Exemplo n.º 1
0
 def test_simple_dqn(self):
     do_test_explorations(
         simple_q.SimpleQ,
         "CartPole-v0",
         simple_q.SimpleQConfig().to_dict(),
         np.array([0.0, 0.1, 0.0, 0.0]),
     )
Exemplo n.º 2
0
    def test_simple_q_compilation(self):
        """Test whether a SimpleQTrainer can be built on all frameworks."""
        # Run locally and with compression
        config = simple_q.SimpleQConfig().rollouts(num_rollout_workers=0,
                                                   compress_observations=True)

        num_iterations = 2

        for _ in framework_iterator(config, with_eager_tracing=True):
            trainer = config.build(env="CartPole-v0")
            rw = trainer.workers.local_worker()
            for i in range(num_iterations):
                sb = rw.sample()
                assert sb.count == config.rollout_fragment_length
                results = trainer.train()
                check_train_results(results)
                print(results)

            check_compute_single_action(trainer)
Exemplo n.º 3
0
    def test_simple_q_loss_function(self):
        """Tests the Simple-Q loss function results on all frameworks."""
        config = simple_q.SimpleQConfig().rollouts(num_rollout_workers=0)
        # Use very simple net (layer0=10 nodes, q-layer=2 nodes (2 actions)).
        config.training(model={
            "fcnet_hiddens": [10],
            "fcnet_activation": "linear",
        })

        for fw in framework_iterator(config):
            # Generate Trainer and get its default Policy object.
            trainer = simple_q.SimpleQ(config=config, env="CartPole-v0")
            policy = trainer.get_policy()
            # Batch of size=2.
            input_ = SampleBatch({
                SampleBatch.CUR_OBS:
                np.random.random(size=(2, 4)),
                SampleBatch.ACTIONS:
                np.array([0, 1]),
                SampleBatch.REWARDS:
                np.array([0.4, -1.23]),
                SampleBatch.DONES:
                np.array([False, False]),
                SampleBatch.NEXT_OBS:
                np.random.random(size=(2, 4)),
                SampleBatch.EPS_ID:
                np.array([1234, 1234]),
                SampleBatch.AGENT_INDEX:
                np.array([0, 0]),
                SampleBatch.ACTION_LOGP:
                np.array([-0.1, -0.1]),
                SampleBatch.ACTION_DIST_INPUTS:
                np.array([[0.1, 0.2], [-0.1, -0.2]]),
                SampleBatch.ACTION_PROB:
                np.array([0.1, 0.2]),
                "q_values":
                np.array([[0.1, 0.2], [0.2, 0.1]]),
            })
            # Get model vars for computing expected model outs (q-vals).
            # 0=layer-kernel; 1=layer-bias; 2=q-val-kernel; 3=q-val-bias
            vars = policy.get_weights()
            if isinstance(vars, dict):
                vars = list(vars.values())

            vars_t = policy.target_model.variables()
            if fw == "tf":
                vars_t = policy.get_session().run(vars_t)

            # Q(s,a) outputs.
            q_t = np.sum(
                one_hot(input_[SampleBatch.ACTIONS], 2) * fc(
                    fc(
                        input_[SampleBatch.CUR_OBS],
                        vars[0 if fw != "torch" else 2],
                        vars[1 if fw != "torch" else 3],
                        framework=fw,
                    ),
                    vars[2 if fw != "torch" else 0],
                    vars[3 if fw != "torch" else 1],
                    framework=fw,
                ),
                1,
            )
            # max[a'](Qtarget(s',a')) outputs.
            q_target_tp1 = np.max(
                fc(
                    fc(
                        input_[SampleBatch.NEXT_OBS],
                        vars_t[0 if fw != "torch" else 2],
                        vars_t[1 if fw != "torch" else 3],
                        framework=fw,
                    ),
                    vars_t[2 if fw != "torch" else 0],
                    vars_t[3 if fw != "torch" else 1],
                    framework=fw,
                ),
                1,
            )
            # TD-errors (Bellman equation).
            td_error = q_t - config.gamma * input_[
                SampleBatch.REWARDS] + q_target_tp1
            # Huber/Square loss on TD-error.
            expected_loss = huber_loss(td_error).mean()

            if fw == "torch":
                input_ = policy._lazy_tensor_dict(input_)
            # Get actual out and compare.
            if fw == "tf":
                out = policy.get_session().run(
                    policy._loss,
                    feed_dict=policy._get_loss_inputs_dict(input_,
                                                           shuffle=False),
                )
            else:
                out = (loss_torch if fw == "torch" else loss_tf)(policy,
                                                                 policy.model,
                                                                 None, input_)
            check(out, expected_loss, decimals=1)
Exemplo n.º 4
0
def _import_simple_q():
    import ray.rllib.algorithms.simple_q as simple_q

    return simple_q.SimpleQ, simple_q.SimpleQConfig().to_dict()