Exemplo n.º 1
0
    def busmap_for_country(x):
        prefix = x.name[0] + x.name[1] + ' '
        logger.debug("Determining busmap for country {}".format(prefix[:-1]))
        if len(x) == 1:
            return pd.Series(prefix + '0', index=x.index)
        weight = weighting_for_country(n, x)

        if algorithm == "kmeans":
            return prefix + busmap_by_kmeans(n, weight, n_clusters[x.name], buses_i=x.index, **algorithm_kwds)
        elif algorithm == "spectral":
            return prefix + busmap_by_spectral_clustering(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds)
        elif algorithm == "louvain":
            return prefix + busmap_by_louvain(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds)
        else:
            raise ValueError(f"`algorithm` must be one of 'kmeans', 'spectral' or 'louvain'. Is {algorithm}.")
Exemplo n.º 2
0
    def busmap_for_country(x):
        if isinstance(n_clusters, pd.Series):
            n_cluster_c = n_clusters[x.name]
        else:
            n_cluster_c = n_clusters

        prefix = x.name[0] + x.name[1] + " "
        logger.debug(f"Determining busmap for country {prefix[:-1]}")
        if len(x) == 1:
            return pd.Series(prefix + "0", index=x.index)
        weight = weighting_for_country(n, x)

        if algorithm == "kmeans":
            return prefix + busmap_by_kmeans(
                n, weight, n_cluster_c, buses_i=x.index, **algorithm_kwds)
        elif algorithm == "spectral":
            return prefix + busmap_by_spectral_clustering(
                reduce_network(n, x), n_cluster_c, **algorithm_kwds)

        else:
            raise ValueError(
                f"`algorithm` must be one of 'kmeans', 'spectral' or 'louvain'. Is {algorithm}."
            )