weights[key]])
                self._referenced_variable_ids.update(modelSOS.varids[key])
            used_sos_constraints = True

        self._active_cplex_instance.linear_constraints.add(
            lin_expr=expressions,
            senses=senses,
            rhs=rhss,
            range_values=range_values,
            names=names)

        for index in xrange(len(qexpressions)):
            self._active_cplex_instance.quadratic_constraints.add(
                lin_expr=qlinears[index],
                quad_expr=qexpressions[index],
                sense=qsenses[index],
                rhs=qrhss[index],
                name=qnames[index])

        #############################################
        # populate the objective in the cplex model #
        #############################################

        self.compile_objective(pyomo_instance)

        ################################################
        # populate the problem type in the cplex model #
        ################################################

        # This gets rid of the annoying "Freeing MIP data." message.
        def _filter_freeing_mip_data(val):
            if val.strip() == 'Freeing MIP data.':
                return ""
            return val
        self._active_cplex_instance.set_warning_stream(sys.stderr,
                                                       fn=_filter_freeing_mip_data)

        if (self._has_quadratic_objective is True) or \
           (self._has_quadratic_constraints is True):
            if (num_integer_variables > 0) or \
               (num_binary_variables > 0) or \
               (used_sos_constraints):
                if self._has_quadratic_constraints is True:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.MIQCP)
                else:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.MIQP)
            else:
                if self._has_quadratic_constraints is True:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.QCP)
                else:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.QP)
        elif (num_integer_variables > 0) or \
             (num_binary_variables > 0) or \
             (used_sos_constraints):
            self._active_cplex_instance.set_problem_type(
                self._active_cplex_instance.problem_type.MILP)
        else:
            self._active_cplex_instance.set_problem_type(
                self._active_cplex_instance.problem_type.LP)

        # restore the warning stream without our filter function
        self._active_cplex_instance.set_warning_stream(sys.stderr)


    #
    # simple method to query whether a Pyomo instance has already been
    # compiled.
    #
    def instance_compiled(self):

        return self._active_cplex_instance is not None

    #
    # Override base class method to check for compiled instance
    #
    def _warm_start(self, instance):

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin "
                               "cannot warm start - no instance is "
                               "presently compiled")

        # clear any existing warm starts.
        self._active_cplex_instance.MIP_starts.delete()

        # the iteration order is identical to that used in generating
        # the cplex instance, so all should be well.
        variable_ids = []
        variable_values = []

        # IMPT: the var_data returned is a weak ref!
        for label, var_data in iteritems(self._variable_symbol_map.bySymbol):
            cplex_id = self._cplex_variable_ids[label]
            if var_data().fixed and not self._output_fixed_variable_bounds:
                continue
            elif var_data().value is not None:
                variable_ids.append(cplex_id)
                variable_values.append(var_data().value)

        if len(variable_ids):
            self._active_cplex_instance.MIP_starts.add(
                [variable_ids, variable_values],
                self._active_cplex_instance.MIP_starts.effort_level.auto)

    #
    # Override base class method to check for compiled instance
    #

    def _populate_cplex_instance(self, model):
        assert model == self._instance

    def _presolve(self, *args, **kwds):

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin"
                               " cannot presolve - no instance is "
                               "presently compiled")

        # These must be passed in to the compile_instance method,
        # but assert that any values here match those already supplied
        if 'symbolic_solver_labels' in kwds:
            assert self._symbolic_solver_labels == \
                kwds['symbolic_solver_labels']
        if 'output_fixed_variable_bounds' in kwds:
            assert self._output_fixed_variable_bounds == \
                kwds['output_fixed_variable_bounds']
        if 'skip_trivial_constraints' in kwds:
            assert self._skip_trivial_constraints == \
                kwds["skip_trivial_constraints"]

        if self._smap_id not in self._instance.solutions.symbol_map:
            self._instance.solutions.add_symbol_map(self._symbol_map)

        CPLEXDirect._presolve(self, *args, **kwds)

        # like other solver plugins, persistent solver plugins can
        # take an instance as an input argument. the only context in
        # which this instance is used, however, is for warm-starting.
        if len(args) > 2:
            raise ValueError("The CPLEXPersistent plugin method "
                             "'_presolve' can be supplied at most "
                             "one problem instance - %s were "
                             "supplied" % len(args))

            # Re-add the symbol map id if it was cleared
            # after a previous solution load
            if id(self._symbol_map) not in args[0].solutions.symbol_map:
                args[0].solutions.add_symbol_map(self._symbol_map)
                self._smap_id = id(self._symbol_map)

    #
    # invoke the solver on the currently compiled instance!!!
    #
    def _apply_solver(self):

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin cannot "
                               "apply solver - no instance is presently compiled")

        # NOTE:
        # CPLEX maintains the pool of feasible solutions from the
        # prior solve as the set of mip starts for the next solve.
        # and evaluating multiple mip starts (and there can be many)
        # is expensive. so if the warm_start method is not invoked,
        # there will potentially be a lot of time wasted.

        return CPLEXDirect._apply_solver(self)

    def _postsolve(self):

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin "
                               "cannot postsolve - no instance is "
                               "presently compiled")

        active_cplex_instance = self._active_cplex_instance
        variable_symbol_map = self._variable_symbol_map
        instance = self._instance

        ret = CPLEXDirect._postsolve(self)

        #
        # These get reset to None by the base class method
        #
        self._active_cplex_instance = active_cplex_instance
        self._variable_symbol_map = variable_symbol_map
        self._instance = instance

        return ret