def parameters(): params = TrackerParams() params.debug = 0 params.visualization = False params.use_gpu = True params.net = NetWithBackbone(net_path='transt.pth', use_gpu=params.use_gpu) return params
def parameters(): params = TrackerParams() params.debug = 0 params.visualization = False params.seg_to_bb_mode = 'var' params.max_scale_change = (0.95, 1.1) params.min_mask_area = 100 params.use_gpu = True params.image_sample_size = (30 * 16, 52 * 16) params.search_area_scale = 5.0 params.border_mode = 'inside_major' params.patch_max_scale_change = None # Learning parameters params.sample_memory_size = 32 params.learning_rate = 0.2 params.init_samples_minimum_weight = 0 params.train_skipping = 5 # Net optimization params params.update_target_model = True params.net_opt_iter = 20 params.net_opt_update_iter = 5 params.init_with_box = True params.lower_init_weight = True params.net = NetWithBackbone(net_path='lwl_boxinit.pth', use_gpu=params.use_gpu, image_format='bgr255', mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0]) params.vot_anno_conversion_type = 'preserve_area' return params
def parameters(): params = TrackerParams() params.debug = 0 params.visualization = False params.use_gpu = True params.image_sample_size = 22 * 16 params.search_area_scale = 6 params.border_mode = 'inside_major' params.patch_max_scale_change = 1.5 # Learning parameters params.sample_memory_size = 50 params.learning_rate = 0.01 params.init_samples_minimum_weight = 0.25 params.train_skipping = 20 # Net optimization params params.update_classifier = True params.net_opt_iter = 10 params.net_opt_update_iter = 2 params.net_opt_hn_iter = 1 # Detection parameters params.window_output = False # Init augmentation parameters params.use_augmentation = True params.augmentation = { 'fliplr': True, 'rotate': [10, -10, 45, -45], 'blur': [(3, 1), (1, 3), (2, 2)], 'relativeshift': [(0.6, 0.6), (-0.6, 0.6), (0.6, -0.6), (-0.6, -0.6)], 'dropout': (2, 0.2) } params.augmentation_expansion_factor = 2 params.random_shift_factor = 1 / 3 # Advanced localization parameters params.advanced_localization = True params.target_not_found_threshold = 0.25 params.distractor_threshold = 0.8 params.hard_negative_threshold = 0.45 params.target_neighborhood_scale = 2.2 params.dispalcement_scale = 0.8 params.hard_negative_learning_rate = 0.02 params.update_scale_when_uncertain = True # IoUnet parameters params.box_refinement_space = 'relative' params.iounet_augmentation = False # Use the augmented samples to compute the modulation vector params.iounet_k = 3 # Top-k average to estimate final box params.num_init_random_boxes = 9 # Num extra random boxes in addition to the classifier prediction params.box_jitter_pos = 0.1 # How much to jitter the translation for random boxes params.box_jitter_sz = 0.5 # How much to jitter the scale for random boxes params.maximal_aspect_ratio = 6 # Limit on the aspect ratio params.box_refinement_iter = 10 # Number of iterations for refining the boxes params.box_refinement_step_length = 2.5e-3 # 1 # Gradient step length in the bounding box refinement params.box_refinement_step_decay = 1 # Multiplicative step length decay (1 means no decay) params.net = NetWithBackbone(net_path='super_dimp.pth.tar', use_gpu=params.use_gpu) params.vot_anno_conversion_type = 'preserve_area' params.perform_hn_without_windowing = False params.save_sample_interval = 2 # save memory interval # [------ new parameters -------] # parameters for re-detection params.re_detection = True # [default:True] Re-detection params.flag_confidence = 6 # [default:6] different methods about confidence score params.cnt_global = 10000 # [default:10000->not use] global search for each count params.global_search_memory_limit = 200 # global search memory limit params.cnt_random = 5 # [default:5] random search for each count params.additional_candidate_random = 3 # [default:3] the number of candidates to search (when additional_candidate_adaptive is False) params.additional_candidate_adaptive = True # [default:True] adaptive number of candidates to search params.additional_candidate_adaptive_ratio = 0.1 # [default:0.1] ratio for adaptive number params.additional_candidate_adaptive_min = 1 # [default:1] minimum number for searching params.additional_candidate_adaptive_max = 10 # [default:10] maximum number for searching params.redetection_score_penalty = True # [default:True] score penalty for re-detection params.redetection_score_penalty_alpha = 0.75 # [default:0.75] score penalty parameter, about distance (big value -> more penalty) params.redetection_score_penalty_beta = 0.25 # [default:0.25] score penalty parameter, about time (small value -> slow detect) params.redetection_basic_penalty = 0.75 # [default:0.75] score penalty parameter, total score reduction, (0.75 -> 25% reduce score) params.redetection_now = True # [default:True] re-detection immediately after tracking failure params.no_update_early_redetection = 1 # no update period after re-detection success params.no_save_early_redetection = 0 # no save period after re-detection success params.redetection_global_search_flag = 1 # search position flag (0: 1/4 overlap, 1: half overlap, 2: none overlap) # parameters for more discriminative learning params.init_net_more_learn = True # more discriminative learning (init) params.init_more_learn_expand_searching_size = True # expanding searching size for more init samples params.init_more_learn_flag = 1 # search position flag (0: 1/4 overlap, 1: half overlap, 2: none overlap) params.init_more_learn_memory_limit = 40 # 100 -> 4Gb (smaller than sample_memory_size - 2), default:40 params.init_more_learn_no_transform = True # whether transformation params.init_more_sample_limit = 10 # searching number limit params.init_iou_more_learn = True # same as init_net_more_learn, iounet_augmentation = True -> can change params.track_net_more_learn = True # more discriminative learning (track) params.track_net_more_learn_search_flag = 2 # search position flag (0: 1/4 overlap, 1: half overlap, 2: none overlap) params.track_net_more_learn_cnt = 3 # more learning period params.track_net_more_learn_score = 0.70 # score condition for more learning params.track_net_more_learn_not_save = True # if True: not save and learn each time (not depend on track_net_more_learn_cnt) params.track_net_more_learn_save_weight = 0.5 # reduce memory weight (due to not real data) params.train_more_sample_limit = 10 # searching number limit params.additional_train_candidate = 2 # number of additional samples params.memory_weight_ratio = 2 # weight for initial feature (higher -> more important) params.init_blending = 0.0 # image blending with target and background (0: not blending, 0.1: 10% background, 90% target) # parameters for random erasing params.erasing_mode = True # Random erasing (RE) mode when tracking params.use_original_pos = False # Random erasing flag params.erasing_cnt = 5 # Random erasing period params.lower_scale = 0.02 # RE parameters params.upper_scale = 0.05 # RE parameters params.lower_ratio = 0.7 # RE parameters params.upper_ratio = 1.3 # RE parameters params.num_erasing = 10 # the number of random erasing images return params
def parameters(): params = TrackerParams() params.debug = 0 params.visualization = False params.use_gpu = True params.image_sample_size = 14 * 16 params.search_area_scale = 4 # Learning parameters params.sample_memory_size = 250 params.learning_rate = 0.0075 params.init_samples_minimum_weight = 0.0 params.train_skipping = 10 # Net optimization params params.update_classifier = True params.net_opt_iter = 25 params.net_opt_update_iter = 3 params.net_opt_hn_iter = 3 # Detection parameters params.window_output = True # Init augmentation parameters params.use_augmentation = True params.augmentation = { 'fliplr': True, 'rotate': [5, -5, 10, -10, 20, -20, 30, -30, 45, -45, -60, 60], 'blur': [(2, 0.2), (0.2, 2), (3, 1), (1, 3), (2, 2)], 'relativeshift': [(0.6, 0.6), (-0.6, 0.6), (0.6, -0.6), (-0.6, -0.6)], 'dropout': (7, 0.2) } params.augmentation_expansion_factor = 2 params.random_shift_factor = 1 / 3 # Advanced localization parameters params.advanced_localization = True params.target_not_found_threshold = 0.0 params.distractor_threshold = 100 params.hard_negative_threshold = 0.45 params.target_neighborhood_scale = 2.2 params.dispalcement_scale = 0.7 params.perform_hn_without_windowing = True params.hard_negative_learning_rate = 0.02 params.update_scale_when_uncertain = True # IoUnet parameters params.iounet_augmentation = False params.iounet_use_log_scale = True params.iounet_k = 3 params.num_init_random_boxes = 9 params.box_jitter_pos = 0.1 params.box_jitter_sz = 0.5 params.maximal_aspect_ratio = 6 params.box_refinement_iter = 5 params.box_refinement_step_length = 1 params.box_refinement_step_decay = 1 params.net = NetWithBackbone(net_path='dimp50.pth', use_gpu=params.use_gpu) params.vot_anno_conversion_type = 'preserve_area' params.use_depth_channel = True return params
def parameters(): params = TrackerParams() params.debug = 0 params.visualization = False params.use_gpu = True params.image_sample_size = 18 * 16 params.search_area_scale = 5 # Learning parameters params.sample_memory_size = 50 params.learning_rate = 0.01 params.init_samples_minimum_weight = 0.25 params.train_skipping = 20 # Net optimization params params.update_classifier = True params.net_opt_iter = 10 params.net_opt_update_iter = 2 params.net_opt_hn_iter = 1 # Detection parameters params.window_output = False # Init augmentation parameters params.use_augmentation = True params.augmentation = { 'fliplr': True, 'rotate': [10, -10, 45, -45], 'blur': [(3, 1), (1, 3), (2, 2)], 'relativeshift': [(0.6, 0.6), (-0.6, 0.6), (0.6, -0.6), (-0.6, -0.6)], 'dropout': (2, 0.2) } params.augmentation_expansion_factor = 2 params.random_shift_factor = 1 / 3 # Advanced localization parameters params.advanced_localization = True params.target_not_found_threshold = 0.25 params.distractor_threshold = 0.8 params.hard_negative_threshold = 0.5 params.target_neighborhood_scale = 2.2 params.dispalcement_scale = 0.8 params.hard_negative_learning_rate = 0.02 params.update_scale_when_uncertain = True # IoUnet parameters params.iounet_augmentation = False params.iounet_use_log_scale = True params.iounet_k = 3 params.num_init_random_boxes = 9 params.box_jitter_pos = 0.1 params.box_jitter_sz = 0.5 params.maximal_aspect_ratio = 6 params.box_refinement_iter = 5 params.box_refinement_step_length = 1 params.box_refinement_step_decay = 1 # params.net = NetWithBackbone(net_path='/home/sgn/Data1/yan/pytracking-models/checkpoints/ltr/dimp/dimp50_RGB/dimp50.pth', # use_gpu=params.use_gpu) # params.net = NetWithBackbone(net_path='/home/sgn/Data1/yan/pytracking-models/checkpoints/ltr/dimp/dimp50_DepthInputs_sigmoid/DiMPnet_ep0050.pth.tar', # use_gpu=params.use_gpu) params.net = NetWithBackbone( net_path= '/home/sgn/Data1/yan/pytracking-models/checkpoints/ltr/dimp/dimp50_D_CDTB_finetune_generated_PP_new02/DiMPnet_ep0150.pth.tar', use_gpu=params.use_gpu) # params.net = NetWithBackbone(net_path='/home/sgn/Data1/yan/pytracking-models/checkpoints/ltr/dimp/dimp50_DepthInputs_scratch_LaSOT_COCO/DiMPnet_ep0050.pth.tar', # use_gpu=params.use_gpu) # params.net = NetWithBackbone(net_path='/home/sgn/Data1/yan/pytracking-models/checkpoints/ltr/dimp/DOT50_Colormap_LaSOT_COCO_PretrainedDiMP_scratch/DiMPnet_ep0100.pth.tar', # use_gpu=params.use_gpu) # params.net = NetWithBackbone(net_path='/home/sgn/Data1/yan/pytracking-models/checkpoints/ltr/dimp/DOT50_Colormap_LaSOT_COCO_Got10k_scratch_PretrainedBackbone/DiMPnet_ep0050.pth.tar', # use_gpu=params.use_gpu) params.vot_anno_conversion_type = 'preserve_area' return params
def parameters(): params = TrackerParams() params.debug = 0 params.visualization = False params.use_gpu = True params.use_classifier = True params.image_sample_size = 18 * 16 params.search_area_scale = 4.5 params.sample_memory_size = 50 params.learning_rate = 0.01 params.init_samples_minimum_weight = 0.25 params.train_skipping = 20 params.init_train_frames = 5 params.update_classifier_and_regressor = True params.ues_select_sample_strategy = True # classifier-18 params.init_train_iter = 6 params.net_opt_iter = 5 params.net_opt_update_iter = 1 params.net_opt_hn_iter = 1 # classifier-72 params.init_train_iter_72 = 6 params.net_opt_iter_72 = 5 params.net_opt_update_iter_72 = 1 params.net_opt_hn_iter_72 = 1 # regressor params.reg_init_train_iter = 6 params.reg_net_opt_iter = 4 params.reg_net_opt_hn_iter = 0 params.reg_net_opt_update_iter = 1 params.lamda_72 = 1 params.lamda_18 = 1 params.reg_lamda = 0 params.merge_rate_72 = 0.2 params.merge_rate_18 = 0.8 params.use_augmentation = True params.augmentation = { 'fliplr': True, 'rotate': [5, -5, 10, -10, 20, -20, 30, -30, 45, -45, -60, 60], 'blur': [(2, 0.2), (0.2, 2), (3, 1), (1, 3), (2, 2)], 'relativeshift': [(0.6, 0.6), (-0.6, 0.6), (0.6, -0.6), (-0.6, -0.6)], # 'dropout': (7, 0.2) } params.augmentation_expansion_factor = 2 params.random_shift_factor = 1 / 3 # Advanced localization parameters params.advanced_localization = True params.target_not_found_threshold = 0.12 params.distractor_threshold = 0.9 params.hard_negative_threshold = 0.5 params.target_neighborhood_scale = 2.2 params.dispalcement_scale = 0.8 params.window_output = False params.perform_hn_without_windowing = True params.hard_negative_learning_rate = 0.02 params.update_scale_when_uncertain = True params.iou_select = False params.net = NetWithBackbone(net_path='fcot.pth', use_gpu=params.use_gpu) params.net.initialize() params.vot_anno_conversion_type = 'preserve_area' return params
def parameters(): params = TrackerParams() params.debug = 0 params.visualization = False params.use_gpu = True params.image_sample_size = 14*16 params.search_area_scale = 4 params.border_mode = 'inside_major' params.patch_max_scale_change = 1.5 # Learning parameters params.sample_memory_size = 250 params.learning_rate = 0.0075 params.init_samples_minimum_weight = 0.0 params.train_skipping = 10 # Net optimization params params.update_classifier = True params.net_opt_iter = 25 params.net_opt_update_iter = 3 params.net_opt_hn_iter = 3 # Detection parameters params.window_output = True # Init augmentation parameters params.use_augmentation = True params.augmentation = {'fliplr': True, 'rotate': [-5, 10, -30, 60], 'blur': [(2, 0.2), (1, 3)], 'relativeshift': [(0.6, 0.6), (-0.6, -0.6)], 'dropout': (3, 0.2)} params.augmentation_expansion_factor = 2 params.random_shift_factor = 1/3 # Advanced localization parameters params.advanced_localization = True params.target_not_found_threshold = 0.0 params.distractor_threshold = 100 params.hard_negative_threshold = 0.45 params.target_neighborhood_scale = 2.2 params.dispalcement_scale = 0.7 params.perform_hn_without_windowing = True params.hard_negative_learning_rate = 0.02 params.update_scale_when_uncertain = True # IoUnet parameters params.box_refinement_space = 'relative' params.iounet_augmentation = False # Use the augmented samples to compute the modulation vector params.iounet_k = 3 # Top-k average to estimate final box params.num_init_random_boxes = 9 # Num extra random boxes in addition to the classifier prediction params.box_jitter_pos = 0.1 # How much to jitter the translation for random boxes params.box_jitter_sz = 0.5 # How much to jitter the scale for random boxes params.maximal_aspect_ratio = 6 # Limit on the aspect ratio params.box_refinement_iter = 10 # Number of iterations for refining the boxes params.box_refinement_step_length = 2.5e-3 # 1 # Gradient step length in the bounding box refinement params.box_refinement_step_decay = 1 # Multiplicative step length decay (1 means no decay) params.net = NetWithBackbone(net_path='trdimp_net.pth.tar', use_gpu=params.use_gpu) params.vot_anno_conversion_type = 'preserve_area' return params
def parameters(): params = TrackerParams() params.debug = 0 params.visualization = False params.use_gpu = True params.image_sample_size = 18 * 16 #18*16 params.search_area_scale = 5 # Learning parameters params.sample_memory_size = 250 params.learning_rate = 0.01 params.init_samples_minimum_weight = 0.25 params.train_skipping = 10 # Net optimization params params.update_classifier = True params.net_opt_iter = 10 #10 params.net_opt_update_iter = 2 params.net_opt_hn_iter = 1 params.update_classifier_initial = 5 params.update_classifier_initial_iter = 1 # Detection parameters params.window_output = False # Init augmentation parameters params.use_augmentation = True # params.augmentation = {'fliplr': True, # 'rotate': [10, -10, 45, -45], # 'blur': [(3,1), (1, 3), (2, 2)], # 'relativeshift': [(0.6, 0.6), (-0.6, 0.6), (0.6, -0.6), (-0.6,-0.6)], # 'dropout': (2, 0.2)} params.augmentation = { 'fliplr': True, 'rotate': [5, -5, 10, -10, 20, -20, 30, -30, 45, -45, -60, 60], 'blur': [(2, 0.2), (0.2, 2), (3, 1), (1, 3), (2, 2)], 'relativeshift': [(0.6, 0.6), (-0.6, 0.6), (0.6, -0.6), (-0.6, -0.6)], 'dropout': (7, 0.2) } params.augmentation_expansion_factor = 2 params.random_shift_factor = 1 / 3 # Advanced localization parameters params.advanced_localization = True params.target_not_found_threshold = 0.25 params.distractor_threshold = 0.8 #0.8 params.hard_negative_threshold = 0.5 #0.5 params.target_neighborhood_scale = 2.2 params.dispalcement_scale = 0.8 params.hard_negative_learning_rate = 0.02 params.update_scale_when_uncertain = True #redetection parameters params.num_history = 3 params.target_refound_threshold = params.target_not_found_threshold params.target_forcerefound_threshold = params.target_not_found_threshold + 0.03 #recover from redtection model, even the valid_d is false params.threshold_updatedepth = params.target_not_found_threshold + 0.05 params.frames_true_validd = 0 params.threshold_force_redetection = params.target_not_found_threshold - 0.05 params.threshold_allowupdateclassifer = params.target_not_found_threshold + 0.05 # IoUnet parameters params.iounet_augmentation = False params.iounet_use_log_scale = True params.iounet_k = 3 params.num_init_random_boxes = 9 params.box_jitter_pos = 0.1 params.box_jitter_sz = 0.5 params.maximal_aspect_ratio = 6 params.box_refinement_iter = 5 params.box_refinement_step_length = 1 params.box_refinement_step_decay = 1 params.rotate_init_random_boxes = False params.net = NetWithBackbone(net_path='dimp50.pth', use_gpu=params.use_gpu) params.vot_anno_conversion_type = 'preserve_area' #depth parameters params.use_depth_channel = True params.ptb_setting = True params.votd_setting = False params.stc_setting = False params.threshold_bhatta = 0.2 return params
def parameters(): params = TrackerParams() params.debug = 0 params.visualization = False params.use_gpu = True params.image_sample_size = 14*16 params.search_area_scale = 4 # Learning parameters params.sample_memory_size = 250 params.learning_rate = 0.0075 params.init_samples_minimum_weight = 0.0 params.train_skipping = 10 # Net optimization params params.update_classifier = True params.net_opt_iter = 25 params.net_opt_update_iter = 3 params.net_opt_hn_iter = 3 params.output_sigma_factor = 1/4 # Init augmentation parameters params.use_augmentation = True params.augmentation = {'fliplr': True, 'rotate': [5, -5, 10, -10, 20, -20, 30, -30, 45, -45, -60, 60], 'blur': [(2, 0.2), (0.2, 2), (3, 1), (1, 3), (2, 2)], 'relativeshift': [(0.6, 0.6), (-0.6, 0.6), (0.6, -0.6), (-0.6, -0.6)], 'dropout': (7, 0.2)} params.augmentation_expansion_factor = 2 params.random_shift_factor = 1 / 3 # localization parameters params.window_output = True params.use_clipped_window = True params.effective_search_area = 4.0 params.apply_window_to_dimp_score = True params.target_not_found_threshold_fused = 0.05 params.dimp_threshold = 0.05 params.reset_state_during_occlusion = True params.prev_feat_remove_subpixel_shift = True params.move_feat_to_center = True params.perform_hn_mining_dimp = True params.hard_negative_threshold = 0.5 params.target_neighborhood_scale_safe = 2.2 params.hard_negative_learning_rate = 0.02 params.update_scale_when_uncertain = True # IoUnet parameters params.use_iou_net = True params.iounet_augmentation = False params.iounet_use_log_scale = True params.iounet_k = 3 params.num_init_random_boxes = 9 params.box_jitter_pos = 0.1 params.box_jitter_sz = 0.5 params.maximal_aspect_ratio = 6 params.box_refinement_iter = 5 params.box_refinement_step_length = 1 params.box_refinement_step_decay = 1 params.remove_offset_in_fused_score = True params.score_downsample_factor = 1 params.net = NetWithBackbone(net_path='kys.pth', use_gpu=params.use_gpu) params.vot_anno_conversion_type = 'preserve_area' return params