def test_simple_dqn(self): do_test_explorations( simple_q.SimpleQ, "CartPole-v0", simple_q.SimpleQConfig().to_dict(), np.array([0.0, 0.1, 0.0, 0.0]), )
def test_simple_q_compilation(self): """Test whether a SimpleQTrainer can be built on all frameworks.""" # Run locally and with compression config = simple_q.SimpleQConfig().rollouts(num_rollout_workers=0, compress_observations=True) num_iterations = 2 for _ in framework_iterator(config, with_eager_tracing=True): trainer = config.build(env="CartPole-v0") rw = trainer.workers.local_worker() for i in range(num_iterations): sb = rw.sample() assert sb.count == config.rollout_fragment_length results = trainer.train() check_train_results(results) print(results) check_compute_single_action(trainer)
def test_simple_q_loss_function(self): """Tests the Simple-Q loss function results on all frameworks.""" config = simple_q.SimpleQConfig().rollouts(num_rollout_workers=0) # Use very simple net (layer0=10 nodes, q-layer=2 nodes (2 actions)). config.training(model={ "fcnet_hiddens": [10], "fcnet_activation": "linear", }) for fw in framework_iterator(config): # Generate Trainer and get its default Policy object. trainer = simple_q.SimpleQ(config=config, env="CartPole-v0") policy = trainer.get_policy() # Batch of size=2. input_ = SampleBatch({ SampleBatch.CUR_OBS: np.random.random(size=(2, 4)), SampleBatch.ACTIONS: np.array([0, 1]), SampleBatch.REWARDS: np.array([0.4, -1.23]), SampleBatch.DONES: np.array([False, False]), SampleBatch.NEXT_OBS: np.random.random(size=(2, 4)), SampleBatch.EPS_ID: np.array([1234, 1234]), SampleBatch.AGENT_INDEX: np.array([0, 0]), SampleBatch.ACTION_LOGP: np.array([-0.1, -0.1]), SampleBatch.ACTION_DIST_INPUTS: np.array([[0.1, 0.2], [-0.1, -0.2]]), SampleBatch.ACTION_PROB: np.array([0.1, 0.2]), "q_values": np.array([[0.1, 0.2], [0.2, 0.1]]), }) # Get model vars for computing expected model outs (q-vals). # 0=layer-kernel; 1=layer-bias; 2=q-val-kernel; 3=q-val-bias vars = policy.get_weights() if isinstance(vars, dict): vars = list(vars.values()) vars_t = policy.target_model.variables() if fw == "tf": vars_t = policy.get_session().run(vars_t) # Q(s,a) outputs. q_t = np.sum( one_hot(input_[SampleBatch.ACTIONS], 2) * fc( fc( input_[SampleBatch.CUR_OBS], vars[0 if fw != "torch" else 2], vars[1 if fw != "torch" else 3], framework=fw, ), vars[2 if fw != "torch" else 0], vars[3 if fw != "torch" else 1], framework=fw, ), 1, ) # max[a'](Qtarget(s',a')) outputs. q_target_tp1 = np.max( fc( fc( input_[SampleBatch.NEXT_OBS], vars_t[0 if fw != "torch" else 2], vars_t[1 if fw != "torch" else 3], framework=fw, ), vars_t[2 if fw != "torch" else 0], vars_t[3 if fw != "torch" else 1], framework=fw, ), 1, ) # TD-errors (Bellman equation). td_error = q_t - config.gamma * input_[ SampleBatch.REWARDS] + q_target_tp1 # Huber/Square loss on TD-error. expected_loss = huber_loss(td_error).mean() if fw == "torch": input_ = policy._lazy_tensor_dict(input_) # Get actual out and compare. if fw == "tf": out = policy.get_session().run( policy._loss, feed_dict=policy._get_loss_inputs_dict(input_, shuffle=False), ) else: out = (loss_torch if fw == "torch" else loss_tf)(policy, policy.model, None, input_) check(out, expected_loss, decimals=1)
def _import_simple_q(): import ray.rllib.algorithms.simple_q as simple_q return simple_q.SimpleQ, simple_q.SimpleQConfig().to_dict()