예제 #1
0
def train(args, model, train_dataset):
    ##
    total_train_steps = len(
        train_dataset) / args.batch_size * args.num_train_epochs
    # prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.decay_rate
        },  # no no_decay params in p
        {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }
        # any one of no_decay in p
    ]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learn_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                             t_total=total_train_steps)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learn_rate,
                             warmup=args.warmup_proportion,
                             t_total=total_train_steps)
예제 #2
0
    def prepare_optimizer(self):
        param_optimizer = list(self.model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if self.args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            self.optimizer = FusedAdam(optimizer_grouped_parameters,
                                       lr=self.args.learning_rate,
                                       bias_correction=False,
                                       max_grad_norm=1.0)
            self.warmup_schedule = WarmupLinearSchedule(
                warmup=self.args.warmup_proportion,
                t_total=self.num_train_optimization_steps)

            if self.args.loss_scale == 0:
                self.optimizer = FP16_Optimizer(optimizer,
                                                dynamic_loss_scale=True)
            else:
                self.optimizer = FP16_Optimizer(
                    optimizer, static_loss_scale=self.args.loss_scale)

        else:
            self.optimizer = BertAdam(
                optimizer_grouped_parameters,
                lr=self.args.learning_rate,
                warmup=self.args.warmup_proportion,
                t_total=self.num_train_optimization_steps,
                weight_decay=0.01)
예제 #3
0
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

global_step = 0
nb_tr_steps = 0
tr_loss = 0
if args.do_train:
    train_features = convert_examples_to_features(train_examples,
                                                  processor.l2i,
                                                  args.max_seq_length,
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default='./dataset/raw',
                        type=str,
                        # required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--bert_model", default='bert-base-uncased', type=str,
                        # required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                             "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default='mnli',
                        type=str,
                        # required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default='./bert_outputs',
                        type=str,
                        # required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument("--vocab_dir",
                        default='../BERT_pytorch_model',
                        type=str,
                        # required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--model_dir",
                        default='../BERT_pytorch_model',
                        type=str,
                        # required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")

    ## Other parameters
    parser.add_argument("--cache_dir",
                        default="",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument('--do_train',
                        # default=False,
                        # type=bool,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument('--do_eval',
                        # default=True,
                        # type=bool,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        default=True,
                        type=bool,
                        # action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=10.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.5,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
    }

    num_labels_task = {
        "mnli": 2,
        "mrpc": 2,
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    num_labels = num_labels_task[task_name]
    label_list = processor.get_labels()

    vocab_dir = os.path.join(args.vocab_dir, args.bert_model)
    tokenizer = BertTokenizer.from_pretrained(vocab_dir, do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE),
                                                                   'distributed_{}'.format(args.local_rank))
    model_dir = os.path.join(args.model_dir, args.bert_model)
    model = BertForSequenceClassification.from_pretrained(model_dir,
                                                          cache_dir=cache_dir,
                                                          num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              weight_decay=0.05,
                              max_grad_norm=5.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                             t_total=num_train_optimization_steps)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps,
                             weight_decay=0.05,
                             max_grad_norm=5.0)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
    output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, num_workers=int(cpu_count() / 2),
                                      sampler=train_sampler, batch_size=args.train_batch_size)

        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Validation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size,
                                     num_workers=int(cpu_count() / 2))

        max_sum, max_epoch = 0, 0

        for i in trange(int(args.num_train_epochs), desc="Epoch"):
            logger.info('\nEpoch - {}'.format(i + 1))
            model.train()
            train_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            # for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                train_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        # lr_this_step = args.learning_rate * warmup_linear(global_step / num_train_optimization_steps,
                        #                                                   args.warmup_proportion)
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

            if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
                model.eval()
                eval_loss, eval_accuracy = 0, 0
                nb_eval_steps, nb_eval_examples = 0, 0
                preds, scores, labels = [], [], []

                for step, batch in enumerate(eval_dataloader):
                    batch = tuple(t.to(device) for t in batch)
                    input_ids, input_mask, segment_ids, label_ids = batch
                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    label_ids = label_ids.to(device)

                    with torch.no_grad():
                        tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
                        logits = model(input_ids, segment_ids, input_mask)

                    logits = logits.detach().cpu().numpy()
                    label_ids = label_ids.to('cpu').numpy()
                    preds += np.argmax(logits, axis=1).tolist()
                    scores += logits[:, 1].tolist()
                    labels += label_ids.tolist()

                    # tmp_eval_accuracy = accuracy(logits, label_ids)
                    eval_loss += tmp_eval_loss.mean().item()
                    # eval_accuracy += tmp_eval_accuracy
                    nb_eval_examples += input_ids.size(0)
                    nb_eval_steps += 1

                acc, precision, recall, f1, auroc, auprc = metrics(preds, scores, labels)
                tmp_sum = acc
                if tmp_sum > max_sum:
                    max_sum = tmp_sum
                    max_epoch = i + 1

                    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
                    # output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
                    torch.save(model_to_save.state_dict(), output_model_file)
                    # output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
                    with open(output_config_file, 'w') as f:
                        f.write(model_to_save.config.to_json_string())

                eval_loss = eval_loss / nb_eval_steps
                # eval_accuracy = eval_accuracy / nb_eval_examples
                train_loss = train_loss / nb_tr_steps if args.do_train else None

                result = {'Valid loss': eval_loss,
                          'Valid accuracy': acc,
                          'Valid precision': precision,
                          'Valid recall': recall,
                          'Valid f1': f1,
                          'Valid auroc': auroc,
                          'Valid auprc': auprc,
                          'Global_step': global_step,
                          'Loss': train_loss}

                output_eval_file = os.path.join(args.output_dir, "valid_results.txt")
                with open(output_eval_file, "w") as writer:
                    logger.info("***** Valid results *****")
                    for key in sorted(result.keys()):
                        logger.info("  %s = %s", key, str(result[key]))
                    logger.info('Confusion matrix')
                    logger.info(confusion_matrix(labels, preds))
                writer.close()

        logger.info('Max Epoch - {}'.format(max_epoch))
        logger.info('Max Sum - {}'.format(max_sum))
        # Save a trained model and the associated configuration

        # Load a trained model and config that you have fine-tuned
        # config = BertConfig(output_config_file)
        # model = BertForSequenceClassification(config, num_labels=num_labels)
        # model.load_state_dict(torch.load(output_model_file))
    else:
        # model = BertForSequenceClassification.from_pretrained(model_dir,
        #                                                       cache_dir=cache_dir,
        #                                                       num_labels=num_labels)
        # model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
        config = BertConfig(output_config_file)
        model = BertForSequenceClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
    model.to(device)

    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        # eval_examples = processor.get_transfer_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Transfer *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        preds, scores, labels = [], [], []
        fp, fn = [], []

        for step, batch in enumerate(eval_dataloader):
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            p = np.argmax(logits, axis=1).tolist()
            preds += p
            s = logits[:, 1].tolist()
            scores += s
            l = label_ids.tolist()
            labels += l

            for idx, pair in enumerate(zip(p, l)):
                eid = step * args.eval_batch_size + idx + 1
                if pair[1] == 1 and pair[0] == 0:
                    fn.append(eid)
                if pair[1] == 0 and pair[0] == 1:
                    fp.append(eid)

            # tmp_eval_accuracy = accuracy(logits, label_ids)
            eval_loss += tmp_eval_loss.mean().item()
            # eval_accuracy += tmp_eval_accuracy
            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        FALSE = {'FP': fp, 'FN': fn}
        with open('./FALSE.json', 'w') as f:
            f.write(json.dumps(FALSE) + '\n')
        f.close()

        acc, precision, recall, f1, auroc, auprc = metrics(preds, scores, labels)
        eval_loss = eval_loss / nb_eval_steps
        # eval_accuracy = eval_accuracy / nb_eval_examples
        loss = tr_loss / nb_tr_steps if args.do_train else None

        result = {'Eval loss': eval_loss,
                  'Eval accuracy': acc,
                  'Eval precision': precision,
                  'Eval recall': recall,
                  'Eval f1': f1,
                  'Eval auroc': auroc,
                  'Eval auprc': auprc,
                  'Global_step': global_step,
                  'Loss': loss}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
예제 #5
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .csv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    # Prepare model
    model = BertForMultipleChoice.from_pretrained(
        args.bert_model,
        cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE),
                               'distributed_{}'.format(args.local_rank)),
        num_choices=4)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.do_train:

        # Prepare data loader

        train_examples = read_swag_examples(os.path.join(
            args.data_dir, 'train.csv'),
                                            is_training=True)
        train_features = convert_examples_to_features(train_examples,
                                                      tokenizer,
                                                      args.max_seq_length,
                                                      True)
        all_input_ids = torch.tensor(select_field(train_features, 'input_ids'),
                                     dtype=torch.long)
        all_input_mask = torch.tensor(select_field(train_features,
                                                   'input_mask'),
                                      dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(train_features,
                                                    'segment_ids'),
                                       dtype=torch.long)
        all_label = torch.tensor([f.label for f in train_features],
                                 dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        num_train_optimization_steps = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

        # Prepare optimizer

        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)
        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

        global_step = 0

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train:
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForMultipleChoice.from_pretrained(args.output_dir,
                                                      num_choices=4)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
    else:
        model = BertForMultipleChoice.from_pretrained(args.bert_model,
                                                      num_choices=4)
    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = read_swag_examples(os.path.join(
            args.data_dir, 'val.csv'),
                                           is_training=True)
        eval_features = convert_examples_to_features(eval_examples, tokenizer,
                                                     args.max_seq_length, True)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'),
                                     dtype=torch.long)
        all_input_mask = torch.tensor(select_field(eval_features,
                                                   'input_mask'),
                                      dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(eval_features,
                                                    'segment_ids'),
                                       dtype=torch.long)
        all_label = torch.tensor([f.label for f in eval_features],
                                 dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'global_step': global_step,
            'loss': tr_loss / global_step
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
예제 #6
0
def train(args):

    if args.use_bert and args.use_xlnet:
        raise ValueError('We cannot use both BERT and XLNet')

    now_time = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
    log_file_name = './logs/log-' + now_time
    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        filename=log_file_name,
        filemode='w',
        level=logging.INFO)
    logger = logging.getLogger(__name__)
    console_handler = logging.StreamHandler()
    logger.addHandler(console_handler)

    logger = logging.getLogger(__name__)

    logger.info(vars(args))

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if not os.path.exists('./models'):
        os.mkdir('./models')

    if args.model_name is None:
        raise Warning(
            'model name is not specified, the model will NOT be saved!')
    output_model_dir = os.path.join('./models',
                                    args.model_name + '_' + now_time)

    ngram2id, ngram2count = get_vocab(args.train_data_path,
                                      args.max_ngram_length,
                                      args.ngram_freq_threshold)

    label_map = get_labels(args.tag_path)

    logger.info('# of supertags: %d' % (len(label_map) - 4))

    hpara = NeSTCCG.init_hyper_parameters(args)
    supertagger = NeSTCCG(labelmap=label_map,
                          hpara=hpara,
                          model_path=args.bert_model,
                          gram2id=ngram2id)

    train_examples = supertagger.load_data(args.train_data_path, flag='train')
    dev_examples = supertagger.load_data(args.dev_data_path, flag='dev')
    test_examples = supertagger.load_data(args.test_data_path, flag='test')

    all_eval_examples = {'dev': dev_examples, 'test': test_examples}
    num_labels = supertagger.num_labels
    convert_examples_to_features = supertagger.convert_examples_to_features
    clipping_top_n = supertagger.clipping_top_n
    clipping_threshold = supertagger.clipping_threshold
    id2label = supertagger.id2label
    feature2input = supertagger.feature2input

    total_params = sum(p.numel() for p in supertagger.parameters()
                       if p.requires_grad)
    logger.info('# of trainable parameters: %d' % total_params)

    num_train_optimization_steps = int(
        len(train_examples) / args.train_batch_size /
        args.gradient_accumulation_steps) * args.num_train_epochs
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )

    if args.fp16:
        supertagger.half()
    supertagger.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        supertagger = DDP(supertagger)
    elif n_gpu > 1:
        supertagger = torch.nn.DataParallel(supertagger)

    param_optimizer = list(supertagger.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps)

    else:
        # num_train_optimization_steps=-1
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    best_eval = -1
    best_info_str = ''
    history = {
        'epoch': [],
        'dev_acc': [],
        'dev_cats': [],
        'dev_lf': [],
        'dev_uf': [],
        'test_acc': [],
        'test_cats': [],
        'test_lf': [],
        'test_uf': []
    }
    num_of_no_improvement = 0
    patient = args.patient

    evaluator = Evaluation(args.eval_data_dir)

    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            np.random.shuffle(train_examples)
            supertagger.train()
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, start_index in enumerate(
                    tqdm(range(0, len(train_examples),
                               args.train_batch_size))):
                supertagger.train()
                batch_examples = train_examples[start_index:min(
                    start_index + args.train_batch_size, len(train_examples))]
                train_features = convert_examples_to_features(batch_examples)

                input_ids, input_mask, l_mask, label_ids, segment_ids, valid_ids, \
                dep_adjacency_matrix = feature2input(device, train_features)

                loss = supertagger(input_ids,
                                   segment_ids,
                                   input_mask,
                                   label_ids,
                                   valid_ids,
                                   l_mask,
                                   adjacency_matrix=dep_adjacency_matrix)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

            supertagger.to(device)

            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                supertagger.eval()

                output_model_dir = path.join('./models',
                                             args.model_name + '_' + now_time)
                if not os.path.exists(output_model_dir):
                    os.mkdir(output_model_dir)

                history['epoch'].append(epoch)
                for flag in ['dev', 'test']:
                    eval_examples = all_eval_examples[flag]
                    all_y_true = []
                    all_y_pred = []
                    output_suppertag_list = []
                    for start_index in tqdm(
                            range(0, len(eval_examples),
                                  args.eval_batch_size)):
                        eval_batch_examples = eval_examples[start_index:min(
                            start_index +
                            args.eval_batch_size, len(eval_examples))]
                        eval_features = convert_examples_to_features(
                            eval_batch_examples)

                        input_ids, input_mask, l_mask, label_ids, segment_ids, valid_ids, \
                        dep_adjacency_matrix = feature2input(device, eval_features)

                        with torch.no_grad():
                            logits = supertagger(
                                input_ids,
                                segment_ids,
                                input_mask,
                                None,
                                valid_ids,
                                l_mask,
                                adjacency_matrix=dep_adjacency_matrix)

                        logits = F.softmax(logits, dim=2)
                        argmax_logits = torch.argmax(logits, dim=2)
                        argsort_loagits = torch.argsort(logits,
                                                        dim=2,
                                                        descending=True)
                        argmax_logits = argmax_logits.detach().cpu().numpy()
                        argsort_loagits = argsort_loagits.detach().cpu().numpy(
                        )[:, :, :clipping_top_n]
                        logits = logits.to('cpu').numpy()
                        label_ids = label_ids.to('cpu').numpy()
                        l_mask = l_mask.to('cpu').numpy()

                        for i, ex in enumerate(eval_batch_examples):
                            true_label_list = ex.label
                            temp = []
                            j_index = 1
                            for _ in range(len(true_label_list)):
                                temp.append(
                                    id2label[argmax_logits[i][j_index]])
                                assert l_mask[i][j_index] == 1
                                j_index += 1
                            assert l_mask[i][j_index] == 1
                            assert j_index + 1 == len(
                                l_mask[i]) or l_mask[i][j_index + 1] == 0
                            all_y_true.append(true_label_list)
                            all_y_pred.append(temp)

                        for i in range(len(label_ids)):
                            ex = eval_batch_examples[i]
                            label = label_ids[i]
                            text = ex.text_a.split(' ')
                            output_line = []
                            for j in range(len(label)):
                                if j == 0:
                                    continue
                                elif label_ids[i][j] == num_labels - 1:
                                    assert len(text) == j - 1
                                    output_suppertag_list.append(
                                        '#word#'.join(output_line))
                                    break
                                else:
                                    super_tag_str_list = []
                                    prob_str_list = []
                                    for tag_id in argsort_loagits[i][j]:
                                        if tag_id == 0:
                                            continue
                                        tag = id2label[tag_id]
                                        prob = logits[i][j][tag_id]
                                        if len(
                                                super_tag_str_list
                                        ) > 0 and prob < clipping_threshold:
                                            break
                                        else:
                                            super_tag_str_list.append(tag)
                                            prob_str_list.append(str(prob))
                                    word_str = text[j - 1] + '\t' + '#'.join(
                                        super_tag_str_list) + '\t' + '#'.join(
                                            prob_str_list)
                                    output_line.append(word_str)

                    y_true_all = []
                    y_pred_all = []
                    eval_sentence_all = []
                    for y_true_item in all_y_true:
                        y_true_all += y_true_item
                    for y_pred_item in all_y_pred:
                        y_pred_all += y_pred_item
                    for example, y_true_item in zip(eval_examples, all_y_true):
                        sen = example.text_a
                        sen = sen.strip()
                        sen = sen.split(' ')
                        if len(y_true_item) != len(sen):
                            # print(len(sen))
                            sen = sen[:len(y_true_item)]
                        eval_sentence_all.append(sen)
                    acc = evaluator.supertag_acc(y_pred_all, y_true_all)

                    history[flag + '_acc'].append(acc)

                    auto_output_file = os.path.join(output_model_dir,
                                                    flag + '.auto')

                    supertag_output_file = os.path.join(
                        output_model_dir, flag + '.supertag.txt')

                    with open(supertag_output_file, 'w', encoding='utf8') as f:
                        for line in output_suppertag_list:
                            f.write(line + '\n')

                    command = 'java -jar ' + ccgparse + ' -f ' + supertag_output_file + ' -o ' + auto_output_file + ' >' + auto_output_file
                    subprocess.run(command, shell=True)

                    dep_output_file = os.path.join(output_model_dir,
                                                   flag + '.dep')

                    command = './auto2dep.sh ' + candc_path + ' ' + auto_output_file + ' ' + dep_output_file
                    subprocess.run(command, shell=True)

                    eval_output_file = os.path.join(output_model_dir,
                                                    flag + '.eval')
                    tag_gold = os.path.join(args.eval_data_dir, 'gold_files',
                                            flag + '.stagged')
                    dep_gold = os.path.join(args.eval_data_dir, 'gold_files',
                                            flag + '.dep.gold')
                    command = 'python ccg_eval.py -r ' + tag_gold + ' ' + dep_gold + ' ' \
                              + dep_output_file + ' ' + auto_output_file + ' >' + eval_output_file
                    subprocess.run(command, shell=True)

                    results = evaluator.eval_file_reader(eval_output_file)

                    for key, value in results.items():
                        h_key = flag + '_' + key
                        if h_key in history:
                            history[h_key].append(value)

                log_info = []
                for key, value in history.items():
                    log_info.append(key)
                    log_info.append(str(value[-1]))
                info_str = ' '.join(log_info)
                logger.info(info_str)

                if history['dev_acc'][-1] > best_eval:
                    best_eval = history['dev_acc'][-1]
                    best_info_str = info_str
                    num_of_no_improvement = 0

                    model_to_save = supertagger.module if hasattr(
                        supertagger, 'module') else supertagger
                    best_eval_model_dir = os.path.join(output_model_dir,
                                                       'model')
                    if not os.path.exists(best_eval_model_dir):
                        os.mkdir(best_eval_model_dir)
                    model_to_save.save_model(best_eval_model_dir,
                                             args.bert_model)
                else:
                    num_of_no_improvement += 1

            if num_of_no_improvement >= patient:
                logger.info('\nEarly stop triggered at epoch %d\n' % epoch)
                break

        logger.info("\n======= best ========\n")
        logger.info(best_info_str)
        logger.info("\n======= best ========\n")

        with open(os.path.join(output_model_dir, 'history.json'),
                  'w',
                  encoding='utf8') as f:
            json.dump(history, f)
            f.write('\n')
예제 #7
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--pregenerated_data', type=Path, required=True)
    parser.add_argument('--output_dir', type=Path, required=True)
    parser.add_argument(
        "--bert_model",
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument("--do_lower_case", action="store_true")
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )

    parser.add_argument("--epochs",
                        type=int,
                        default=3,
                        help="Number of epochs to train for")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    args = parser.parse_args()

    assert args.pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"

    samples_per_epoch = []
    for i in range(args.epochs):
        epoch_file = args.pregenerated_data / f"epoch_{i}.json"
        metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
        if epoch_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch.append(metrics['num_training_examples'])
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            num_data_epochs = i
            break
    else:
        num_data_epochs = args.epochs

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logging.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
        logging.warning(
            f"Output directory ({args.output_dir}) already exists and is not empty!"
        )
    args.output_dir.mkdir(parents=True, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    total_train_examples = 0
    for i in range(args.epochs):
        # The modulo takes into account the fact that we may loop over limited epochs of data
        total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )

    # Prepare model
    model = BertForPreTraining.from_pretrained(args.bert_model)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    logging.info("***** Running training *****")
    logging.info(f"  Num examples = {total_train_examples}")
    logging.info("  Batch size = %d", args.train_batch_size)
    logging.info("  Num steps = %d", num_train_optimization_steps)
    model.train()
    for epoch in range(args.epochs):
        epoch_dataset = PregeneratedDataset(
            epoch=epoch,
            training_path=args.pregenerated_data,
            tokenizer=tokenizer,
            num_data_epochs=num_data_epochs,
            reduce_memory=args.reduce_memory)
        if args.local_rank == -1:
            train_sampler = RandomSampler(epoch_dataset)
        else:
            train_sampler = DistributedSampler(epoch_dataset)
        train_dataloader = DataLoader(epoch_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        with tqdm(total=len(train_dataloader), desc=f"Epoch {epoch}") as pbar:
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids,
                             is_next)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                pbar.update(1)
                mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps
                pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    # Save a trained model
    logging.info("** ** * Saving fine-tuned model ** ** * ")
    model_to_save = model.module if hasattr(
        model, 'module') else model  # Only save the model it-self

    output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
    output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

    torch.save(model_to_save.state_dict(), output_model_file)
    model_to_save.config.to_json_file(output_config_file)
    tokenizer.save_vocabulary(args.output_dir)
예제 #8
0
def rcml_main(args):
    logger.info('KB-ALBERT 조항 분류기 동작')

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)

    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    if args.multi_label:
        processor = MultiLabelProcessor()
    else:
        processor = MultiClassProcessor()

    converter = convert_examples_to_features

    label_list = processor.get_labels(args.data_dir)
    label_map = {i: label for i, label in enumerate(label_list)}
    num_labels = len(label_list)

    tokenizer = KbAlbertCharTokenizer.from_pretrained(args.bert_model_path)

    train_sen_examples = None
    eval_sen_examples = None
    test_sen_examples = None

    num_train_optimization_steps = None

    if args.do_train:
        train_sen_examples = processor.get_train_examples(args.data_dir)
        eval_sen_examples = processor.get_dev_examples(args.data_dir)

        train_sen_features = converter(train_sen_examples, label_list,
                                       args.max_seq_length, tokenizer,
                                       args.multi_label)
        eval_sen_features = converter(eval_sen_examples, label_list,
                                      args.max_seq_length, tokenizer,
                                      args.multi_label)

        num_train_optimization_steps = int(
            len(train_sen_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    if args.do_test:
        if args.do_prototype:
            test_sen_examples = processor.get_prototype_examples(args.data_dir)
        else:
            test_sen_examples = processor.get_test_examples(args.data_dir)

        test_sen_features = converter(test_sen_examples, label_list,
                                      args.max_seq_length, tokenizer,
                                      args.multi_label)

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    config = AlbertConfig.from_pretrained(args.config_file_name,
                                          num_labels=num_labels,
                                          id2label=label_map)

    if args.do_train:
        if args.multi_label:
            model = MultiLabelClassification.from_pretrained(
                args.bert_model_path,
                args.bert_model_name,
                cache_dir=cache_dir,
                num_labels=num_labels)
        else:
            model = AlbertForSequenceClassification.from_pretrained(
                args.bert_model_path, config=config)

    elif args.do_test:
        model = torch.load(
            os.path.join(args.bert_model_path, args.bert_model_name))

    model.to(device)

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.do_train:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    ##train_model
    global_step = 0
    if args.do_train:
        # model.unfreeze_bert_encoder()

        if len(train_sen_features) == 0:
            logger.info(
                "The number of train_features is zero. Please check the tokenization. "
            )
            sys.exit()

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_sen_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        train_sen_input_ids = torch.tensor(
            [f.input_ids for f in train_sen_features], dtype=torch.long)
        train_sen_input_mask = torch.tensor(
            [f.input_mask for f in train_sen_features], dtype=torch.long)
        train_sen_segment_ids = torch.tensor(
            [f.segment_ids for f in train_sen_features], dtype=torch.long)
        train_sen_label_ids = torch.tensor(
            [f.label_id for f in train_sen_features], dtype=torch.long)

        eval_sen_input_ids = torch.tensor(
            [f.input_ids for f in eval_sen_features], dtype=torch.long)
        eval_sen_input_mask = torch.tensor(
            [f.input_mask for f in eval_sen_features], dtype=torch.long)
        eval_sen_segment_ids = torch.tensor(
            [f.segment_ids for f in eval_sen_features], dtype=torch.long)
        eval_sen_label_ids = torch.tensor(
            [f.label_id for f in eval_sen_features], dtype=torch.long)

        train_sen_data = TensorDataset(train_sen_input_ids,
                                       train_sen_input_mask,
                                       train_sen_segment_ids,
                                       train_sen_label_ids)
        eval_sen_data = TensorDataset(eval_sen_input_ids, eval_sen_input_mask,
                                      eval_sen_segment_ids, eval_sen_label_ids)

        train_sen_dataloader = DataLoader(
            train_sen_data,
            batch_size=args.train_batch_size,
            worker_init_fn=lambda _: np.random.seed())
        eval_sen_dataloader = DataLoader(eval_sen_data,
                                         batch_size=args.train_batch_size)

        train_loss_values, valid_loss_values = [], []
        train_acc, valid_acc = [], []
        train_f1, valid_f1 = [], []

        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            model.train()
            tr_loss, tr_accuracy = 0, 0
            nb_tr_examples, nb_tr_steps = 0, 0

            total_loss = 0
            tr_predicted_labels, tr_target_labels = list(), list()

            for step, train_sen_batch in enumerate(
                    tqdm(train_sen_dataloader,
                         total=len(train_sen_dataloader),
                         desc="Iteration")):

                train_sen_batch = tuple(t.to(device) for t in train_sen_batch)
                sen_input_ids, sen_input_mask, sen_segment_ids, train_sen_label_ids = train_sen_batch

                output = model(input_ids=sen_input_ids,
                               attention_mask=sen_input_mask,
                               position_ids=None,
                               token_type_ids=sen_segment_ids,
                               labels=train_sen_label_ids)
                loss = output[0]
                loss.backward()

                total_loss += loss.item()

                logits = output[1]
                label_ids = train_sen_label_ids.to('cpu').numpy()

                if args.multi_label:
                    tr_predicted_labels.extend(
                        torch.sigmoid(
                            logits).round().long().cpu().detach().numpy())
                    tr_target_labels.extend(label_ids)
                else:
                    argmax_logits = np.argmax(torch.softmax(
                        logits, dim=1).detach().cpu().numpy(),
                                              axis=1)
                    tr_predicted_labels.extend(argmax_logits)
                    tr_target_labels.extend(label_ids)

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * WarmupLinearSchedule(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
            tr_loss = total_loss / len(train_sen_dataloader)
            train_loss_values.append(tr_loss)

            acc = metrics.accuracy_score(tr_target_labels, tr_predicted_labels)
            f1 = metrics.f1_score(tr_target_labels,
                                  tr_predicted_labels,
                                  average='macro')
            train_acc.append(acc)
            train_f1.append(f1)

            logger.info('')
            logger.info(
                '################### epoch ################### : {}'.format(
                    epoch + 1))
            logger.info(
                '################### train loss ###################: {}'.
                format(tr_loss))
            logger.info(
                '################### train accuracy ###############: {}'.
                format(acc))
            logger.info(
                '################### train f1 score ###############: {}'.
                format(f1))

            eval_loss = 0
            ev_predicted_labels, ev_target_labels = list(), list()

            for eval_sen_batch in eval_sen_dataloader:
                eval_sen_batch = tuple(t.to(device) for t in eval_sen_batch)
                eval_sen_input_ids, eval_sen_input_mask, eval_sen_segment_ids, eval_label_ids = eval_sen_batch

                with torch.no_grad():
                    model.eval()
                    output = model(input_ids=eval_sen_input_ids,
                                   attention_mask=eval_sen_input_mask,
                                   position_ids=None,
                                   token_type_ids=eval_sen_segment_ids,
                                   labels=eval_label_ids)
                logits = output[1]
                label_ids = eval_label_ids.to('cpu').numpy()

                if args.multi_label:
                    ev_predicted_labels.extend(
                        torch.sigmoid(
                            logits).round().long().cpu().detach().numpy())
                    ev_target_labels.extend(label_ids)
                else:
                    argmax_logits = np.argmax(torch.softmax(
                        logits, dim=1).detach().cpu().numpy(),
                                              axis=1)
                    ev_predicted_labels.extend(argmax_logits)
                    ev_target_labels.extend(label_ids)

                eval_loss += output[0].mean().item()

            ev_loss = eval_loss / len(eval_sen_dataloader)
            valid_loss_values.append(ev_loss)

            acc = metrics.accuracy_score(ev_target_labels, ev_predicted_labels)
            f1 = metrics.f1_score(ev_target_labels,
                                  ev_predicted_labels,
                                  average='macro')
            valid_acc.append(acc)
            valid_f1.append(f1)

            logger.info('')
            logger.info(
                '################### epoch ################### : {}'.format(
                    epoch + 1))
            logger.info(
                '################### valid loss ###################: {}'.
                format(ev_loss))
            logger.info(
                '################### valid accuracy ###############: {}'.
                format(acc))
            logger.info(
                '################### valid f1 score ###############: {}'.
                format(f1))

            model_to_save = model.module if hasattr(model, 'module') else model
            if (epoch + 1) % 1 == 0:
                torch.save(model_to_save.state_dict(),
                           './model/eval_model/{}_epoch.bin'.format(epoch + 1))
                torch.save(model,
                           './model/eval_model/{}_epoch.pt'.format(epoch + 1))
        save_training_result = train_loss_values, train_acc, train_f1, valid_loss_values, valid_acc, valid_f1
        with open('./output_dir/training_history.pkl', 'wb') as f:
            pickle.dump(save_training_result, f)

    if args.do_test:
        # logger.info("***** Running prediction *****")
        # logger.info("  Num examples = %d", len(test_sen_examples))
        # logger.info("  Batch size = %d", args.eval_batch_size)

        test_sen_input_ids = torch.tensor(
            [f.input_ids for f in test_sen_features], dtype=torch.long)
        test_sen_input_mask = torch.tensor(
            [f.input_mask for f in test_sen_features], dtype=torch.long)
        test_sen_segment_ids = torch.tensor(
            [f.segment_ids for f in test_sen_features], dtype=torch.long)
        test_sen_label_ids = torch.tensor(
            [f.label_id for f in test_sen_features], dtype=torch.long)

        test_sen_data = TensorDataset(test_sen_input_ids, test_sen_input_mask,
                                      test_sen_segment_ids, test_sen_label_ids)

        # Run prediction for full data
        test_sen_sampler = SequentialSampler(test_sen_data)
        test_sen_dataloader = DataLoader(test_sen_data,
                                         batch_size=args.eval_batch_size)

        all_labels, all_logits = None, None
        te_predicted_labels, te_target_labels = list(), list()

        for test_sen_batch in tqdm(test_sen_dataloader,
                                   total=len(test_sen_dataloader),
                                   desc='Prediction'):

            test_sen_batch = tuple(t.to(device) for t in test_sen_batch)
            test_sen_input_ids, test_sen_input_mask, test_sen_segment_ids, test_label_ids = test_sen_batch

            with torch.no_grad():
                model.eval()
                output = model(input_ids=test_sen_input_ids,
                               attention_mask=test_sen_input_mask,
                               position_ids=None,
                               token_type_ids=test_sen_segment_ids)

            logits = output[0]
            label_ids = test_label_ids.to('cpu').numpy()

            if args.multi_label:
                te_predicted_labels.extend(
                    torch.sigmoid(
                        logits).round().long().cpu().detach().numpy())
                te_target_labels.extend(label_ids)
            else:
                argmax_logits = np.argmax(torch.softmax(
                    logits, dim=1).detach().cpu().numpy(),
                                          axis=1)
                te_predicted_labels.extend(argmax_logits)
                te_target_labels.extend(label_ids)

            logits = output[0].detach().cpu().numpy()

            if all_logits is None:
                all_logits = logits
            else:
                all_logits = np.concatenate((all_logits, logits), axis=0)

            if all_labels is None:
                all_labels = label_ids
            else:
                all_labels = np.concatenate((all_labels, label_ids), axis=0)

        acc = metrics.accuracy_score(te_target_labels, te_predicted_labels)
        f1 = metrics.f1_score(te_target_labels,
                              te_predicted_labels,
                              average='macro')

        # logger.info('################### test accuracy ###############: {}'.format(acc))
        # logger.info('################### test f1 score ###############: {}'.format(f1))

        input_data = [{
            'text': input_example.text_a
        } for input_example in test_sen_examples]

        # pred_result = pd.DataFrame(all_logits, columns=label_list)
        pred_result = pd.DataFrame(te_predicted_labels)

        real_text = pd.DataFrame(input_data)
        real_label = pd.DataFrame(all_labels)
        real_result = pd.concat([real_text, pred_result], axis=1)

        real_result.columns = ['text', 'predict_label']
        real_result.to_excel('./output_dir/output_classification.xlsx',
                             index=None)
예제 #9
0
def main():
    # def main(args):
    parser = setup_parser()
    args = parser.parse_args()

    # specifies the path where the biobert or clinical bert model is saved
    if args.bert_model == 'biobert' or args.bert_model == 'clinical_bert' or args.bert_model == 'stroke_bert' or args.bert_model == 'stroke_biobased_bert':
        args.bert_model = args.model_loc

    print(args.bert_model)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
        "mednli": MedNLIProcessor,
        "carotid": CaroditProcessor,
        "restroke": RestrokeProcessor
    }

    num_labels_task = {
        "cola": 2,
        "mnli": 3,
        "mrpc": 2,
        "mednli": 3,
        "carotid": 17,
        "restroke": 2
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    num_labels = num_labels_task[task_name]
    label_list = processor.get_labels()

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)
    if tokenizer is None:
        tokenizer = BertTokenizer.from_pretrained(
            args.vocab_loc, do_lower_case=args.do_lower_case)

    print('TRAIN')
    train = processor.get_train_examples(args.data_dir)
    print([(train[i].text_a, train[i].text_b, train[i].label)
           for i in range(3)])
    print('DEV')
    dev = processor.get_dev_examples(args.data_dir)
    print([(dev[i].text_a, dev[i].text_b, dev[i].label) for i in range(3)])
    print('TEST')
    test = processor.get_test_examples(args.data_dir)
    print([(test[i].text_a, test[i].text_b, test[i].label) for i in range(3)])

    train_examples = None
    num_train_optimization_steps = -1
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(
            args.local_rank))
    if task_name == 'carotid':
        model = BertForMultiLabelSequenceClassification.from_pretrained(
            args.bert_model, cache_dir=cache_dir, num_labels=num_labels)
    else:
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model, cache_dir=cache_dir, num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer, task_name)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        if task_name == 'carotid':
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.float)
        else:
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * WarmupLinearSchedule(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train:
        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        if task_name == 'carotid':
            model = BertForMultiLabelSequenceClassification(
                config, num_labels=num_labels)
        else:
            model = BertForSequenceClassification(config,
                                                  num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
    else:
        if task_name == 'carotid':
            model = BertForMultiLabelSequenceClassification.from_pretrained(
                args.bert_model, num_labels=num_labels)
        else:
            model = BertForSequenceClassification.from_pretrained(
                args.bert_model, num_labels=num_labels)
    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, task_name)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        if task_name == 'carotid':
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.float)
        else:
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        all_logits = None
        all_labels = None

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            if task_name == 'carotid':
                if all_logits is None:
                    all_logits = logits.detach().cpu().numpy()
                else:
                    all_logits = np.concatenate(
                        (all_logits, logits.detach().cpu().numpy()), axis=0)

                if all_labels is None:
                    all_labels = label_ids.detach().cpu().numpy()
                else:
                    all_labels = np.concatenate(
                        (all_labels, label_ids.detach().cpu().numpy()), axis=0)
            else:
                logits = logits.detach().cpu().numpy()
                label_ids = label_ids.to('cpu').numpy()

                tmp_eval_accuracy = accuracy(logits, label_ids)

                eval_loss += tmp_eval_loss.mean().item()
                eval_accuracy += tmp_eval_accuracy

                nb_eval_examples += input_ids.size(0)
                nb_eval_steps += 1

        if task_name == 'carotid':
            fpr = dict()
            tpr = dict()
            roc_auc = dict()
            for i in range(num_labels):
                fpr[i], tpr[i], _ = roc_curve(all_labels[:, i], all_logits[:,
                                                                           i])
                roc_auc[i] = auc(fpr[i], tpr[i])
            # Compute micro-average ROC curve and ROC area
            fpr["micro"], tpr["micro"], _ = roc_curve(all_labels.ravel(),
                                                      all_logits.ravel())
            roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

            save_path = os.path.join(args.output_dir, "eval_prediction.pickle")
            predic_result = {
                'all_logits': all_logits,
                'all_labels': all_labels
            }
            with open(save_path, 'wb') as file_pi:
                pickle.dump(predic_result, file_pi)

            result = {'eval_loss': eval_loss, 'roc_auc': roc_auc}
        else:
            eval_loss = eval_loss / nb_eval_steps
            eval_accuracy = eval_accuracy / nb_eval_examples
            loss = tr_loss / nb_tr_steps if args.do_train else None
            result = {
                'eval_loss': eval_loss,
                'eval_accuracy': eval_accuracy,
                'global_step': global_step,
                'loss': loss
            }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    if args.do_test and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        test_examples = processor.get_test_examples(args.data_dir)
        test_features = convert_examples_to_features(test_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, task_name)
        logger.info("***** Running testing *****")
        logger.info("  Num examples = %d", len(test_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in test_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in test_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in test_features],
                                       dtype=torch.long)
        if task_name == 'carotid':
            all_label_ids = torch.tensor([f.label_id for f in test_features],
                                         dtype=torch.float)
        else:
            all_label_ids = torch.tensor([f.label_id for f in test_features],
                                         dtype=torch.long)
        test_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.eval_batch_size)

        all_logits = None
        all_labels = None

        model.eval()
        test_loss, test_accuracy = 0, 0
        nb_test_steps, nb_test_examples = 0, 0

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                test_dataloader, desc="Testing"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_test_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            if task_name == 'carotid':
                if all_logits is None:
                    all_logits = logits.detach().cpu().numpy()
                else:
                    all_logits = np.concatenate(
                        (all_logits, logits.detach().cpu().numpy()), axis=0)

                if all_labels is None:
                    all_labels = label_ids.detach().cpu().numpy()
                else:
                    all_labels = np.concatenate(
                        (all_labels, label_ids.detach().cpu().numpy()), axis=0)
            else:
                logits = logits.detach().cpu().numpy()
                if all_logits is None:
                    all_logits = logits
                else:
                    all_logits = np.concatenate((all_logits, logits), axis=0)

                label_ids = label_ids.to('cpu').numpy()
                if all_labels is None:
                    all_labels = label_ids
                else:
                    all_labels = np.concatenate((all_labels, label_ids),
                                                axis=0)

                tmp_test_accuracy = accuracy(logits, label_ids)

                test_loss += tmp_test_loss.mean().item()
                test_accuracy += tmp_test_accuracy

                nb_test_examples += input_ids.size(0)
                nb_test_steps += 1

        if task_name == 'carotid':
            fpr = dict()
            tpr = dict()
            roc_auc = dict()
            for i in range(num_labels):
                fpr[i], tpr[i], _ = roc_curve(all_labels[:, i], all_logits[:,
                                                                           i])
                roc_auc[i] = auc(fpr[i], tpr[i])
            # Compute micro-average ROC curve and ROC area
            fpr["micro"], tpr["micro"], _ = roc_curve(all_labels.ravel(),
                                                      all_logits.ravel())
            roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

            save_path = os.path.join(args.output_dir, "test_prediction.pickle")
            predic_result = {
                'all_logits': all_logits,
                'all_labels': all_labels
            }
            with open(save_path, 'wb') as file_pi:
                pickle.dump(predic_result, file_pi)

            result = {'test_loss': test_loss, 'roc_auc': roc_auc}
        else:
            test_loss = test_loss / nb_test_steps
            test_accuracy = test_accuracy / nb_test_examples
            loss = tr_loss / nb_tr_steps if args.do_train else None

            save_path = os.path.join(args.output_dir, "test_prediction.pickle")
            predic_result = {
                'all_logits': all_logits,
                'all_labels': all_labels
            }
            with open(save_path, 'wb') as file_pi:
                pickle.dump(predic_result, file_pi)

            result = {
                'test_loss': test_loss,
                'test_accuracy': test_accuracy,
                'global_step': global_step,
                'loss': loss
            }

        output_test_file = os.path.join(args.output_dir, "test_results.txt")
        with open(output_test_file, "w") as writer:
            logger.info("***** Test results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
예제 #10
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument("--vocab_file",
                        default='bert-base-uncased-vocab.txt',
                        type=str,
                        required=True)
    parser.add_argument("--model_file",
                        default='bert-base-uncased.tar.gz',
                        type=str,
                        required=True)
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model checkpoints and predictions will be written."
    )
    parser.add_argument(
        "--predict_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the predictions will be written.")

    # Other parameters
    parser.add_argument("--train_file",
                        default=None,
                        type=str,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json"
    )
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded."
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help=
        "The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_predict",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--predict_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for predictions.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=2.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
        "of training.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help=
        "The total number of n-best predictions to generate in the nbest_predictions.json "
        "output file.")
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help=
        "The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.")
    parser.add_argument(
        "--verbose_logging",
        default=False,
        action='store_true',
        help=
        "If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--view_id',
                        type=int,
                        default=1,
                        help="view id of multi-view co-training(two-view)")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    # Base setting
    parser.add_argument('--pretrain', type=str, default=None)
    parser.add_argument('--max_ctx', type=int, default=2)
    parser.add_argument('--task_name', type=str, default='coqa_yesno')
    parser.add_argument('--bert_name', type=str, default='baseline')
    parser.add_argument('--reader_name', type=str, default='coqa')
    # model parameters
    parser.add_argument('--evidence_lambda', type=float, default=0.8)
    parser.add_argument('--tf_layers', type=int, default=1)
    parser.add_argument('--tf_inter_size', type=int, default=3072)
    # Parameters for running labeling model
    parser.add_argument('--do_label', default=False, action='store_true')
    parser.add_argument('--sentence_id_files', nargs='*')
    parser.add_argument('--weight_threshold', type=float, default=0.0)
    parser.add_argument('--only_correct', default=False, action='store_true')
    parser.add_argument('--label_threshold', type=float, default=0.0)

    args = parser.parse_args()

    logger = setting_logger(args.output_dir)
    logger.info('================== Program start. ========================')

    model_params = prepare_model_params(args)
    read_params = prepare_read_params(args)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified."
            )

    if args.do_train:
        if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
            raise ValueError(
                "Output directory () already exists and is not empty.")
        os.makedirs(args.output_dir, exist_ok=True)

    if args.do_predict:
        os.makedirs(args.predict_dir, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.vocab_file)

    data_reader = initialize_reader(args.reader_name)

    num_train_steps = None
    if args.do_train or args.do_label:
        train_examples = data_reader.read(input_file=args.train_file,
                                          **read_params)

        cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}_{4}_{5}'.format(
            args.bert_model, str(args.max_seq_length), str(args.doc_stride),
            str(args.max_query_length), str(args.max_ctx), str(args.task_name))

        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except FileNotFoundError:
            train_features = data_reader.convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s",
                            cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)
        print(train_features[-1].unique_id)
        num_train_steps = int(
            len(train_features) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    if args.pretrain is not None:
        logger.info('Load pretrained model from {}'.format(args.pretrain))
        model_state_dict = torch.load(args.pretrain, map_location='cuda:0')
        model = initialize_model(args.bert_name,
                                 args.model_file,
                                 state_dict=model_state_dict,
                                 **model_params)
    else:
        model = initialize_model(args.bert_name, args.model_file,
                                 **model_params)

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())

    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                             t_total=t_total)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)
        warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                             t_total=t_total)

    # Prepare data
    eval_examples = data_reader.read(input_file=args.predict_file,
                                     **read_params)
    eval_features = data_reader.convert_examples_to_features(
        examples=eval_examples,
        tokenizer=tokenizer,
        max_seq_length=args.max_seq_length,
        doc_stride=args.doc_stride,
        max_query_length=args.max_query_length,
        is_training=False)

    eval_tensors = data_reader.data_to_tensors(eval_features)
    eval_data = TensorDataset(*eval_tensors)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data,
                                 sampler=eval_sampler,
                                 batch_size=args.predict_batch_size)

    if args.do_train:

        if args.do_label:
            logger.info('Training in State Wise.')
            sentence_id_file_list = args.sentence_id_files
            if sentence_id_file_list is not None:
                for file in sentence_id_file_list:
                    train_features = data_reader.generate_features_sentence_ids(
                        train_features, file)
            else:
                train_features = data_reader.mask_all_sentence_ids(
                    train_features)
                logger.info('No sentence id supervision is found.')
        else:
            logger.info('Training in traditional way.')

        logger.info("Start training")
        train_loss = AverageMeter()
        best_acc = 0.0
        summary_writer = SummaryWriter(log_dir=args.output_dir)
        global_step = 0
        eval_loss = AverageMeter()

        train_tensors = data_reader.data_to_tensors(train_features)
        train_data = TensorDataset(*train_tensors)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            # Train
            model.train()
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                if n_gpu == 1:
                    batch = batch_to_device(
                        batch, device)  # multi-gpu does scattering it-self
                inputs = data_reader.generate_inputs(
                    batch,
                    train_features,
                    do_label=args.do_label,
                    model_state=ModelState.Train)
                loss = model(**inputs)['loss']
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    # if args.fp16 is False, BertAdam is used and handles this automatically
                    lr_this_step = args.learning_rate * warmup_linear.get_lr(
                        global_step / t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    if args.fp16:
                        summary_writer.add_scalar('lr', lr_this_step,
                                                  global_step)
                    else:
                        summary_writer.add_scalar('lr',
                                                  optimizer.get_lr()[0],
                                                  global_step)

                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                train_loss.update(loss.item(), args.train_batch_size)
                summary_writer.add_scalar('train_loss', train_loss.avg,
                                          global_step)
                summary_writer.add_scalar('lr',
                                          optimizer.get_lr()[0], global_step)

            # Evaluation
            model.eval()
            all_results = []
            logger.info("Start evaluating")
            for eval_step, batch in enumerate(
                    tqdm(eval_dataloader, desc="Evaluating")):
                if n_gpu == 1:
                    batch = batch_to_device(
                        batch, device)  # multi-gpu does scattering it-self
                inputs = data_reader.generate_inputs(
                    batch,
                    eval_features,
                    do_label=args.do_label,
                    model_state=ModelState.Evaluate)
                with torch.no_grad():
                    output_dict = model(**inputs)
                    loss, batch_choice_logits = output_dict[
                        'loss'], output_dict['yesno_logits']
                    eval_loss.update(loss.item(), args.predict_batch_size)

                example_indices = batch[-1]
                for i, example_index in enumerate(example_indices):
                    choice_logits = batch_choice_logits[i].detach().cpu(
                    ).tolist()

                    eval_feature = eval_features[example_index.item()]
                    unique_id = int(eval_feature.unique_id)
                    all_results.append(
                        RawResultChoice(unique_id=unique_id,
                                        choice_logits=choice_logits))

            summary_writer.add_scalar('eval_loss', eval_loss.avg, epoch)
            eval_loss.reset()

            data_reader.write_predictions(eval_examples,
                                          eval_features,
                                          all_results,
                                          None,
                                          null_score_diff_threshold=0.0)
            yes_metric = data_reader.yesno_cate.f1_measure('yes', 'no')
            no_metric = data_reader.yesno_cate.f1_measure('no', 'yes')
            current_acc = yes_metric['accuracy']
            summary_writer.add_scalar('eval_yes_f1', yes_metric['f1'], epoch)
            summary_writer.add_scalar('eval_yes_recall', yes_metric['recall'],
                                      epoch)
            summary_writer.add_scalar('eval_yes_precision',
                                      yes_metric['precision'], epoch)
            summary_writer.add_scalar('eval_no_f1', no_metric['f1'], epoch)
            summary_writer.add_scalar('eval_no_recall', no_metric['recall'],
                                      epoch)
            summary_writer.add_scalar('eval_no_precision',
                                      no_metric['precision'], epoch)
            summary_writer.add_scalar('eval_yesno_acc', current_acc, epoch)
            torch.cuda.empty_cache()

            if current_acc > best_acc:
                best_acc = current_acc
                model_to_save = model.module if hasattr(
                    model, 'module') else model  # Only save the model it-self
                output_model_file = os.path.join(args.output_dir,
                                                 "pytorch_model.bin")
                torch.save(model_to_save.state_dict(), output_model_file)
            logger.info('Epoch: %d, Accuracy: %f (Best Accuracy: %f)' %
                        (epoch, current_acc, best_acc))
            data_reader.yesno_cate.reset()

        summary_writer.close()

    # Loading trained model.
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
    model_state_dict = torch.load(output_model_file, map_location='cuda:0')
    model = initialize_model(args.bert_name,
                             args.model_file,
                             state_dict=model_state_dict,
                             **model_params)
    model.to(device)

    # Write Yes/No predictions
    if args.do_predict and (args.local_rank == -1
                            or torch.distributed.get_rank() == 0):

        test_examples = eval_examples
        test_features = eval_features

        test_tensors = data_reader.data_to_tensors(test_features)
        test_data = TensorDataset(*test_tensors)
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.predict_batch_size)

        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(test_examples))
        logger.info("  Num split examples = %d", len(test_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        model.eval()
        all_results = []
        logger.info("Start predicting yes/no on Dev set.")
        for batch in tqdm(test_dataloader, desc="Testing"):
            if n_gpu == 1:
                batch = batch_to_device(
                    batch, device)  # multi-gpu does scattering it-self
            inputs = data_reader.generate_inputs(batch,
                                                 test_features,
                                                 do_label=args.do_label,
                                                 model_state=ModelState.Test)
            with torch.no_grad():
                batch_choice_logits = model(**inputs)['yesno_logits']
            example_indices = batch[-1]
            for i, example_index in enumerate(example_indices):
                choice_logits = batch_choice_logits[i].detach().cpu().tolist()

                test_feature = test_features[example_index.item()]
                unique_id = int(test_feature.unique_id)

                all_results.append(
                    RawResultChoice(unique_id=unique_id,
                                    choice_logits=choice_logits))

        output_prediction_file = os.path.join(args.predict_dir,
                                              'predictions.json')
        data_reader.write_predictions(eval_examples,
                                      eval_features,
                                      all_results,
                                      output_prediction_file,
                                      null_score_diff_threshold=0.0)
        yes_metric = data_reader.yesno_cate.f1_measure('yes', 'no')
        no_metric = data_reader.yesno_cate.f1_measure('no', 'yes')
        logger.info('Yes Metrics: %s' % json.dumps(yes_metric, indent=2))
        logger.info('No Metrics: %s' % json.dumps(no_metric, indent=2))

    # Labeling sentence id.
    if args.do_label and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):

        test_examples = train_examples
        test_features = train_features

        test_tensors = data_reader.data_to_tensors(test_features)
        test_data = TensorDataset(*test_tensors)
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.predict_batch_size)

        logger.info("***** Running labeling *****")
        logger.info("  Num orig examples = %d", len(test_examples))
        logger.info("  Num split examples = %d", len(test_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        model.eval()
        all_results = []
        logger.info("Start labeling.")
        for batch in tqdm(test_dataloader, desc="Testing"):
            if n_gpu == 1:
                batch = batch_to_device(batch, device)
            inputs = data_reader.generate_inputs(batch,
                                                 test_features,
                                                 do_label=args.do_label,
                                                 model_state=ModelState.Test)
            with torch.no_grad():
                output_dict = model(**inputs)
                batch_choice_logits = output_dict['yesno_logits']
                batch_max_weight_indexes = output_dict['max_weight_index']
                batch_max_weight = output_dict['max_weight']
            example_indices = batch[-1]
            for i, example_index in enumerate(example_indices):
                choice_logits = batch_choice_logits[i].detach().cpu().tolist()
                max_weight_index = batch_max_weight_indexes[i].detach().cpu(
                ).tolist()
                max_weight = batch_max_weight[i].detach().cpu().tolist()

                test_feature = test_features[example_index.item()]
                unique_id = int(test_feature.unique_id)

                all_results.append(
                    WeightResultChoice(unique_id=unique_id,
                                       choice_logits=choice_logits,
                                       max_weight_index=max_weight_index,
                                       max_weight=max_weight))

        output_prediction_file = os.path.join(args.predict_dir,
                                              'sentence_id_file.json')
        data_reader.predict_sentence_ids(
            test_examples,
            test_features,
            all_results,
            output_prediction_file,
            weight_threshold=args.weight_threshold,
            only_correct=args.only_correct,
            label_threshold=args.label_threshold)
예제 #11
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test",
                        action='store_true',
                        help="Whether to run test on the test set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval and not args.do_test:
        raise ValueError(
            "At least one of `do_train` or `do_eval` or `do_test` must be True."
        )

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = 'qnli'
    processor = QnliProcessor()
    output_mode = "classification"
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # calculate train steps
    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            math.ceil(len(train_examples) / args.train_batch_size) / args.gradient_accumulation_steps) * \
                                       args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare (raw) model and tokenizer (for train)
    if args.do_train:
        model, tokenizer = load_raw_model_and_tokenizer(args)

        if args.fp16:
            model.half()
        model.to(device)
        if args.local_rank != -1:
            try:
                from apex.parallel import DistributedDataParallel as DDP
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            model = DDP(model)
        elif n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Prepare optimizer
        if args.do_train:
            param_optimizer = list(model.named_parameters())
            no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
            optimizer_grouped_parameters = [{
                'params': [
                    p for n, p in param_optimizer
                    if not any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.01
            }, {
                'params': [
                    p for n, p in param_optimizer
                    if any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.0
            }]
            if args.fp16:
                try:
                    from apex.optimizers import FP16_Optimizer
                    from apex.optimizers import FusedAdam
                except ImportError:
                    raise ImportError(
                        "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                    )

                optimizer = FusedAdam(optimizer_grouped_parameters,
                                      lr=args.learning_rate,
                                      bias_correction=False,
                                      max_grad_norm=1.0)
                if args.loss_scale == 0:
                    optimizer = FP16_Optimizer(optimizer,
                                               dynamic_loss_scale=True)
                else:
                    optimizer = FP16_Optimizer(
                        optimizer, static_loss_scale=args.loss_scale)
                warmup_linear = WarmupLinearSchedule(
                    warmup=args.warmup_proportion,
                    t_total=num_train_optimization_steps)

            else:
                optimizer = BertAdam(optimizer_grouped_parameters,
                                     lr=args.learning_rate,
                                     warmup=args.warmup_proportion,
                                     t_total=num_train_optimization_steps)

    #################################
    # prepare eval data for train #
    #################################
    if args.do_train:
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, output_mode)
        logger.info("***** Evaluation *****")
        logger.info("  Num evaluation examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                          dtype=torch.long)
        eval_all_input_mask = torch.tensor(
            [f.input_mask for f in eval_features], dtype=torch.long)
        eval_all_segment_ids = torch.tensor(
            [f.segment_ids for f in eval_features], dtype=torch.long)

        if output_mode == "classification":
            eval_all_label_ids = torch.tensor(
                [f.label_id for f in eval_features], dtype=torch.long)

        eval_data = TensorDataset(eval_all_input_ids, eval_all_input_mask,
                                  eval_all_segment_ids, eval_all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

    #########
    # train #
    #########
    # tensorboard
    tb_log_path = os.path.join('./tblog/', args.output_dir.split('/')[-1])
    if not os.path.exists(tb_log_path):
        os.mkdir(tb_log_path)
    tensorboard_writer = SummaryWriter(tb_log_path)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    best_eval_result = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer, output_mode)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples = 0
            # nb_tr_steps = 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                model.train()
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, num_labels),
                                    label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if nb_tr_steps % 100 == 99:
                    tensorboard_writer.add_scalar('train_loss', loss.item(),
                                                  nb_tr_steps)
                    if nb_tr_steps % 1000 == 999:
                        eval_result = evaluate(args, device, model,
                                               eval_all_label_ids,
                                               eval_dataloader)
                        if eval_result['acc'] > best_eval_result:
                            best_eval_result = eval_result['acc']
                            save_model_and_tokenizer(args, model, tokenizer)
                        tensorboard_writer.add_scalar('eval_acc',
                                                      eval_result['acc'],
                                                      nb_tr_steps)
                        tensorboard_writer.add_scalar('eval_loss',
                                                      eval_result['eval_loss'],
                                                      nb_tr_steps)

    ##############
    # save model #
    ##############
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        save_model_and_tokenizer(args, model, tokenizer, best_path='')

    ############################
    # load model for eval/test #
    ############################
    model, tokenizer = load_model_and_tokenizer(args)
    model.to(device)

    ########
    # eval #
    ########
    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        # prepare evaluation data
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, output_mode)
        logger.info("***** Evaluation *****")
        logger.info("  Num evaluation examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                          dtype=torch.long)
        eval_all_input_mask = torch.tensor(
            [f.input_mask for f in eval_features], dtype=torch.long)
        eval_all_segment_ids = torch.tensor(
            [f.segment_ids for f in eval_features], dtype=torch.long)

        if output_mode == "classification":
            eval_all_label_ids = torch.tensor(
                [f.label_id for f in eval_features], dtype=torch.long)

        eval_data = TensorDataset(eval_all_input_ids, eval_all_input_mask,
                                  eval_all_segment_ids, eval_all_label_ids)
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        # eval
        evaluate(args,
                 device,
                 model,
                 eval_all_label_ids,
                 eval_dataloader,
                 output_to_file=True)

    ########
    # test #
    ########
    if args.do_test and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        # prepare test data
        test_examples = processor.get_test_examples(args.data_dir)
        test_features = convert_examples_to_features(test_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, output_mode)
        logger.info("***** Running Test *****")
        logger.info("  Num examples = %d", len(test_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        test_all_input_ids = torch.tensor([f.input_ids for f in test_features],
                                          dtype=torch.long)
        test_all_input_mask = torch.tensor(
            [f.input_mask for f in test_features], dtype=torch.long)
        test_all_segment_ids = torch.tensor(
            [f.segment_ids for f in test_features], dtype=torch.long)

        if output_mode == "classification":
            test_all_label_ids = torch.tensor(
                [f.label_id for f in test_features], dtype=torch.long)

        test_data = TensorDataset(test_all_input_ids, test_all_input_mask,
                                  test_all_segment_ids, test_all_label_ids)
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.eval_batch_size)

        # test
        test(args, device, model, test_dataloader)
예제 #12
0
    def train(self, args, trn_features, eval_features=None, C_eval=None):
        # Prepare optimizer
        num_train_optimization_steps = int(
            len(trn_features) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

        param_optimizer = list(self.model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)
        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

        # Start Batch Training
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(trn_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        global_step = 0
        nb_tr_steps = 0
        tr_loss = 0
        all_input_ids = torch.tensor([f.input_ids for f in trn_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in trn_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in trn_features],
                                       dtype=torch.long)
        all_output_ids = torch.tensor([f.output_ids for f in trn_features],
                                      dtype=torch.long)
        all_output_mask = torch.tensor([f.output_mask for f in trn_features],
                                       dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_output_ids,
                                   all_output_mask)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        self.model.train()
        total_run_time = 0.0
        best_matcher_prec = -1
        for epoch in range(1, args.num_train_epochs):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                start_time = time.time()
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, output_ids, output_mask = batch
                c_pred = self.model(input_ids, segment_ids, input_mask)
                c_true = data_utils.repack_output(output_ids, output_mask,
                                                  self.num_clusters, device)
                loss = self.criterion(c_pred, c_true)

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                total_run_time += time.time() - start_time
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                # print training log
                if step % args.log_interval == 0 and step > 0:
                    elapsed = time.time() - start_time
                    cur_loss = tr_loss / nb_tr_steps
                    logger.info(
                        "| epoch {:3d} | {:4d}/{:4d} batches | ms/batch {:5.4f} | train_loss {:e}"
                        .format(epoch, step, len(train_dataloader),
                                elapsed * 1000 / args.log_interval, cur_loss))

                # eval on dev set and save best model
                if step % args.eval_interval == 0 and step > 0 and args.stop_by_dev:
                    eval_loss, eval_metrics, C_eval_pred = self.predict(
                        args,
                        eval_features,
                        C_eval,
                        topk=args.only_topk,
                        verbose=False)
                    logger.info('-' * 89)
                    logger.info(
                        '| epoch {:3d} evaluation | time: {:5.4f}s | eval_loss {:e}'
                        .format(epoch, total_run_time, eval_loss))
                    logger.info('| matcher_eval_prec {}'.format(' '.join(
                        "{:4.2f}".format(100 * v) for v in eval_metrics.prec)))
                    logger.info('| matcher_eval_recl {}'.format(' '.join(
                        "{:4.2f}".format(100 * v)
                        for v in eval_metrics.recall)))

                    avg_matcher_prec = np.mean(eval_metrics.prec)
                    if avg_matcher_prec > best_matcher_prec and epoch > 0:
                        logger.info(
                            '| **** saving model at global_step {} ****'.
                            format(global_step))
                        best_matcher_prec = avg_matcher_prec
                        self.save(args)
                    logger.info('-' * 89)
                    self.model.train(
                    )  # after model.eval(), reset model.train()

        return self
예제 #13
0
def main(finetuning_task='word_content'):
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .csv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate befolabel_numre performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    task_name = finetuning_task
    data_dir = '/home/xiongyi/dataxyz/SentEval/data/probing/' + task_name + '.txt'
    out_dir = './models/' + finetuning_task
    args = parser.parse_args(['--data_dir', data_dir,\
                              '--bert_model','bert-base-uncased','--output_dir',out_dir,'--do_train',\
                              '--local_rank', '-1', '--train_batch_size', '32', '--do_lower_case'])

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs


#        torch.distributed.init_process_group(backend='nccl')
#    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
#        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    # Prepare model
    #TODO: Num_labels hard coded!
    train_examples, num_labels = read_Probe_examples(args.data_dir)
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model, num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    #    if args.local_rank != -1:
    #        try:
    #            from apex.parallel import DistributedDataParallel as DDP
    #        except ImportError:
    #            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
    #
    #        model = DDP(model)
    #    elif n_gpu > 1:
    #        model = torch.nn.DataParallel(model)

    if args.do_train:

        # Prepare data loader
        train_features = convert_examples_to_features(train_examples,
                                                      tokenizer,
                                                      args.max_seq_length)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label = torch.tensor([f.label for f in train_features],
                                 dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label)
        if 1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        num_train_optimization_steps = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
        #        if args.local_rank != -1:
        #            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

        # Prepare optimizer

        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)
        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

        global_step = 0

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            ###test on all probing/downstream tasks
            #            model.eval()
            #            results = probe(model,tokenizer, device, args.max_seq_length, batcher, prepare, PATH_TO_SENTEVAL, PATH_TO_DATA,\
            #                            ['MR', 'CR', 'MPQA','TREC', 'MRPC','SICKEntailment', 'SICKRelatedness', 'STSBenchmark',
            #                      'Length', 'WordContent', 'Depth','BigramShift','OddManOut', 'CoordinationInversion'])
            #            print ('results', results)
            #            torch.cuda.empty_cache()
            model.train()
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                #print (input_ids.shape , input_mask.shape, segment_ids.shape, label_ids.shape)
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                print('loss', loss)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
            ####save model after each epoch
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self

            # If we save using the predefined names, we can load using `from_pretrained`
            output_model_file = os.path.join(
                args.output_dir,
                WEIGHTS_NAME + finetuning_task + '_epoch_' + str(epoch))
            output_config_file = os.path.join(
                args.output_dir,
                CONFIG_NAME + finetuning_task + '_epoch_' + str(epoch))

            torch.save(model_to_save.state_dict(), output_model_file)
            model_to_save.config.to_json_file(output_config_file)

    if args.do_train:
        #        # Save a trained model, configuration and tokenizer
        #        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        #
        #        # If we save using the predefined names, we can load using `from_pretrained`
        #        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        #        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        #
        #        torch.save(model_to_save.state_dict(), output_model_file)
        #        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)
예제 #14
0
def main(dn, dev, batch_size, epochs):
    pregenerated_data = Dir(f'data/{dn}.pretrain.temp')
    output_dir = Dir(f'temp/{dn}.bert.pt')
    bert_model = 'bert-base-uncased'
    do_lower_case = TRUE
    reduce_memory = TRUE
    epochs = epochs
    local_rank = -1
    no_cuda = (dev == 'cpu')
    gradient_accumulation_steps = 1
    train_batch_size = batch_size
    fp16 = FALSE
    loss_scale = 0
    warmup_proportion = 0.1
    learning_rate = 3e-5
    seed = 42

    samples_per_epoch = []
    for i in range(epochs):
        epoch_file = pregenerated_data / f'epoch_{i}.json'
        metrics_file = pregenerated_data / f'epoch_{i}_metrics.json'
        if epoch_file.isFile() and metrics_file.isFile():
            metrics = json.loads(metrics_file.file().read())
            samples_per_epoch.append(metrics['num_training_examples'])
        else:
            if i == 0: exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            num_data_epochs = i
            break
    else:
        num_data_epochs = epochs

    if no_cuda: device, n_gpu = 'cpu', 0
    elif local_rank == -1: device, n_gpu = 'cuda', torch.cuda.device_count()
    else:
        torch.cuda.set_device(local_rank)
        device, n_gpu = f'cuda:{local_rank}', 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    pr(device=device,
       n_gpu=n_gpu,
       distributed=(local_rank != -1),
       float16=fp16)

    train_batch_size = train_batch_size // gradient_accumulation_steps

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if n_gpu > 0: torch.cuda.manual_seed_all(seed)

    tokenizer = BertTokenizer.from_pretrained(bert_model,
                                              do_lower_case=do_lower_case)

    total_train_examples = 0
    for i in range(epochs):
        # The modulo takes into account the fact that we may loop over limited epochs of data
        total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]

    num_train_optimization_steps = int(
        total_train_examples / train_batch_size / gradient_accumulation_steps)
    if local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )

    # Prepare model
    model = BertForPreTraining.from_pretrained(bert_model)
    if fp16: model.half()
    model.to(device)
    if local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    warmup_linear = NA
    if fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=warmup_proportion, t_total=num_train_optimization_steps)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=learning_rate,
                             warmup=warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    pr('***** Running training *****')
    pr(num_examples=total_train_examples)
    pr(batch_size=train_batch_size)
    pr(num_steps=num_train_optimization_steps)
    model.train()
    for epoch in range(epochs):
        epoch_dataset = PregeneratedDataset(
            epoch=epoch,
            training_path=pregenerated_data,
            tokenizer=tokenizer,
            num_data_epochs=num_data_epochs,
            reduce_memory=reduce_memory,
        )
        if local_rank == -1:
            train_sampler = RandomSampler(epoch_dataset)
        else:
            train_sampler = DistributedSampler(epoch_dataset)
        train_dataloader = DataLoader(epoch_dataset,
                                      sampler=train_sampler,
                                      batch_size=train_batch_size)
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        with tqdm(total=len(train_dataloader), desc=f"epoch-{epoch}") as pbar:
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids,
                             is_next)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if gradient_accumulation_steps > 1:
                    loss = loss / gradient_accumulation_steps
                if fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                pbar.update(1)
                mean_loss = tr_loss * gradient_accumulation_steps / nb_tr_steps
                pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")
                if (step + 1) % gradient_accumulation_steps == 0:
                    if fp16:
                        # modify learning rate with special warm up BERT uses
                        # if fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = learning_rate * warmup_linear.get_lr(
                            global_step / num_train_optimization_steps,
                            warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    # Save a trained model
    pr('***** Saving fine-tuned model *****')
    model_to_save = model.module if hasattr(
        model, 'module') else model  # Only save the model it-self
    output_model_file = output_dir.add().div('pytorch_model.bin').file()
    torch.save(model_to_save.state_dict(), output_model_file.pathstr())
예제 #15
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument("--bert_original",
                        action='store_true',
                        help="To run for original BERT")
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    args = parser.parse_args()

    processors = {
        "nsp": NSPProcessor,
    }

    num_labels_task = {
        "nsp": 2,
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    processor = processors[task_name]()
    num_labels = num_labels_task[task_name]
    label_list = processor.get_labels()

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=True)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(
            args.local_rank))
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model, cache_dir=cache_dir, num_labels=num_labels)
    print('BERT original model loaded')

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * WarmupLinearSchedule(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    # save model
    torch.save(model.state_dict(), os.path.join(args.output_dir,
                                                'nsp_model.pt'))

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'global_step': global_step,
            'loss': loss
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
예제 #16
0
  def train_label (self, train_dataloader, num_train_optimization_steps, dev_dataloader=None):

    ## update BERT based on how input-label are matched
    ## BERT.emb is used by words in documents

    param_optimizer = list(self.bert_lm_sentence.bert.named_parameters())  # + list (self.metric_module.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']

    # if self.args.average_layer:
    optimizer_grouped_parameters = [
      {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)] , 'weight_decay': 0.01},
      {'params':  [p for n, p in param_optimizer if any(nd in n for nd in no_decay)] +
                  [p for n, p in list(self.metric_module.named_parameters())], 'weight_decay': 0.0}
      ]
    # else:
    #   optimizer_grouped_parameters = [
    #     {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)] , 'weight_decay': 0.01},
    #     {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)] + [p for n, p in list(self.metric_module.named_parameters())] , 'weight_decay': 0.0}
    #     ]

    if self.args.average_layer:
      optimizer_weight = optim.Adam([self.A1], lr=self.args.lr_weight)

    if self.args.fp16:
      from apex.optimizers import FP16_Optimizer
      from apex.optimizers import FusedAdam

      optimizer = FusedAdam(optimizer_grouped_parameters,
                            lr=self.args.learning_rate,
                            bias_correction=False,
                            max_grad_norm=1.0)

      if self.args.loss_scale == 0:
        optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
      else:
        optimizer = FP16_Optimizer(optimizer, static_loss_scale=self.args.loss_scale)

      warmup_linear = WarmupLinearSchedule(warmup=self.args.warmup_proportion,
                                            t_total=num_train_optimization_steps)

    else:
      # does not work with --fp16, runs fine with BertAdam
      optimizer = BertAdam(optimizer_grouped_parameters,
                          lr=self.args.learning_rate,
                          warmup=self.args.warmup_proportion,
                          t_total=num_train_optimization_steps)

    global_step = 0
    eval_acc = 0
    last_best_epoch = 0

    for epoch in range( int(self.args.num_train_epochs_entailment)) :

      self.train() ## turn on train again

      tr_loss = 0

      for step, batch in enumerate(tqdm(train_dataloader, desc="ent. epoch {}".format(epoch))):
        if self.args.use_cuda:
          batch = tuple(t.cuda() for t in batch)
        else:
          batch = tuple(t for t in batch)

        label_desc1, label_len1, label_mask1, label_desc2, label_len2, label_mask2, label_ids = batch

        label_desc1.data = label_desc1.data[ : , 0:int(max(label_len1)) ] # trim down input to max len of the batch
        label_mask1.data = label_mask1.data[ : , 0:int(max(label_len1)) ] # trim down input to max len of the batch
        label_emb1 = self.encode_label_desc(label_desc1,label_len1,label_mask1.type(torch.FloatTensor).cuda())

        label_desc2.data = label_desc2.data[ : , 0:int(max(label_len2)) ]
        label_mask2.data = label_mask2.data[ : , 0:int(max(label_len2)) ]
        label_emb2 = self.encode_label_desc(label_desc2,label_len2,label_mask2.type(torch.FloatTensor).cuda())

        loss, score = self.metric_module.forward(label_emb1, label_emb2, true_label=label_ids)

        if self.args.gradient_accumulation_steps > 1:
          loss = loss / self.args.gradient_accumulation_steps

        if self.args.fp16:
          optimizer.backward(loss)
        else:
          loss.backward()

        tr_loss = tr_loss + loss

        if (step + 1) % self.args.gradient_accumulation_steps == 0:
          if self.args.fp16:
            # modify learning rate with special warm up BERT uses
            # if args.fp16 is False, BertAdam is used that handles this automatically
            lr_this_step = self.args.learning_rate * warmup_linear.get_lr(global_step, self.args.warmup_proportion)
            for param_group in optimizer.param_groups:
              param_group['lr'] = lr_this_step

          optimizer.step()
          optimizer.zero_grad()
          global_step += 1

        if self.args.average_layer: ## must bound weights after calling @optimizer.step
          optimizer_weight.step()
          optimizer_weight.zero_grad()
          self.A1.data[self.A1.data < 0] = 0.000001 ## exact 0 may not give any derivative
          self.A1.data[self.A1.data > 1] = 0.999999

      if self.args.average_layer:
        print ('\nsee 1st few weight\n')
        print (self.A1[0:100])
        print ('\n\n')

      print ("\ntrain inner epoch {} loss {}".format(epoch,tr_loss))
      # eval at each epoch
      # print ('\neval on train data inner epoch {}'.format(epoch)) ## too slow, takes 5 mins, we should just skip
      # result, preds = self.eval_label(train_dataloader)

      print ('\neval on dev data inner epoch {}'.format(epoch))
      result, preds = self.eval_label(dev_dataloader)

      if eval_acc < result["acc"]:
        eval_acc = result["acc"] ## better acc
        print ("save best")
        torch.save(self.state_dict(), os.path.join(self.args.result_folder,"best_state_dict.pytorch"))
        last_best_epoch = epoch

      if epoch - last_best_epoch > 3:
        print ('\n\n\n**** break early \n\n\n')
        return tr_loss

    return tr_loss # last train loss
예제 #17
0
  def update_bert (self,num_data_epochs,num_train_optimization_steps):

    ## **** SHOULD NOT DO THIS OFTEN TO AVOID SLOW RUN TIME ****

    ## WITH CURRENT APEX CODE, WE WILL SEE ERROR FOR THE PARAMS NOT USED, ADDED A FIX, SO FOR NOW, WE CAN USE FP16
    ## https://github.com/NVIDIA/apex/issues/131

    param_optimizer = list(self.bert_lm_sentence.named_parameters())

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
      {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
      {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
      ]

    if self.args.fp16:
      try:
        from apex.optimizers import FP16_Optimizer
        from apex.optimizers import FusedAdam
      except ImportError:
        raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

      optimizer = FusedAdam(optimizer_grouped_parameters,
                            lr=self.args.learning_rate,
                            bias_correction=False,
                            max_grad_norm=1.0)


      if self.args.loss_scale == 0:
        optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
      else:
        optimizer = FP16_Optimizer(optimizer, static_loss_scale=self.args.loss_scale)

      warmup_linear = WarmupLinearSchedule(warmup=self.args.warmup_proportion,
                                            t_total=num_train_optimization_steps)

    else:
      optimizer = BertAdam(optimizer_grouped_parameters,
                            lr=self.args.learning_rate,
                            warmup=self.args.warmup_proportion,
                            t_total=num_train_optimization_steps)

    self.bert_lm_sentence.train()

    global_step = 0

    for epoch in range( int(self.args.num_train_epochs_bert) ) :

      ## call the pregenerated dataset
      epoch_dataset = PregeneratedDataset(epoch=epoch, training_path=self.args.pregenerated_data, tokenizer=self.tokenizer, num_data_epochs=num_data_epochs, reduce_memory=self.args.reduce_memory)
      train_sampler = RandomSampler(epoch_dataset)
      train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=self.args.batch_size_pretrain_bert)

      ## now do training
      tr_loss = 0
      nb_tr_examples, nb_tr_steps = 0, 0

      for step, batch in enumerate(tqdm(train_dataloader, desc="bert epoch {}".format(epoch))):
        if self.args.use_cuda:
          batch = tuple(t.cuda() for t in batch)
        else:
          batch = tuple(t for t in batch)

        input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch # https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/examples/lm_finetuning/finetune_on_pregenerated.py#L298

        loss = self.bert_lm_sentence(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_lm_labels=lm_label_ids, next_sentence_label=is_next)

        if self.args.gradient_accumulation_steps > 1:
          loss = loss / self.args.gradient_accumulation_steps

        if self.args.fp16:
          optimizer.backward(loss)
        else:
          loss.backward()

        tr_loss += loss.item()
        nb_tr_examples += input_ids.size(0)
        nb_tr_steps += 1
        mean_loss = tr_loss * self.args.gradient_accumulation_steps / nb_tr_steps

        if (step + 1) % self.args.gradient_accumulation_steps == 0:
          if self.args.fp16:
            # modify learning rate with special warm up BERT uses
            # if args.fp16 is False, BertAdam is used that handles this automatically
            lr_this_step = self.args.learning_rate * warmup_linear.get_lr(global_step, self.args.warmup_proportion)
            for param_group in optimizer.param_groups:
              param_group['lr'] = lr_this_step

          optimizer.step()
          optimizer.zero_grad()
          global_step += 1

    return mean_loss
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument("--vocab_file",
                        default='bert-base-uncased-vocab.txt',
                        type=str,
                        required=True)
    parser.add_argument("--model_file",
                        default='bert-base-uncased.tar.gz',
                        type=str,
                        required=True)
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model checkpoints and predictions will be written."
    )
    parser.add_argument(
        "--predict_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the predictions will be written.")

    # Other parameters
    parser.add_argument("--train_file",
                        default=None,
                        type=str,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json"
    )
    parser.add_argument("--test_file", default=None, type=str)
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded."
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help=
        "The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_predict",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--predict_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for predictions.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=2.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
        "of training.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help=
        "The total number of n-best predictions to generate in the nbest_predictions.json "
        "output file.")
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help=
        "The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.")
    parser.add_argument(
        "--verbose_logging",
        default=False,
        action='store_true',
        help=
        "If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--view_id',
                        type=int,
                        default=1,
                        help="view id of multi-view co-training(two-view)")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--save_all', default=False, action='store_true')

    # Base setting
    parser.add_argument('--pretrain', type=str, default=None)
    parser.add_argument('--max_ctx', type=int, default=2)
    parser.add_argument('--task_name', type=str, default='race')
    parser.add_argument('--bert_name', type=str, default='pool-race')
    parser.add_argument('--reader_name', type=str, default='race')
    parser.add_argument('--per_eval_step', type=int, default=10000000)
    # model parameters
    parser.add_argument('--evidence_lambda', type=float, default=0.8)
    # Parameters for running labeling model
    parser.add_argument('--do_label', default=False, action='store_true')
    parser.add_argument('--sentence_id_file', nargs='*')
    parser.add_argument('--weight_threshold', type=float, default=0.0)
    parser.add_argument('--only_correct', default=False, action='store_true')
    parser.add_argument('--label_threshold', type=float, default=0.0)
    parser.add_argument('--multi_evidence', default=False, action='store_true')
    parser.add_argument('--metric', default='accuracy', type=str)
    parser.add_argument('--num_evidence', default=1, type=int)
    parser.add_argument('--power_length', default=1., type=float)
    parser.add_argument('--num_choices', default=4, type=int)
    parser.add_argument('--split_type', default=0, type=int)
    parser.add_argument('--use_gumbel', default=False, action='store_true')
    parser.add_argument('--sample_steps', type=int, default=10)
    parser.add_argument('--reward_func', type=int, default=0)
    parser.add_argument('--freeze_bert', default=False, action='store_true')

    args = parser.parse_args()

    logger = setting_logger(args.output_dir)
    logger.info('================== Program start. ========================')
    logger.info(
        f'================== Running with seed {args.seed} =========================='
    )

    model_params = prepare_model_params(args)
    read_params = prepare_read_params(args)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict and not args.do_label:
        raise ValueError(
            "At least one of `do_train` or `do_predict` or `do_label` must be True."
        )

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified."
            )

    if args.do_train:
        if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
            raise ValueError(
                "Output directory () already exists and is not empty.")
        os.makedirs(args.output_dir, exist_ok=True)

    if args.do_predict or args.do_label:
        os.makedirs(args.predict_dir, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.vocab_file)

    data_reader = initialize_reader(args.reader_name)

    num_train_steps = None
    if args.do_train or args.do_label:
        train_examples = data_reader.read(input_file=args.train_file,
                                          **read_params)

        cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}_{4}_{5}'.format(
            args.bert_model, str(args.max_seq_length), str(args.doc_stride),
            str(args.max_query_length), str(args.max_ctx), str(args.task_name))

        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except FileNotFoundError:
            train_features = data_reader.convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s",
                            cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)

        num_train_steps = int(
            len(train_features) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    if args.pretrain is not None:
        logger.info('Load pretrained model from {}'.format(args.pretrain))
        model_state_dict = torch.load(args.pretrain, map_location='cuda:0')
        model = initialize_model(args.bert_name,
                                 args.model_file,
                                 state_dict=model_state_dict,
                                 **model_params)
    else:
        model = initialize_model(args.bert_name, args.model_file,
                                 **model_params)

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())

    # Remove frozen parameters
    param_optimizer = [n for n in param_optimizer if n[1].requires_grad]

    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    t_total = num_train_steps if num_train_steps is not None else -1
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                             t_total=t_total)
        logger.info(
            f"warm up linear: warmup = {warmup_linear.warmup}, t_total = {warmup_linear.t_total}."
        )
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)

    # Prepare data
    eval_examples = data_reader.read(input_file=args.predict_file,
                                     **read_params)
    eval_features = data_reader.convert_examples_to_features(
        examples=eval_examples,
        tokenizer=tokenizer,
        max_seq_length=args.max_seq_length)

    eval_tensors = data_reader.data_to_tensors(eval_features)
    eval_data = TensorDataset(*eval_tensors)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data,
                                 sampler=eval_sampler,
                                 batch_size=args.predict_batch_size)

    if args.do_train:

        if args.do_label:
            logger.info('Training in State Wise.')
            sentence_label_file = args.sentence_id_file
            if sentence_label_file is not None:
                for file in sentence_label_file:
                    train_features = data_reader.generate_features_sentence_ids(
                        train_features, file)
            else:
                logger.info('No sentence id supervision is found.')
        else:
            logger.info('Training in traditional way.')

        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Num train total optimization steps = %d", t_total)
        logger.info("  Batch size = %d", args.predict_batch_size)
        train_loss = AverageMeter()
        best_acc = 0.0
        best_loss = 1000000
        summary_writer = SummaryWriter(log_dir=args.output_dir)
        global_step = 0
        eval_loss = AverageMeter()
        eval_accuracy = CategoricalAccuracy()
        eval_epoch = 0

        train_tensors = data_reader.data_to_tensors(train_features)
        train_data = TensorDataset(*train_tensors)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        for epoch in range(int(args.num_train_epochs)):
            logger.info(f'Running at Epoch {epoch}')
            # Train
            for step, batch in enumerate(
                    tqdm(train_dataloader,
                         desc="Iteration",
                         dynamic_ncols=True)):
                model.train()
                if n_gpu == 1:
                    batch = batch_to_device(
                        batch, device)  # multi-gpu does scattering it-self
                inputs = data_reader.generate_inputs(
                    batch, train_features, model_state=ModelState.Train)
                model_output = model(**inputs)
                loss = model_output['loss']
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    # if args.fp16 is False, BertAdam is used and handles this automatically
                    if args.fp16:
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                        summary_writer.add_scalar('lr', lr_this_step,
                                                  global_step)
                    else:
                        summary_writer.add_scalar('lr',
                                                  optimizer.get_lr()[0],
                                                  global_step)

                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                    train_loss.update(loss.item(), 1)
                    summary_writer.add_scalar('train_loss', train_loss.avg,
                                              global_step)
                    # logger.info(f'Train loss: {train_loss.avg}')

                if (step + 1) % args.per_eval_step == 0 or step == len(
                        train_dataloader) - 1:
                    # Evaluation
                    model.eval()
                    logger.info("Start evaluating")
                    for _, eval_batch in enumerate(
                            tqdm(eval_dataloader,
                                 desc="Evaluating",
                                 dynamic_ncols=True)):
                        if n_gpu == 1:
                            eval_batch = batch_to_device(
                                eval_batch,
                                device)  # multi-gpu does scattering it-self
                        inputs = data_reader.generate_inputs(
                            eval_batch,
                            eval_features,
                            model_state=ModelState.Evaluate)
                        with torch.no_grad():
                            output_dict = model(**inputs)
                            loss, choice_logits = output_dict[
                                'loss'], output_dict['choice_logits']
                            eval_loss.update(loss.item(), 1)
                            eval_accuracy(choice_logits, inputs["labels"])

                    eval_epoch_loss = eval_loss.avg
                    summary_writer.add_scalar('eval_loss', eval_epoch_loss,
                                              eval_epoch)
                    eval_loss.reset()
                    current_acc = eval_accuracy.get_metric(reset=True)
                    summary_writer.add_scalar('eval_acc', current_acc,
                                              eval_epoch)
                    torch.cuda.empty_cache()

                    if args.save_all:
                        model_to_save = model.module if hasattr(
                            model,
                            'module') else model  # Only save the model it-self
                        output_model_file = os.path.join(
                            args.output_dir, f"pytorch_model_{eval_epoch}.bin")
                        torch.save(model_to_save.state_dict(),
                                   output_model_file)

                    if current_acc > best_acc:
                        best_acc = current_acc
                        model_to_save = model.module if hasattr(
                            model,
                            'module') else model  # Only save the model it-self
                        output_model_file = os.path.join(
                            args.output_dir, "pytorch_model.bin")
                        torch.save(model_to_save.state_dict(),
                                   output_model_file)
                    if eval_epoch_loss < best_loss:
                        best_loss = eval_epoch_loss
                        model_to_save = model.module if hasattr(
                            model,
                            'module') else model  # Only save the model it-self
                        output_model_file = os.path.join(
                            args.output_dir, "pytorch_loss_model.bin")
                        torch.save(model_to_save.state_dict(),
                                   output_model_file)

                    logger.info(
                        'Eval Epoch: %d, Accuracy: %.4f (Best Accuracy: %.4f)'
                        % (eval_epoch, current_acc, best_acc))
                    eval_epoch += 1
            logger.info(
                f'Epoch {epoch}: Accuracy: {best_acc}, Train Loss: {train_loss.avg}'
            )
        summary_writer.close()

    for output_model_name in ["pytorch_model.bin", "pytorch_loss_model.bin"]:
        # Loading trained model
        output_model_file = os.path.join(args.output_dir, output_model_name)
        model_state_dict = torch.load(output_model_file, map_location='cuda:0')
        model = initialize_model(args.bert_name,
                                 args.model_file,
                                 state_dict=model_state_dict,
                                 **model_params)
        model.to(device)

        # Write Yes/No predictions
        if args.do_predict and (args.local_rank == -1
                                or torch.distributed.get_rank() == 0):

            test_examples = data_reader.read(args.test_file)
            test_features = data_reader.convert_examples_to_features(
                test_examples, tokenizer, args.max_seq_length)

            test_tensors = data_reader.data_to_tensors(test_features)
            test_data = TensorDataset(*test_tensors)
            test_sampler = SequentialSampler(test_data)
            test_dataloader = DataLoader(test_data,
                                         sampler=test_sampler,
                                         batch_size=args.predict_batch_size)

            logger.info("***** Running predictions *****")
            logger.info("  Num orig examples = %d", len(test_examples))
            logger.info("  Num split examples = %d", len(test_features))
            logger.info("  Batch size = %d", args.predict_batch_size)

            model.eval()
            all_results = []
            test_acc = CategoricalAccuracy()
            logger.info("Start predicting yes/no on Dev set.")
            for batch in tqdm(test_dataloader, desc="Testing"):
                if n_gpu == 1:
                    batch = batch_to_device(
                        batch, device)  # multi-gpu does scattering it-self
                inputs = data_reader.generate_inputs(
                    batch, test_features, model_state=ModelState.Evaluate)
                with torch.no_grad():
                    batch_choice_logits = model(**inputs)['choice_logits']
                    test_acc(batch_choice_logits, inputs['labels'])
                example_indices = batch[-1]
                for i, example_index in enumerate(example_indices):
                    choice_logits = batch_choice_logits[i].detach().cpu(
                    ).tolist()

                    test_feature = test_features[example_index.item()]
                    unique_id = int(test_feature.unique_id)

                    all_results.append(
                        RawResultChoice(unique_id=unique_id,
                                        choice_logits=choice_logits))

            if "loss" in output_model_name:
                logger.info(
                    'Predicting question choice on test set using model with lowest loss on validation set.'
                )
                output_prediction_file = os.path.join(args.predict_dir,
                                                      'loss_predictions.json')
            else:
                logger.info(
                    'Predicting question choice on test set using model with best accuracy on validation set,'
                )
                output_prediction_file = os.path.join(args.predict_dir,
                                                      'predictions.json')
            data_reader.write_predictions(test_examples, test_features,
                                          all_results, output_prediction_file)
            logger.info(
                f"Accuracy on Test set: {test_acc.get_metric(reset=True)}")

    # Loading trained model.
    if args.metric == 'accuracy':
        logger.info("Load model with best accuracy on validation set.")
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
    elif args.metric == 'loss':
        logger.info("Load model with lowest loss on validation set.")
        output_model_file = os.path.join(args.output_dir,
                                         "pytorch_loss_model.bin")
    else:
        raise RuntimeError(
            f"Wrong metric type for {args.metric}, which must be in ['accuracy', 'loss']."
        )
    model_state_dict = torch.load(output_model_file, map_location='cuda:0')
    model = initialize_model(args.bert_name,
                             args.model_file,
                             state_dict=model_state_dict,
                             **model_params)
    model.to(device)

    # Labeling sentence id.
    if args.do_label and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):

        f = open('debug_log.txt', 'w')

        def softmax(x):
            """Compute softmax values for each sets of scores in x."""
            e_x = np.exp(x - np.max(x))
            return e_x / e_x.sum()

        def topk(sentence_sim):
            """
            :param sentence_sim: numpy
            :return:
            """
            max_length = min(args.num_evidence, len(sentence_sim))
            sorted_scores = np.array(sorted(sentence_sim, reverse=True))
            scores = []
            for idx in range(max_length):
                scores.append(np.log(softmax(sorted_scores[idx:])[0]))
            scores = [np.mean(scores[:(j + 1)]) for j in range(max_length)]
            top_k = int(np.argmax(scores) + 1)
            sorted_scores = sorted(enumerate(sentence_sim),
                                   key=lambda x: x[1],
                                   reverse=True)
            evidence_ids = [x[0] for x in sorted_scores[:top_k]]
            sentence = {
                'sentences': evidence_ids,
                'value': float(np.exp(scores[top_k - 1]))
            }
            return sentence

        def batch_topk(sentence_sim, sentence_mask):
            batch_size = sentence_sim.size(0)
            num_choices = sentence_sim.size(1)
            sentence_sim = sentence_sim.numpy() + 1e-15
            sentence_mask = sentence_mask.numpy()
            sentence_ids = []
            for b in range(batch_size):
                choice_sentence_ids = [
                    topk(_sim[:int(sum(_mask))])
                    for _sim, _mask in zip(sentence_sim[b], sentence_mask[b])
                ]
                assert len(choice_sentence_ids) == num_choices
                sentence_ids.append(choice_sentence_ids)
            return sentence_ids

        test_examples = train_examples
        test_features = train_features

        test_tensors = data_reader.data_to_tensors(test_features)
        test_data = TensorDataset(*test_tensors)
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.predict_batch_size)

        logger.info("***** Running labeling *****")
        logger.info("  Num orig examples = %d", len(test_examples))
        logger.info("  Num split examples = %d", len(test_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        model.eval()
        all_results = []
        logger.info("Start labeling.")
        for batch in tqdm(test_dataloader, desc="Testing"):
            if n_gpu == 1:
                batch = batch_to_device(batch, device)
            inputs = data_reader.generate_inputs(batch,
                                                 test_features,
                                                 model_state=ModelState.Test)
            with torch.no_grad():
                output_dict = model(**inputs)
                batch_choice_logits, batch_sentence_logits = output_dict[
                    "choice_logits"], output_dict["sentence_logits"]
                batch_sentence_mask = output_dict["sentence_mask"]
            example_indices = batch[-1]
            # batch_beam_results = batch_choice_beam_search(batch_sentence_logits, batch_sentence_mask)
            batch_topk_results = batch_topk(batch_sentence_logits,
                                            batch_sentence_mask)
            for i, example_index in enumerate(example_indices):
                choice_logits = batch_choice_logits[i].detach().cpu()
                evidence_list = batch_topk_results[i]

                test_feature = test_features[example_index.item()]
                unique_id = int(test_feature.unique_id)

                all_results.append(
                    RawOutput(unique_id=unique_id,
                              model_output={
                                  "choice_logits": choice_logits,
                                  "evidence_list": evidence_list
                              }))

        output_prediction_file = os.path.join(args.predict_dir,
                                              'sentence_id_file.json')
        data_reader.predict_sentence_ids(
            test_examples,
            test_features,
            all_results,
            output_prediction_file,
            weight_threshold=args.weight_threshold,
            only_correct=args.only_correct,
            label_threshold=args.label_threshold)
예제 #19
0
def run_classifier_w_args(args):
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mnli-mm": MnliMismatchedProcessor,
        "mrpc": MrpcProcessor,
        "sst-2": Sst2Processor,
        "sts-b": StsbProcessor,
        "qqp": QqpProcessor,
        "qnli": QnliProcessor,
        "rte": RteProcessor,
        "wnli": WnliProcessor,
    }

    output_modes = {
        "cola": "classification",
        "mnli": "classification",
        "mrpc": "classification",
        "sst-2": "classification",
        "sts-b": "regression",
        "qqp": "classification",
        "qnli": "classification",
        "rte": "classification",
        "wnli": "classification",
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    # if os.path.exists(args.output_dir) and os.listdir(
    #         args.output_dir) and args.do_train:
    #     raise ValueError(
    #         "Output directory ({}) already exists and is not empty.".format(
    #             args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        # train_examples = processor.get_train_examples(args.data_dir)
        train_examples = processor.get_dev_examples(args.data_dir)

        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model,
        cache_dir=cache_dir,
        num_labels=num_labels,
        config_dir=args.config_dir,
        config=args.config)

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer, output_mode)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()

        activations = []
        activation = {}

        def get_activation(name):
            def hook(model, input, output):
                activation[name] = output.detach().cpu()

            return hook

        import copy
        for name, layer in model.module.bert.encoder.layer._modules.items():
            # output module has layernorm, and dropout is not considered
            # if name is 'output' or name is 'dropout' or name is 'layernorm':
            #     continue
            # If module has children, recursively add quant activation to the
            # sub-modules of the module.
            layer.register_forward_hook(get_activation(name))

        for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch

            # define a new function to compute loss values for both output_modes
            logits = model(input_ids, segment_ids, input_mask, labels=None)
            activations.append(copy.deepcopy(activation))
            activation = {}
        import pickle
        outfile = open(os.path.join(args.output_dir, 'activations'), 'wb')
        pickle.dump(activations, outfile)
        outfile.close()
예제 #20
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--train_corpus",
                        default=None,
                        type=str,
                        required=True,
                        help="The input train corpus.")
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--on_memory",
        action='store_true',
        help="Whether to load train samples into memory or use disk")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train:
        raise ValueError(
            "Training is currently the only implemented execution option. Please set `do_train`."
        )

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    #train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        print("Loading Train Dataset", args.train_corpus)
        train_dataset = BERTDataset(args.train_corpus,
                                    tokenizer,
                                    seq_len=args.max_seq_length,
                                    corpus_lines=None,
                                    on_memory=args.on_memory)
        num_train_optimization_steps = int(
            len(train_dataset) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    model = BertForPreTraining.from_pretrained(args.bert_model)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    if not args.do_train:
        return

    def save():
        # Save a trained model
        logger.info("** ** * Saving fine - tuned model ** ** * ")
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        torch.save(model_to_save.state_dict(), output_model_file)

    global_step = 0
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Batch size = %d", args.train_batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)

    if args.local_rank == -1:
        train_sampler = RandomSampler(train_dataset)
    else:
        #TODO: check if this works with current data generator from disk that relies on next(file)
        # (it doesn't return item back by index)
        train_sampler = DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  num_workers=2)

    model.train()
    nb_tr_examples, nb_tr_steps = 0, 0
    try:
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_losses = deque(maxlen=20)
            pbar = tqdm(train_dataloader, desc="Iteration")
            for step, batch in enumerate(pbar):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids,
                             is_next)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                tr_losses.append(loss.item())
                pbar.set_postfix(loss=f'{np.mean(tr_losses):.4f}')
                if (step + 1) % 20 == 0:
                    json_log_plots.write_event(Path(args.output_dir),
                                               nb_tr_examples,
                                               loss=np.mean(tr_losses))
                if (step + 1) % 10000 == 0:
                    save()

    except KeyboardInterrupt:
        print('Ctrl+C pressed, saving checkpoint')
        save()
        raise
    save()
예제 #21
0
def main():
    logger.info("Running %s" % ' '.join(sys.argv))

    parser = argparse.ArgumentParser()
    ## Required parameters
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--data_dir",
        default="data/",
        type=str,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--output_dir",
        default="checkpoints/predictor/",
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument(
        "--load_dir",
        type=str,
        help=
        "The output directory where the model checkpoints will be loaded during evaluation"
    )
    parser.add_argument('--load_step',
                        type=int,
                        default=0,
                        help="The checkpoint step to be loaded")
    parser.add_argument("--fact",
                        default="first",
                        choices=["first", "second"],
                        type=str,
                        help="Whether to put fact in front.")
    parser.add_argument(
        "--test_set",
        default="dev",
        choices=["dev", "test", "simple_test", "complex_test", "small_test"],
        help="Which test set is used for evaluation",
        type=str)
    parser.add_argument("--train_batch_size",
                        default=18,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=18,
                        type=int,
                        help="Total batch size for eval.")
    ## Other parameters
    parser.add_argument(
        "--bert_model",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default="QQP",
                        type=str,
                        help="The name of the task to train.")
    parser.add_argument('--period', type=int, default=500)
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=256,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=20.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()
    pprint(vars(args))
    sys.stdout.flush()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "qqp": QqpProcessor,
    }

    output_modes = {
        "qqp": "classification",
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    logger.info(
        "Datasets are loaded from {}\n Outputs will be saved to {}".format(
            args.data_dir, args.output_dir))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    if args.load_dir:
        load_dir = args.load_dir
    else:
        load_dir = args.bert_model

    model = BertForSequenceClassification.from_pretrained(
        load_dir, cache_dir=cache_dir, num_labels=num_labels)

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    global_step = 0
    tr_loss = 0
    best_F1 = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer, output_mode)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for epoch in range(int(args.num_train_epochs)):
            logger.info("Training epoch {} ...".format(epoch))
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                loss_fct = BCEWithLogitsLoss()

                loss = loss_fct(logits.view(-1, 1), label_ids.view(-1, 1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()

                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    model.zero_grad()
                    global_step += 1

                if (step + 1) % args.period == 0:
                    # Save a trained model, configuration and tokenizer
                    model_to_save = model.module if hasattr(
                        model, 'module') else model

                    # If we save using the predefined names, we can load using `from_pretrained`
                    model.eval()
                    torch.set_grad_enabled(False)  # turn off gradient tracking
                    F1 = evaluate(args, model, device, processor, label_list,
                                  num_labels, tokenizer, output_mode)

                    if F1 > best_F1:
                        output_dir = os.path.join(
                            args.output_dir,
                            'save_step_{}'.format(global_step))
                        if not os.path.exists(output_dir):
                            os.makedirs(output_dir)

                        output_model_file = os.path.join(
                            output_dir, WEIGHTS_NAME)
                        output_config_file = os.path.join(
                            output_dir, CONFIG_NAME)

                        torch.save(model_to_save.state_dict(),
                                   output_model_file)
                        model_to_save.config.to_json_file(output_config_file)
                        tokenizer.save_vocabulary(output_dir)

                        best_F1 = F1

                    model.train()  # turn on train mode
                    torch.set_grad_enabled(True)  # start gradient tracking
                    tr_loss = 0

    # do eval before exit
    if args.do_eval:
        if not args.do_train:
            global_step = 0
            output_dir = None
        save_dir = output_dir if output_dir is not None else args.load_dir
        load_step = args.load_step

        if args.load_dir is not None:
            load_step = int(
                os.path.split(args.load_dir)[1].replace('save_step_', ''))
            print("load_step = {}".format(load_step))

        F1 = evaluate(args, model, device, processor, label_list, num_labels,
                      tokenizer, output_mode)

        with open("test_result.txt", 'a') as f:
            print("load step: {} F1: {}".format(str(load_step), str(F1)),
                  file=f)
예제 #22
0
def BertSquad(file="",
              mode='predict',
              bert_model="bert-base-uncased",
              output='./output'):
    parser = {}

    parser["bert_model"] = bert_model
    parser["output_dir"] = output
    parser["train_file"] = file
    parser["predict_file"] = file
    parser["max_seq_length"] = 384
    parser["doc_stride"] = 128
    parser["max_query_length"] = 64
    parser["do_train"] = mode == 'train'
    parser["do_predict"] = mode == 'predict'
    parser["train_batch_size"] = 32
    parser["predict_batch_size"] = 8
    parser["learning_rate"] = 5e-5
    parser["num_train_epochs"] = 3.0
    parser["warmup_proportion"] = 0.1
    parser["n_best_size"] = 20
    parser["max_answer_length"] = 30
    parser["verbose_logging"] = False
    parser["no_cuda"] = False
    parser['seed'] = 42
    parser['gradient_accumulation_steps'] = 1
    parser["do_lower_case"] = ('uncased' in bert_model)
    parser["local_rank"] = -1
    parser['fp16'] = False
    parser['overwrite_output_dir'] = False
    parser['loss_scale'] = 0
    parser['version_2_with_negative'] = False
    parser['null_score_diff_threshold'] = 0.0
    parser['server_ip'] = ''
    parser['server_port'] = ''

    args = AttrDict.AttrDict(parser)
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified."
            )

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory () already exists and is not empty.")
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)
    model = BertForQuestionAnswering.from_pretrained(args.bert_model)
    if args.local_rank == 0:
        torch.distributed.barrier()

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.do_train:
        if args.local_rank in [-1, 0]:
            tb_writer = SummaryWriter()
        # Prepare data loader
        train_examples = read_squad_examples(
            input_file=args.train_file,
            is_training=True,
            version_2_with_negative=args.version_2_with_negative)
        cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}'.format(
            list(filter(None, args.bert_model.split('/'))).pop(),
            str(args.max_seq_length), str(args.doc_stride),
            str(args.max_query_length))
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s",
                            cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_start_positions = torch.tensor(
            [f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor(
            [f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_start_positions,
                                   all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)

        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        num_train_optimization_steps = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
        # if args.local_rank != -1:
        #     num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

        # Prepare optimizer
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)
        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

        global_step = 0

        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        model.train()
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            for step, batch in enumerate(
                    tqdm(train_dataloader,
                         desc="Iteration",
                         disable=args.local_rank not in [-1, 0])):
                if n_gpu == 1:
                    batch = tuple(
                        t.to(device)
                        for t in batch)  # multi-gpu does scattering it-self
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
                loss = model(input_ids, segment_ids, input_mask,
                             start_positions, end_positions)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used and handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
                    if args.local_rank in [-1, 0]:
                        tb_writer.add_scalar('lr',
                                             optimizer.get_lr()[0],
                                             global_step)
                        tb_writer.add_scalar('loss', loss.item(), global_step)

    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForQuestionAnswering.from_pretrained(args.output_dir)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)

        # Good practice: save your training arguments together with the trained model
        output_args_file = os.path.join(args.output_dir, 'training_args.bin')
        torch.save(args, output_args_file)
    else:
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForQuestionAnswering.from_pretrained(args.output_dir)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)

    model.to(device)

    if args.do_predict and (args.local_rank == -1
                            or torch.distributed.get_rank() == 0):
        eval_examples = read_squad_examples(
            input_file=args.predict_file,
            is_training=False,
            version_2_with_negative=args.version_2_with_negative)
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False)

        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0),
                                         dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_example_index)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.predict_batch_size)

        model.eval()
        all_results = []
        logger.info("Start evaluating")
        for input_ids, input_mask, segment_ids, example_indices in tqdm(
                eval_dataloader,
                desc="Evaluating",
                disable=args.local_rank not in [-1, 0]):
            if len(all_results) % 1000 == 0:
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(
                    input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(
                    RawResult(unique_id=unique_id,
                              start_logits=start_logits,
                              end_logits=end_logits))
        output_prediction_file = os.path.join(args.output_dir,
                                              "predictions.json")
        output_nbest_file = os.path.join(args.output_dir,
                                         "nbest_predictions.json")
        output_null_log_odds_file = os.path.join(args.output_dir,
                                                 "null_odds.json")
        write_predictions(eval_examples, eval_features, all_results,
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
                          output_nbest_file, output_null_log_odds_file,
                          args.verbose_logging, args.version_2_with_negative,
                          args.null_score_diff_threshold)
예제 #23
0
def BertSwag(mode = 'eval', bert_model = "bert-base-uncased", data_dir = './SWAG_data'):

    parser = {}

    parser["data_dir"]=data_dir,
    parser["bert_model"]=bert_model,
    parser["output_dir"]=None,
    parser["max_seq_length"]=128,
    parser["do_train"] = (mode == 'train')
    parser["do_eval",] = (mode == 'eval')
    parser["do_lower_case"] = ('uncased' in bert_model)
    parser["train_batch_size"]=32,
    parser["eval_batch_size"]=8,
    parser["learning_rate"]=5e-5,
    parser["num_train_epochs"]=3.0,
    parser["warmup_proportion"]=0.1,
    parser["no_cuda"] = False
    parser["local_rank"] = -1
    parser['seed'] = 42
    parser['gradient_accumulation_steps')
    parser['fp16'] = False
    parser['loss_scale'] = 0

    args = AttrDict.AttrDict(parser)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    # Prepare model
    model = BertForMultipleChoice.from_pretrained(args.bert_model,
        cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)),
        num_choices=4)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.do_train:

        # Prepare data loader

        train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True)
        train_features = convert_examples_to_features(
            train_examples, tokenizer, args.max_seq_length, True)
        all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
        all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
        all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

        # Prepare optimizer

        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)
        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

        global_step = 0

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1


    if args.do_train:
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForMultipleChoice.from_pretrained(args.output_dir, num_choices=4)
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
    else:
        model = BertForMultipleChoice.from_pretrained(args.bert_model, num_choices=4)
    model.to(device)


    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = read_swag_examples(os.path.join(args.data_dir, 'val.csv'), is_training = True)
        eval_features = convert_examples_to_features(
            eval_examples, tokenizer, args.max_seq_length, True)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long)
        all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
        all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
                  'loss': tr_loss/global_step}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
예제 #24
0
def model_train(bert_model,
                max_seq_length,
                do_lower_case,
                num_train_epochs,
                train_batch_size,
                gradient_accumulation_steps,
                learning_rate,
                weight_decay,
                loss_scale,
                warmup_proportion,
                processor,
                device,
                n_gpu,
                fp16,
                cache_dir,
                local_rank,
                dry_run,
                no_cuda,
                output_dir=None,
                model_file=None):

    if gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(gradient_accumulation_steps))

    train_batch_size = train_batch_size // gradient_accumulation_steps

    train_dataloader = processor.get_train_examples(train_batch_size,
                                                    local_rank)

    # Batch sampler divides by batch_size!
    num_train_optimization_steps = int(
        len(train_dataloader) * num_train_epochs / gradient_accumulation_steps)

    if local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )

    # Prepare model
    cache_dir = cache_dir if cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE),
        'distributed_{}'.format(local_rank))

    model = BertForSequenceClassification.from_pretrained(
        bert_model, cache_dir=cache_dir, num_labels=processor.num_labels())

    if fp16:
        model.half()

    model.to(device)

    if local_rank != -1:
        try:
            # noinspection PyPep8Naming
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=loss_scale)

        warmup_linear = WarmupLinearSchedule(
            warmup=warmup_proportion, t_total=num_train_optimization_steps)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=learning_rate,
                             warmup=warmup_proportion,
                             t_total=num_train_optimization_steps)
        warmup_linear = None

    global_step = 0
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataloader))
    logger.info("  Batch size = %d", train_batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)
    logger.info("  Num epochs = %d", num_train_epochs)
    logger.info("  Target learning rate = %f", learning_rate)

    model_config = {
        "bert_model": bert_model,
        "do_lower": do_lower_case,
        "max_seq_length": max_seq_length
    }

    def save_model(lh):

        if output_dir is None:
            return

        if model_file is None:
            output_model_file = os.path.join(
                output_dir, "pytorch_model_ep{}.bin".format(ep))
        else:
            output_model_file = os.path.join(output_dir, model_file)

        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        torch.save(model_to_save.state_dict(), output_model_file)

        output_config_file = os.path.join(output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        json.dump(model_config,
                  open(os.path.join(output_dir, "model_config.json"), "w"))

        lh = pd.DataFrame(lh, columns=['global_step', 'loss'])

        loss_history_file = os.path.join(output_dir,
                                         "loss_ep{}.pkl".format(ep))

        lh.to_pickle(loss_history_file)

    def load_model(epoch):

        if output_dir is None:
            return False

        if model_file is None:
            output_model_file = os.path.join(
                output_dir, "pytorch_model_ep{}.bin".format(epoch))
        else:
            output_model_file = os.path.join(output_dir, model_file)

        if not os.path.exists(output_model_file):
            return False

        logger.info("Loading epoch {} from disk...".format(epoch))
        model.load_state_dict(
            torch.load(output_model_file,
                       map_location=lambda storage, loc: storage
                       if no_cuda else None))
        return True

    model.train()
    for ep in trange(1, int(num_train_epochs) + 1, desc="Epoch"):

        if dry_run and ep > 1:
            logger.info("Dry run. Stop.")
            break

        if model_file is None and load_model(ep):

            global_step += len(train_dataloader) // gradient_accumulation_steps
            continue

        loss_history = list()
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        with tqdm(total=len(train_dataloader), desc=f"Epoch {ep}") as pbar:

            for step, batch in enumerate(train_dataloader):

                batch = tuple(t.to(device) for t in batch)

                input_ids, input_mask, segment_ids, labels = batch

                loss = model(input_ids, segment_ids, input_mask, labels)

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if gradient_accumulation_steps > 1:
                    loss = loss / gradient_accumulation_steps

                if fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                loss_history.append((global_step, loss.item()))

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                pbar.update(1)
                mean_loss = tr_loss * gradient_accumulation_steps / nb_tr_steps
                pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")

                if dry_run and len(loss_history) > 2:
                    logger.info("Dry run. Stop.")
                    break

                if (step + 1) % gradient_accumulation_steps == 0:
                    if fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = learning_rate * warmup_linear.get_lr(
                            global_step, warmup_proportion)

                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step

                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

        save_model(loss_history)

    return model, model_config
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--bert_model_path", default="", type=str, required=False,
                        help="Bert pretrained saved pytorch model path.")
    parser.add_argument("--experiment", default="attention", type=str, required=False,
                        help="4 types: attention, base, long, ablation. "
                        "base: original bert"
                        "long: uses an lstm to keep track of all bert hidden representations, but backprop over the first"
                        "attention: uses an lstm + attention mechanism to backprop over more than the first representation"
                        "ablation: concat all the hidden representations"
                        )
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--cache_dir",
                        default="",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--seq_segments",
                        default=8,
                        type=int,
                        help="The number of sequence steps")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_shuffle",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--super_debug",
                        action='store_true',
                        help="hack for debugging.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    args.device = device

    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
    
    cls_token = tokenizer.convert_tokens_to_ids(["[CLS]"])
    sep_token = tokenizer.convert_tokens_to_ids(["[SEP]"])

    '''if args.super_debug:
        cached_eval_features_file = os.path.join(args.data_dir, 'dev_{0}_{1}_{2}_{3}'.format(
                list(filter(None, args.bert_model.split('/'))).pop(),
                            str(args.max_seq_length),
                            str(task_name),
                            str(args.seq_segments)))

        logger.info("Loading test dataset")
        eval_data =  load_dataset(cached_eval_features_file, args, processor, tokenizer, output_mode, train = False)
        exit()'''
    #model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels = num_labels)
    #model = MyBertForMultiLabelSequenceClassification.from_pretrained(args.bert_model, num_labels = num_labels)
    model = get_model(args, num_labels)

    if args.bert_model_path != "":
        print("Loading model from: " + args.bert_model_path)
        if args.do_train:
            pretrained_dict = torch.load(args.bert_model_path)
            model_dict = model.state_dict()
            # 1. filter out unnecessary keys
            pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
            '''if 'classifier.weight' in pretrained_dict and pretrained_dict['classifier.weight'].shape[0] != num_labels:
                del pretrained_dict['classifier.weight']
                del pretrained_dict['classifier.bias']
            if 'classifier2.weight' in pretrained_dict and pretrained_dict['classifier2.weight'].shape[0] != num_labels:
                del pretrained_dict['classifier2.weight']
                del pretrained_dict['classifier2.bias']'''
            # 2. overwrite entries in the existing state dict
            model_dict.update(pretrained_dict) 
            # 3. load the new state dict
            model.load_state_dict(model_dict)
        else:
            model.load_state_dict(torch.load(args.bert_model_path))
    
    sig = Sigmoid()
    if args.local_rank == 0:
        torch.distributed.barrier()

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model,
                                                          device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
   
    loss_fct = CrossEntropyLoss()
    if args.do_train:
        if args.local_rank in [-1, 0]:
            tb_writer = SummaryWriter()


        cached_train_features_file = os.path.join(args.data_dir, 'train_{0}_{1}_{2}_{3}'.format(
        list(filter(None, args.bert_model.split('/'))).pop(),
                    str(args.max_seq_length),
                    str(task_name),
                    str(args.seq_segments)))

        # Prepare data loader
        logger.info("Loading training dataset")
        train_data =  load_dataset(cached_train_features_file, args, processor, tokenizer, output_mode)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
        

        num_train_optimization_steps = (len(train_dataloader)) // args.gradient_accumulation_steps * args.num_train_epochs

        # Prepare optimizer

        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

        logger.info("***** Running training *****")
        #logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        model.train()
        for i in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, t_batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
                input_ids, input_mask, segment_ids, label_ids = t_batch
                if args.do_shuffle:
                    shuffled_index  = torch.randperm(input_ids.shape[0])

                    shuffled_ids    = input_ids[shuffled_index][:,:256]
                    shuffled_mask   = input_mask[shuffled_index][:,:256]
                    shuffled_seg    = segment_ids[shuffled_index][:,:256]

                    input_ids[:,:256] = shuffled_ids
                    input_mask[:,:256] = shuffled_mask
                    segment_ids[:,:256] = shuffled_seg


                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)


                logits = model(input_ids, segment_ids, input_mask)

                loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) 
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()

                    global_step += 1
                    if args.local_rank in [-1, 0]:
                        acc = np.sum(np.argmax(logits.cpu().detach().numpy(), axis=1) == label_ids.cpu().numpy()) / label_ids.shape[0]
                        tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
                        tb_writer.add_scalar('loss', loss.item(), global_step)
                        tb_writer.add_scalar('acc', acc, global_step)

    ### Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    ### Example:
    output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)

    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        #model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels)
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)

        # Good practice: save your training arguments together with the trained model
        output_args_file = os.path.join(args.output_dir, 'training_args.bin')
        torch.save(args, output_args_file)
        open(os.path.join(args.output_dir, 'experiment_{}.txt'.format(args.experiment)), 'a').close()
    else:
        model = get_model(args, num_labels)
        model.load_state_dict(torch.load(output_model_file))
        model.to(device)
        if args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(model,
                                                              device_ids=[args.local_rank],
                                                              output_device=args.local_rank,
                                                              find_unused_parameters=True)
        elif n_gpu > 1:
            model = torch.nn.DataParallel(model)


    ### Evaluation
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        cached_eval_features_file = os.path.join(args.data_dir, 'dev_{0}_{1}_{2}_{3}'.format(
            list(filter(None, args.bert_model.split('/'))).pop(),
                        str(args.max_seq_length),
                        str(task_name),
                        str(args.seq_segments)))

        logger.info("Loading test dataset")
        eval_data =  load_dataset(cached_eval_features_file, args, processor, tokenizer, output_mode, train = False)
        #import pdb; pdb.set_trace()
        logger.info("***** Running evaluation *****")
        #logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        # Run prediction for full data
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)  # Note that this sampler samples randomly
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss = 0
        nb_eval_steps = 0
        preds = []
        out_label_ids = None

        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask)
               
            
            tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))


            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if output_mode == "multi_classification":
                logits =  sig(logits)

            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
                out_label_ids = label_ids.detach().cpu().numpy()
            else:
                preds[0] = np.append(
                    preds[0], logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(
                    out_label_ids, label_ids.detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        preds = preds[0]
        if output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif output_mode == "regression":
            preds = np.squeeze(preds)
        elif output_mode == "multi_classification":
            preds = preds > .5
        result = compute_metrics(task_name, preds, out_label_ids)

        loss = tr_loss/global_step if args.do_train else None

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss

        output_eval_file = os.path.join(args.output_dir, "eval_results_final.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
예제 #26
0
def main():
    parser = setup_parser()
    args = parser.parse_args()

    processors = {
        'stsb': StsbProcessor,
        'mednli': MednliProcessor,
        'medsts': MedstsProcessor
    }

    output_modes = {
        'mnli': 'classification',
        'stsb': 'regression',
        'mednli': 'classification',
        'medsts': 'regression'
    }

    bert_types = {
        'discharge':
        '/home/dc925/project/data/clinicalbert/biobert_pretrain_output_disch_100000',
        'all':
        '/home/dc925/project/data/clinicalbert/biobert_pretrain_output_all_notes_150000',
        'base_uncased': 'bert-base-uncased',
        'base_cased': 'bert-base-cased'
    }

    ##################################################################################################
    ################################### SETUP DATA, DEVICE, MODEL ####################################
    ##################################################################################################
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device('cuda' if torch.cuda.is_available()
                              and not args.no_cuda else 'cpu')
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device('cuda', args.local_rank)
        n_gpu = 1
        #Initialize the distributed backend which will take care of synchronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))
    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()
    if task_name not in processors:
        raise ValueError("Task not found: {}".format(task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]
    label_list = processor.get_labels(output_mode)
    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model, cache_dir=cache_dir, num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        # model = torch.nn.DataParallel(model)
        model = DataParallelModel(model)

    ##################################################################################################
    ########################################### OPTIMIZER ############################################
    ##################################################################################################

    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']

        if args.discriminative_finetuning:
            group1 = ['layer.0', 'layer.1.']
            group2 = ['layer.2', 'layer.3']
            group3 = ['layer.4', 'layer.5']
            group4 = ['layer.6', 'layer.7']
            group5 = ['layer.8', 'layer.9']
            group6 = ['layer.10', 'layer.11']
            group_all = ['layer.0', 'layer.1.', 'layer.2', 'layer.3', 'layer.4', 'layer.5', \
            'layer.6', 'layer.7', 'layer.8', 'layer.9', 'layer.10', 'layer.11']
            optimizer_grouped_parameters = [
                {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay) and not any(nd in n for nd in group_all)], \
                'weight_decay': 0.01},
                {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay) and any(nd in n for nd in group1)], \
                'weight_decay': 0.01, 'lr': args.learning_rate/2.6**5},
                {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay) and any(nd in n for nd in group2)], \
                'weight_decay': 0.01, 'lr': args.learning_rate/2.6**4},
                {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay) and any(nd in n for nd in group3)], \
                'weight_decay': 0.01, 'lr': args.learning_rate/2.6**3},
                {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay) and any(nd in n for nd in group4)], \
                'weight_decay': 0.01, 'lr': args.learning_rate/2.6**2},
                {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay) and any(nd in n for nd in group5)], \
                'weight_decay': 0.01, 'lr': args.learning_rate/2.6},
                {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay) and any(nd in n for nd in group6)], \
                'weight_decay': 0.01, 'lr': args.learning_rate},

                {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay) and not any(nd in n for nd in group_all)], \
                'weight_decay': 0.0},
                {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay) and any(nd in n for nd in group1)], \
                'weight_decay': 0.0, 'lr': args.learning_rate/2.6**5},
                {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay) and any(nd in n for nd in group2)], \
                'weight_decay': 0.0, 'lr': args.learning_rate/2.6**4},
                {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay) and any(nd in n for nd in group3)], \
                'weight_decay': 0.0, 'lr': args.learning_rate/2.6**3},
                {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay) and any(nd in n for nd in group4)], \
                'weight_decay': 0.0, 'lr': args.learning_rate/2.6**2},
                {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay) and any(nd in n for nd in group5)], \
                'weight_decay': 0.0, 'lr': args.learning_rate/2.6},
                {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay) and any(nd in n for nd in group6)], \
                'weight_decay': 0.0, 'lr': args.learning_rate},
            ]
        else:
            optimizer_grouped_parameters = [{
                'params': [
                    p for n, p in param_optimizer
                    if not any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.01
            }, {
                'params': [
                    p for n, p in param_optimizer
                    if any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.0
            }]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    ##################################################################################################
    ############################################# TRAIN ##############################################
    ##################################################################################################
    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer, output_mode)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, output_mode)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.float)

        all_pids = np.array([f.pid for f in eval_features])

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size,
                                     drop_last=True)

        model.train()
        epoch_metric = {}
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss_fct = DataParallelCriterion(loss_fct)
                    logits = [
                        logits[i].view(-1, num_labels)
                        for i in range(len(logits))
                    ]
                    loss = loss_fct(logits, label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss_fct = DataParallelCriterion(loss_fct)
                    logits = [logits[i].view(-1) for i in range(len(logits))]
                    loss = loss_fct(logits, label_ids.view(-1))
                if n_gpu > 1:
                    loss = loss.mean()  #average on multi-gpu
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        #modify lr with special warm up BERT uses
                        #if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

            with torch.no_grad():
                model.eval()
                eval_loss = 0
                nb_eval_steps = 0
                preds = []
                i = 0

                for input_ids, input_mask, segment_ids, label_ids in tqdm(
                        eval_dataloader, desc="Evaluating"):
                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    label_ids = label_ids.to(device)

                    with torch.no_grad():
                        logits = model(input_ids,
                                       segment_ids,
                                       input_mask,
                                       labels=None)

                    if output_mode == 'classification':
                        # loss_fct = CrossEntropyLoss()
                        # tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
                        loss_fct = CrossEntropyLoss()
                        loss_fct = DataParallelCriterion(loss_fct)
                        logits = [
                            logits[i].view(-1, num_labels)
                            for i in range(len(logits))
                        ]
                        tmp_eval_loss = loss_fct(logits, label_ids.view(-1))
                    elif output_mode == 'regression':
                        # loss_fct = MSELoss()
                        # tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))

                        loss_fct = MSELoss()
                        loss_fct = DataParallelCriterion(loss_fct)
                        logits = [
                            logits[i].view(-1) for i in range(len(logits))
                        ]
                        tmp_eval_loss = loss_fct(logits, label_ids.view(-1))

                    eval_loss += tmp_eval_loss.mean().item()
                    nb_eval_steps += 1
                    logits = parallel.gather(logits, target_device='cuda:0')
                    if len(preds) == 0:
                        preds.append(logits.detach().cpu().numpy())
                    else:
                        preds[0] = np.append(preds[0],
                                             logits.detach().cpu().numpy(),
                                             axis=0)
                eval_loss = eval_loss / nb_eval_steps
                preds = preds[0]
                if output_mode == 'classification':
                    preds = np.argmax(preds, axis=1)
                elif output_mode == 'regression':
                    preds = np.squeeze(preds)

                all_label_ids = all_label_ids[:preds.shape[0]]
                all_pids = all_pids[:preds.shape[0]]
                errors = generate_errors(preds, all_label_ids.numpy(),
                                         all_pids)

                result = compute_metrics(task_name, preds,
                                         all_label_ids.numpy())

                loss = tr_loss / global_step if args.do_train else None

                result['eval_loss'] = eval_loss
                result['global_step'] = global_step
                result['loss'] = loss
                logger.info('***** Eval Results *****')
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))

                epoch_metric[_] = result[
                    'pearson'] if output_mode == 'regression' else result['acc']

        output_eval_file = os.path.join(args.output_dir, 'eval_results.txt')
        with open(output_eval_file, 'w') as writer:
            logger.info('***** Eval Results *****')
            # for key in sorted(result.keys()):
            #     logger.info("  %s = %s", key, str(result[key]))
            #     writer.write("%s = %s\n" % (key, str(result[key])))
            # writer.write("{}     {}\n".format("epoch","pearson"))
            for key in sorted(epoch_metric.keys()):
                writer.write("{}\t{}\t{}\t{}\n".format(key,
                                                       str(epoch_metric[key]),
                                                       args.learning_rate,
                                                       args.train_batch_size))

        errors.to_csv('errors.txt', sep='\t', index=False)

    ##################################################################################################
    ########################################## SAVE & RELOAD #########################################
    ##################################################################################################
    if args.do_train:
        #Save a trained model, config, and tokenizer
        model_to_save = model.module if hasattr(
            model, 'module') else model  #only save the model itself
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)
        model = BertForSequenceClassification.from_pretrained(
            args.output_dir, num_labels=num_labels)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
    else:
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model, num_labels=num_labels)
    model.to(device)
예제 #27
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
                             "of training.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--version_2_with_negative',
                        action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold',
                        type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory () already exists and is not empty.")
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
    model = BertForQuestionAnswering.from_pretrained(args.bert_model)
    if args.local_rank == 0:
        torch.distributed.barrier()

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model,
                                                          device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.do_train:
        if args.local_rank in [-1, 0]:
            tb_writer = SummaryWriter()
        # Prepare data loader
        train_examples = read_squad_examples(
            input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
        cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
            list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)

        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)

        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
        num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
        # if args.local_rank != -1:
        #     num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

        # Prepare optimizer
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)
        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

        global_step = 0

        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        model.train()
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
                loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used and handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
                    if args.local_rank in [-1, 0]:
                        tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
                        tb_writer.add_scalar('loss', loss.item(), global_step)

    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForQuestionAnswering.from_pretrained(args.output_dir)
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)

        # Good practice: save your training arguments together with the trained model
        output_args_file = os.path.join(args.output_dir, 'training_args.bin')
        torch.save(args, output_args_file)
    else:
        model = BertForQuestionAnswering.from_pretrained(args.bert_model)

    model.to(device)

    if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = read_squad_examples(
            input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False)

        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)

        model.eval()
        all_results = []
        logger.info("Start evaluating")
        for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating", disable=args.local_rank not in [-1, 0]):
            if len(all_results) % 1000 == 0:
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
        write_predictions(eval_examples, eval_features, all_results,
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
                          output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                          args.version_2_with_negative, args.null_score_diff_threshold)
예제 #28
0
        from apex.optimizers import FusedAdam
    except ImportError:
        raise ImportError(
            "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
        )

    optimizer = FusedAdam(optimizer_grouped_parameters,
                          lr=args.learning_rate,
                          bias_correction=False,
                          max_grad_norm=1.0)
    if args.loss_scale == 0:
        optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
    else:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale)
    scheduler = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                     t_total=num_train_optimization_steps)
else:
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=num_train_optimization_steps)
    scheduler = None

# get experiment
experiment = ExperimentBuilder(
    network_model=model,
    experiment_name=args.experiment_name,
    num_epochs=1,  # hard code 1 epoch to ensure runtime limit
    gpu_id=args.gpu_id,
    use_gpu=args.use_gpu,
    device=device,
예제 #29
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mnli-mm": MnliMismatchedProcessor,
        "mrpc": MrpcProcessor,
        "sst-2": Sst2Processor,
        "sts-b": StsbProcessor,
        "qqp": QqpProcessor,
        "qnli": QnliProcessor,
        "rte": RteProcessor,
        "wnli": WnliProcessor,
    }

    output_modes = {
        "cola": "classification",
        "mnli": "classification",
        "mrpc": "classification",
        "sst-2": "classification",
        "sts-b": "regression",
        "qqp": "classification",
        "qnli": "classification",
        "rte": "classification",
        "wnli": "classification",
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model, cache_dir=cache_dir, num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer, output_mode)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, num_labels),
                                    label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(
            args.output_dir, num_labels=num_labels)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
    else:
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model, num_labels=num_labels)
    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, output_mode)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.float)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss = 0
        nb_eval_steps = 0
        preds = []

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask, labels=None)

            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels),
                                         label_ids.view(-1))
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))

            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
            else:
                preds[0] = np.append(preds[0],
                                     logits.detach().cpu().numpy(),
                                     axis=0)

        eval_loss = eval_loss / nb_eval_steps
        preds = preds[0]
        if output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(task_name, preds, all_label_ids.numpy())
        loss = tr_loss / global_step if args.do_train else None

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        # hack for MNLI-MM
        if task_name == "mnli":
            task_name = "mnli-mm"
            processor = processors[task_name]()

            if os.path.exists(args.output_dir +
                              '-MM') and os.listdir(args.output_dir +
                                                    '-MM') and args.do_train:
                raise ValueError(
                    "Output directory ({}) already exists and is not empty.".
                    format(args.output_dir))
            if not os.path.exists(args.output_dir + '-MM'):
                os.makedirs(args.output_dir + '-MM')

            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer,
                output_mode)
            logger.info("***** Running evaluation *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                         dtype=torch.long)
            all_input_mask = torch.tensor(
                [f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)

            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data,
                                         sampler=eval_sampler,
                                         batch_size=args.eval_batch_size)

            model.eval()
            eval_loss = 0
            nb_eval_steps = 0
            preds = []

            for input_ids, input_mask, segment_ids, label_ids in tqdm(
                    eval_dataloader, desc="Evaluating"):
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    logits = model(input_ids,
                                   segment_ids,
                                   input_mask,
                                   labels=None)

                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels),
                                         label_ids.view(-1))

                eval_loss += tmp_eval_loss.mean().item()
                nb_eval_steps += 1
                if len(preds) == 0:
                    preds.append(logits.detach().cpu().numpy())
                else:
                    preds[0] = np.append(preds[0],
                                         logits.detach().cpu().numpy(),
                                         axis=0)

            eval_loss = eval_loss / nb_eval_steps
            preds = preds[0]
            preds = np.argmax(preds, axis=1)
            result = compute_metrics(task_name, preds, all_label_ids.numpy())
            loss = tr_loss / global_step if args.do_train else None

            result['eval_loss'] = eval_loss
            result['global_step'] = global_step
            result['loss'] = loss

            output_eval_file = os.path.join(args.output_dir + '-MM',
                                            "eval_results.txt")
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
예제 #30
0
def train(args):

    if args.use_bert and args.use_zen:
        raise ValueError('We cannot use both BERT and ZEN')

    if not os.path.exists('./logs'):
        os.mkdir('logs')

    now_time = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
    log_file_name = './logs/log-' + now_time
    logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt='%m/%d/%Y %H:%M:%S',
                        filename=log_file_name,
                        filemode='w',
                        level=logging.INFO)
    logger = logging.getLogger(__name__)
    console_handler = logging.StreamHandler()
    logger.addHandler(console_handler)

    logger = logging.getLogger(__name__)

    logger.info(vars(args))

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if not os.path.exists('./models'):
        os.mkdir('./models')

    if args.model_name is None:
        raise Warning('model name is not specified, the model will NOT be saved!')
    else:
        output_model_dir = os.path.join('./models', args.model_name + '_' + now_time)

    label_map = getlabels(args.train_data_path)
    id2label = {v: k for k, v in label_map.items()}
    id2label[0] = 'O'
    word2id = get_word2id(args.train_data_path)

    if args.use_attention:
        if args.source == 'stanford':
            request_features_from_stanford(args.train_data_path)
            request_features_from_stanford(args.eval_data_path)
            processor = stanford_feature_processor()
        elif args.source == 'berkeley':
            request_features_from_berkeley(args.train_data_path)
            request_features_from_berkeley(args.eval_data_path)
            processor = berkeley_feature_processor()
        else:
            raise ValueError('Source must be one of \'stanford\' or \'berkeley\' if attentions are used.')
        gram2id, feature2id = get_feature2id(args.train_data_path, processor, args.feature_flag, args.feature_threshold)
    else:
        processor = None
        gram2id = None
        feature2id = None

    hpara = TwASP.init_hyper_parameters(args)
    joint_model = TwASP(word2id, gram2id, feature2id, label_map, processor, hpara, args)

    train_examples = joint_model.load_data(args.train_data_path)
    eval_examples = joint_model.load_data(args.eval_data_path)
    num_labels = joint_model.num_labels
    convert_examples_to_features = joint_model.convert_examples_to_features
    feature2input = joint_model.feature2input

    total_params = sum(p.numel() for p in joint_model.parameters() if p.requires_grad)
    logger.info('# of trainable parameters: %d' % total_params)

    num_train_optimization_steps = int(
        len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    if args.fp16:
        joint_model.half()
    joint_model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        joint_model = DDP(joint_model)
    elif n_gpu > 1:
        joint_model = torch.nn.DataParallel(joint_model)

    param_optimizer = list(joint_model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                             t_total=num_train_optimization_steps)

    else:
        # num_train_optimization_steps=-1
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0

    best_epoch = -1
    best_wp = -1
    best_wr = -1
    best_wf = -1
    best_woov = -1
    best_pp = -1
    best_pr = -1
    best_pf = -1
    best_poov = -1
    history = {'epoch': [], 'word_p': [], 'word_r': [], 'word_f': [], 'word_oov': [],
               'pos_p': [], 'pos_r': [], 'pos_f': [], 'pos_oov': []}
    num_of_no_improvement = 0
    patient = args.patient

    if args.do_train:

        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            np.random.shuffle(train_examples)
            joint_model.train()
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, start_index in enumerate(tqdm(range(0, len(train_examples), args.train_batch_size))):
                batch_examples = train_examples[start_index: min(start_index +
                                                                 args.train_batch_size, len(train_examples))]
                if len(batch_examples) == 0:
                    continue
                train_features = convert_examples_to_features(batch_examples)
                feature_ids, input_ids, input_mask, l_mask, label_ids, ngram_ids, ngram_positions, \
                segment_ids, valid_ids, word_ids, word_matching_matrix = feature2input(device, train_features)

                loss, _ = joint_model(input_ids, segment_ids, input_mask, label_ids, valid_ids, l_mask, word_ids,
                                      feature_ids, word_matching_matrix, word_matching_matrix, ngram_ids, ngram_positions)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(global_step / num_train_optimization_steps,
                                                                          args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

            joint_model.to(device)

            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                joint_model.eval()
                eval_loss, eval_accuracy = 0, 0
                nb_eval_steps, nb_eval_examples = 0, 0
                y_true = []
                y_pred = []
                for start_index in range(0, len(eval_examples), args.eval_batch_size):
                    eval_batch_examples = eval_examples[start_index: min(start_index + args.eval_batch_size,
                                                                         len(eval_examples))]
                    eval_features = convert_examples_to_features(eval_batch_examples)

                    feature_ids, input_ids, input_mask, l_mask, label_ids, ngram_ids, ngram_positions, \
                    segment_ids, valid_ids, word_ids, word_matching_matrix = feature2input(device, eval_features)

                    with torch.no_grad():
                        _, tag_seq = joint_model(input_ids, segment_ids, input_mask, label_ids, valid_ids, l_mask,
                                                 word_ids, feature_ids, word_matching_matrix, word_matching_matrix,
                                                 ngram_ids, ngram_positions)

                    # logits = torch.argmax(F.log_softmax(logits, dim=2),dim=2)
                    # logits = logits.detach().cpu().numpy()
                    logits = tag_seq.to('cpu').numpy()
                    label_ids = label_ids.to('cpu').numpy()
                    input_mask = input_mask.to('cpu').numpy()

                    for i, label in enumerate(label_ids):
                        temp_1 = []
                        temp_2 = []
                        for j, m in enumerate(label):
                            if j == 0:
                                continue
                            elif label_ids[i][j] == num_labels - 1:
                                y_true.append(temp_1)
                                y_pred.append(temp_2)
                                break
                            else:
                                temp_1.append(id2label[label_ids[i][j]])
                                temp_2.append(id2label[logits[i][j]])

                y_true_all = []
                y_pred_all = []
                sentence_all = []
                for y_true_item in y_true:
                    y_true_all += y_true_item
                for y_pred_item in y_pred:
                    y_pred_all += y_pred_item
                for example, y_true_item in zip(eval_examples, y_true):
                    sen = example.text_a
                    sen = sen.strip()
                    sen = sen.split(' ')
                    if len(y_true_item) != len(sen):
                        print(len(sen))
                        sen = sen[:len(y_true_item)]
                    sentence_all.append(sen)
                (wp, wr, wf), (pp, pr, pf) = pos_evaluate_word_PRF(y_pred_all, y_true_all)
                woov, poov = pos_evaluate_OOV(y_pred, y_true, sentence_all, word2id)
                history['epoch'].append(epoch)
                history['word_p'].append(wp)
                history['word_r'].append(wr)
                history['word_f'].append(wf)
                history['word_oov'].append(woov)
                history['pos_p'].append(pp)
                history['pos_r'].append(pr)
                history['pos_f'].append(pf)
                history['pos_oov'].append(poov)
                logger.info("=======entity level========")
                logger.info("Epoch: %d, word P: %f, word R: %f, word F: %f, word OOV: %f",
                            epoch + 1, wp, wr, wf, woov)
                logger.info("Epoch: %d,  pos P: %f,  pos R: %f,  pos F: %f,  pos OOV: %f",
                            epoch + 1, pp, pr, pf, poov)
                logger.info("=======entity level========")
                # the evaluation method of NER
                report = classification_report(y_true, y_pred, digits=4)

                if args.model_name is not None:
                    if not os.path.exists(output_model_dir):
                        os.mkdir(output_model_dir)

                if pf > best_pf:
                    best_epoch = epoch + 1
                    best_wp = wp
                    best_wr = wr
                    best_wf = wf
                    best_woov = woov
                    best_pp = pp
                    best_pr = pr
                    best_pf = pf
                    best_poov = poov
                    num_of_no_improvement = 0

                    if args.model_name:
                        output_model_dir = path.join('./models', args.model_name + '_' + now_time)
                        if not os.path.exists(output_model_dir):
                            os.mkdir(output_model_dir)

                        with open(os.path.join(output_model_dir, 'POS_result.txt'), "w") as writer:
                            writer.write("Epoch: %d, word P: %f, word R: %f, word F: %f, word OOV: %f" %
                                         (epoch + 1, wp, wr, wf, woov))
                            writer.write("Epoch: %d,  pos P: %f,  pos R: %f,  pos F: %f,  pos OOV: %f" %
                                         (epoch + 1, pp, pr, pf, poov))
                            for i in range(len(y_pred)):
                                sentence = eval_examples[i].text_a
                                seg_true_str, seg_pred_str = eval_sentence(y_pred[i], y_true[i], sentence, word2id)
                                writer.write('True: %s\n' % seg_true_str)
                                writer.write('Pred: %s\n\n' % seg_pred_str)

                        best_eval_model_path = os.path.join(output_model_dir, 'model.pt')

                        if n_gpu > 1:
                            torch.save({
                                'spec': joint_model.module.spec,
                                'state_dict': joint_model.module.state_dict(),
                                # 'trainer': optimizer.state_dict(),
                            }, best_eval_model_path)
                        else:
                            torch.save({
                                'spec': joint_model.spec,
                                'state_dict': joint_model.state_dict(),
                                # 'trainer': optimizer.state_dict(),
                            }, best_eval_model_path)
                else:
                    num_of_no_improvement += 1

            if num_of_no_improvement >= patient:
                logger.info('\nEarly stop triggered at epoch %d\n' % epoch)
                break

        logger.info("\n=======best f entity level========")
        logger.info("Epoch: %d, word P: %f, word R: %f, word F: %f, word OOV: %f",
                    best_epoch, best_wp, best_wr, best_wf, best_woov)
        logger.info("Epoch: %d,  pos P: %f,  pos R: %f,  pos F: %f,  pos OOV: %f",
                    best_epoch, best_pp, best_pr, best_pf, best_poov)
        logger.info("\n=======best f entity level========")

        if args.model_name is not None:
            with open(os.path.join(output_model_dir, 'history.json'), 'w', encoding='utf8') as f:
                json.dump(history, f)
                f.write('\n')