def compile(circuits, backend, config=None, basis_gates=None, coupling_map=None, initial_layout=None, shots=1024, max_credits=10, seed=None, qobj_id=None, hpc=None, pass_manager=None): """Compile a list of circuits into a qobj. Args: circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile backend (BaseBackend): a backend to compile for config (dict): dictionary of parameters (e.g. noise) used by runner basis_gates (str): comma-separated basis gate set to compile to coupling_map (list): coupling map (perhaps custom) to target in mapping initial_layout (list): initial layout of qubits in mapping shots (int): number of repetitions of each circuit, for sampling max_credits (int): maximum credits to use seed (int): random seed for simulators qobj_id (int): identifier for the generated qobj hpc (dict): HPC simulator parameters pass_manager (PassManager): a pass_manager for the transpiler stage Returns: Qobj: the Qobj to be run on the backends Raises: TranspilerError: in case of bad compile options, e.g. the hpc options. """ if isinstance(circuits, QuantumCircuit): circuits = [circuits] backend_conf = backend.configuration backend_name = backend_conf['name'] # Step 1: create the Qobj, with empty experiments. # Copy the configuration: the values in `config` have prefern qobj_config = deepcopy(config or {}) # TODO: "memory_slots" is required by the qobj schema in the top-level # qobj.config, and is user-defined. At the moment is set to the maximum # number of *register* slots for the circuits, in order to have `measure` # behave properly until the transition is over; and each circuit stores # its memory_slots in its configuration. qobj_config.update({ 'shots': shots, 'max_credits': max_credits, 'memory_slots': 0 }) qobj = Qobj(id=qobj_id or str(uuid.uuid4()), config=QobjConfig(**qobj_config), experiments=[], header=QobjHeader(backend_name=backend_name)) if seed: qobj.config.seed = seed # Check for valid parameters for the experiments. if hpc is not None and \ not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')): raise TranspilerError('Unknown HPC parameter format!') basis_gates = basis_gates or backend_conf['basis_gates'] coupling_map = coupling_map or backend_conf['coupling_map'] # Step 2 and 3: transpile and populate the circuits for circuit in circuits: experiment = _compile_single_circuit(circuit, backend, config, basis_gates, coupling_map, initial_layout, seed, pass_manager) # Step 3c: add the Experiment to the Qobj qobj.experiments.append(experiment) # Update the `memory_slots` value. # TODO: remove when `memory_slots` can be provided by the user. qobj.config.memory_slots = max(experiment.config.memory_slots for experiment in qobj.experiments) return qobj
def compile(circuits, backend, config=None, basis_gates=None, coupling_map=None, initial_layout=None, shots=1024, max_credits=10, seed=None, qobj_id=None, hpc=None, skip_transpiler=False): """Compile a list of circuits into a qobj. Args: circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile backend (BaseBackend or str): a backend to compile for config (dict): dictionary of parameters (e.g. noise) used by runner basis_gates (str): comma-separated basis gate set to compile to coupling_map (list): coupling map (perhaps custom) to target in mapping initial_layout (list): initial layout of qubits in mapping shots (int): number of repetitions of each circuit, for sampling max_credits (int): maximum credits to use seed (int): random seed for simulators qobj_id (int): identifier for the generated qobj hpc (dict): HPC simulator parameters skip_transpiler (bool): If True, bypass most of the compilation process and creates a qobj with minimal check nor translation Returns: Qobj: the qobj to be run on the backends Raises: TranspilerError: in case of bad compile options, e.g. the hpc options. """ # pylint: disable=redefined-builtin # Check for valid parameters for the experiments. if hpc is not None and \ not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')): raise TranspilerError('Unknown HPC parameter format!') if isinstance(circuits, QuantumCircuit): circuits = [circuits] if isinstance(backend, str): try: backend = Aer.get_backend(backend) except KeyError: backend = IBMQ.get_backend(backend) pass_manager = None # default pass manager which executes predetermined passes if skip_transpiler: # empty pass manager which does nothing pass_manager = PassManager() backend_conf = backend.configuration() backend_name = backend_conf['name'] basis_gates = basis_gates or backend_conf['basis_gates'] coupling_map = coupling_map or backend_conf['coupling_map'] qobj_config = deepcopy(config or {}) qobj_config.update({ 'shots': shots, 'max_credits': max_credits, 'memory_slots': 0 }) qobj = Qobj(qobj_id=qobj_id or str(uuid.uuid4()), config=QobjConfig(**qobj_config), experiments=[], header=QobjHeader(backend_name=backend_name)) if seed: qobj.config.seed = seed qobj.experiments = parallel_map(_build_exp_parallel, list(range(len(circuits))), task_args=(circuits, backend), task_kwargs={ 'initial_layout': initial_layout, 'basis_gates': basis_gates, 'config': config, 'coupling_map': coupling_map, 'seed': seed, 'pass_manager': pass_manager }) qobj.config.memory_slots = max(experiment.config.memory_slots for experiment in qobj.experiments) qobj.config.n_qubits = max(experiment.config.n_qubits for experiment in qobj.experiments) return qobj
def compile(circuits, backend, config=None, basis_gates=None, coupling_map=None, initial_layout=None, shots=1024, max_credits=10, seed=None, qobj_id=None, hpc=None, pass_manager=None): """Compile a list of circuits into a qobj. Args: circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile backend (BaseBackend): a backend to compile for config (dict): dictionary of parameters (e.g. noise) used by runner basis_gates (str): comma-separated basis gate set to compile to coupling_map (list): coupling map (perhaps custom) to target in mapping initial_layout (list): initial layout of qubits in mapping shots (int): number of repetitions of each circuit, for sampling max_credits (int): maximum credits to use seed (int): random seed for simulators qobj_id (int): identifier for the generated qobj hpc (dict): HPC simulator parameters pass_manager (PassManager): a pass_manager for the transpiler stage Returns: Qobj: the Qobj to be run on the backends Raises: TranspilerError: in case of bad compile options, e.g. the hpc options. """ if isinstance(circuits, QuantumCircuit): circuits = [circuits] backend_conf = backend.configuration backend_name = backend_conf['name'] # Step 1: create the Qobj, with empty experiments. # Copy the configuration: the values in `config` have prefern qobj_config = deepcopy(config or {}) # TODO: "register_slots" is required by the qobj schema in the top-level # qobj.config. In this implementation, is overridden by the individual # experiment.config entries (hence the 0 should never be used). qobj_config.update({ 'shots': shots, 'max_credits': max_credits, 'register_slots': 0 }) qobj = Qobj(id=qobj_id or str(uuid.uuid4()), config=QobjConfig(**qobj_config), experiments=[], header=QobjHeader(backend_name=backend_name)) if seed: qobj.config.seed = seed # Check for valid parameters for the experiments. if hpc is not None and \ not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')): raise TranspilerError('Unknown HPC parameter format!') basis_gates = basis_gates or backend_conf['basis_gates'] coupling_map = coupling_map or backend_conf['coupling_map'] # Step 2 and 3: transpile and populate the circuits for circuit in circuits: # TODO: A better solution is to have options to enable/disable optimizations num_qubits = sum((len(qreg) for qreg in circuit.get_qregs().values())) if num_qubits == 1 or coupling_map == "all-to-all": coupling_map = None # Step 2a: circuit -> dag dag_circuit = DAGCircuit.fromQuantumCircuit(circuit) # TODO: move this inside the mapper pass # pick a good initial layout if coupling_map is not already satisfied # otherwise keep it as q[i]->q[i] if (initial_layout is None and not backend_conf['simulator'] and not _matches_coupling_map(circuit.data, coupling_map)): initial_layout = _pick_best_layout(backend, num_qubits, circuit.get_qregs()) # Step 2b: transpile (dag -> dag) dag_circuit, final_layout = transpile(dag_circuit, basis_gates=basis_gates, coupling_map=coupling_map, initial_layout=initial_layout, get_layout=True, seed=seed, pass_manager=pass_manager) # Step 2c: dag -> json # the compiled circuit to be run saved as a dag # we assume that transpile() has already expanded gates # to the target basis, so we just need to generate json list_layout = [[k, v] for k, v in final_layout.items() ] if final_layout else None json_circuit = DagUnroller(dag_circuit, JsonBackend(dag_circuit.basis)).execute() # Step 3a: create the Experiment based on json_circuit experiment = QobjExperiment.from_dict(json_circuit) # Step 3b: populate the Experiment configuration and header experiment.header.name = circuit.name # TODO: place in header or config? experiment_config = deepcopy(config or {}) experiment_config.update({ 'coupling_map': coupling_map, 'basis_gates': basis_gates, 'layout': list_layout, 'register_slots': sum(register.size for register in circuit.get_cregs().values()) }) experiment.config = QobjItem(**experiment_config) # set eval_symbols=True to evaluate each symbolic expression # TODO after transition to qobj, we can drop this experiment.header.compiled_circuit_qasm = dag_circuit.qasm( qeflag=True, eval_symbols=True) # Step 3c: add the Experiment to the Qobj qobj.experiments.append(experiment) return qobj