Пример #1
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            pass_manager=None):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        Qobj: the Qobj to be run on the backends

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    backend_conf = backend.configuration
    backend_name = backend_conf['name']

    # Step 1: create the Qobj, with empty experiments.
    # Copy the configuration: the values in `config` have prefern
    qobj_config = deepcopy(config or {})
    # TODO: "memory_slots" is required by the qobj schema in the top-level
    # qobj.config, and is user-defined. At the moment is set to the maximum
    # number of *register* slots for the circuits, in order to have `measure`
    # behave properly until the transition is over; and each circuit stores
    # its memory_slots in its configuration.
    qobj_config.update({
        'shots': shots,
        'max_credits': max_credits,
        'memory_slots': 0
    })

    qobj = Qobj(id=qobj_id or str(uuid.uuid4()),
                config=QobjConfig(**qobj_config),
                experiments=[],
                header=QobjHeader(backend_name=backend_name))
    if seed:
        qobj.config.seed = seed

    # Check for valid parameters for the experiments.
    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')
    basis_gates = basis_gates or backend_conf['basis_gates']
    coupling_map = coupling_map or backend_conf['coupling_map']

    # Step 2 and 3: transpile and populate the circuits
    for circuit in circuits:
        experiment = _compile_single_circuit(circuit, backend, config,
                                             basis_gates, coupling_map,
                                             initial_layout, seed,
                                             pass_manager)
        # Step 3c: add the Experiment to the Qobj
        qobj.experiments.append(experiment)

    # Update the `memory_slots` value.
    # TODO: remove when `memory_slots` can be provided by the user.
    qobj.config.memory_slots = max(experiment.config.memory_slots
                                   for experiment in qobj.experiments)

    return qobj
Пример #2
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            skip_transpiler=False):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend or str): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        skip_transpiler (bool): If True, bypass most of the compilation process and
            creates a qobj with minimal check nor translation
    Returns:
        Qobj: the qobj to be run on the backends

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    # pylint: disable=redefined-builtin

    # Check for valid parameters for the experiments.
    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')

    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    if isinstance(backend, str):
        try:
            backend = Aer.get_backend(backend)
        except KeyError:
            backend = IBMQ.get_backend(backend)

    pass_manager = None  # default pass manager which executes predetermined passes
    if skip_transpiler:  # empty pass manager which does nothing
        pass_manager = PassManager()

    backend_conf = backend.configuration()
    backend_name = backend_conf['name']
    basis_gates = basis_gates or backend_conf['basis_gates']
    coupling_map = coupling_map or backend_conf['coupling_map']

    qobj_config = deepcopy(config or {})
    qobj_config.update({
        'shots': shots,
        'max_credits': max_credits,
        'memory_slots': 0
    })

    qobj = Qobj(qobj_id=qobj_id or str(uuid.uuid4()),
                config=QobjConfig(**qobj_config),
                experiments=[],
                header=QobjHeader(backend_name=backend_name))

    if seed:
        qobj.config.seed = seed

    qobj.experiments = parallel_map(_build_exp_parallel,
                                    list(range(len(circuits))),
                                    task_args=(circuits, backend),
                                    task_kwargs={
                                        'initial_layout': initial_layout,
                                        'basis_gates': basis_gates,
                                        'config': config,
                                        'coupling_map': coupling_map,
                                        'seed': seed,
                                        'pass_manager': pass_manager
                                    })

    qobj.config.memory_slots = max(experiment.config.memory_slots
                                   for experiment in qobj.experiments)

    qobj.config.n_qubits = max(experiment.config.n_qubits
                               for experiment in qobj.experiments)

    return qobj
Пример #3
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            pass_manager=None):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        Qobj: the Qobj to be run on the backends

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    backend_conf = backend.configuration
    backend_name = backend_conf['name']

    # Step 1: create the Qobj, with empty experiments.
    # Copy the configuration: the values in `config` have prefern
    qobj_config = deepcopy(config or {})
    # TODO: "register_slots" is required by the qobj schema in the top-level
    # qobj.config. In this implementation, is overridden by the individual
    # experiment.config entries (hence the 0 should never be used).
    qobj_config.update({
        'shots': shots,
        'max_credits': max_credits,
        'register_slots': 0
    })

    qobj = Qobj(id=qobj_id or str(uuid.uuid4()),
                config=QobjConfig(**qobj_config),
                experiments=[],
                header=QobjHeader(backend_name=backend_name))
    if seed:
        qobj.config.seed = seed

    # Check for valid parameters for the experiments.
    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')
    basis_gates = basis_gates or backend_conf['basis_gates']
    coupling_map = coupling_map or backend_conf['coupling_map']

    # Step 2 and 3: transpile and populate the circuits
    for circuit in circuits:
        # TODO: A better solution is to have options to enable/disable optimizations
        num_qubits = sum((len(qreg) for qreg in circuit.get_qregs().values()))
        if num_qubits == 1 or coupling_map == "all-to-all":
            coupling_map = None
        # Step 2a: circuit -> dag
        dag_circuit = DAGCircuit.fromQuantumCircuit(circuit)

        # TODO: move this inside the mapper pass
        # pick a good initial layout if coupling_map is not already satisfied
        # otherwise keep it as q[i]->q[i]
        if (initial_layout is None and not backend_conf['simulator']
                and not _matches_coupling_map(circuit.data, coupling_map)):
            initial_layout = _pick_best_layout(backend, num_qubits,
                                               circuit.get_qregs())

        # Step 2b: transpile (dag -> dag)
        dag_circuit, final_layout = transpile(dag_circuit,
                                              basis_gates=basis_gates,
                                              coupling_map=coupling_map,
                                              initial_layout=initial_layout,
                                              get_layout=True,
                                              seed=seed,
                                              pass_manager=pass_manager)

        # Step 2c: dag -> json
        # the compiled circuit to be run saved as a dag
        # we assume that transpile() has already expanded gates
        # to the target basis, so we just need to generate json
        list_layout = [[k, v] for k, v in final_layout.items()
                       ] if final_layout else None

        json_circuit = DagUnroller(dag_circuit,
                                   JsonBackend(dag_circuit.basis)).execute()

        # Step 3a: create the Experiment based on json_circuit
        experiment = QobjExperiment.from_dict(json_circuit)
        # Step 3b: populate the Experiment configuration and header
        experiment.header.name = circuit.name
        # TODO: place in header or config?
        experiment_config = deepcopy(config or {})
        experiment_config.update({
            'coupling_map':
            coupling_map,
            'basis_gates':
            basis_gates,
            'layout':
            list_layout,
            'register_slots':
            sum(register.size for register in circuit.get_cregs().values())
        })
        experiment.config = QobjItem(**experiment_config)

        # set eval_symbols=True to evaluate each symbolic expression
        # TODO after transition to qobj, we can drop this
        experiment.header.compiled_circuit_qasm = dag_circuit.qasm(
            qeflag=True, eval_symbols=True)

        # Step 3c: add the Experiment to the Qobj
        qobj.experiments.append(experiment)

    return qobj