def busmap_for_country(x): prefix = x.name[0] + x.name[1] + ' ' logger.debug("Determining busmap for country {}".format(prefix[:-1])) if len(x) == 1: return pd.Series(prefix + '0', index=x.index) weight = weighting_for_country(n, x) if algorithm == "kmeans": return prefix + busmap_by_kmeans(n, weight, n_clusters[x.name], buses_i=x.index, **algorithm_kwds) elif algorithm == "spectral": return prefix + busmap_by_spectral_clustering(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds) elif algorithm == "louvain": return prefix + busmap_by_louvain(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds) else: raise ValueError(f"`algorithm` must be one of 'kmeans', 'spectral' or 'louvain'. Is {algorithm}.")
def busmap_for_country(x): if isinstance(n_clusters, pd.Series): n_cluster_c = n_clusters[x.name] else: n_cluster_c = n_clusters prefix = x.name[0] + x.name[1] + " " logger.debug(f"Determining busmap for country {prefix[:-1]}") if len(x) == 1: return pd.Series(prefix + "0", index=x.index) weight = weighting_for_country(n, x) if algorithm == "kmeans": return prefix + busmap_by_kmeans( n, weight, n_cluster_c, buses_i=x.index, **algorithm_kwds) elif algorithm == "spectral": return prefix + busmap_by_spectral_clustering( reduce_network(n, x), n_cluster_c, **algorithm_kwds) else: raise ValueError( f"`algorithm` must be one of 'kmeans', 'spectral' or 'louvain'. Is {algorithm}." )